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QUASI–CONVOLUTION OF ANALYTIC

FUNCTIONS WITH APPLICATIONS

K. O. BABALOLA

Abstract. In this paper we define a new concept of quasi-convolution for analytic functions
normalized by f (0) = 0 and f ′(0) = 1 in the unit disk E = {z ∈ C: |z| < 1} . We apply this
new approach to study the closure properties of a certain class of analytic and univalent functions
under some families of (known and new) integral operators.
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