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ON A VARIANT OF THE JENSEN-MERCER
INEQUALITY FOR OPERATORS

A. MATKOVIC AND J. PECARIC

(communicated by N. Elezovic)

Abstract. Some refinements of the Jensen-Mercer inequality for operators are presented. Ob-
tained results are used to refine some comparision inequalities between power and quasi-
arithmetic means for operators.

1. Introduction

We assume that H is a Hilbert space, % (H) is the C*-algebra of all bounded
operators on H, Ay,...,A; € % (H) are selfadjoint operators with spectra contained
in [m, M] for some scalars m < M, 1y is the identity operatorin B (H), wi,...,ws
are positive real numbers and W, = Zjl;l w;. We denote by C ([m,M]) the set of all
real valued continuous functions on an interval [m,M]. The following definition can
be found in [1].

DEFINITION. A real valued continuous function f defined on an interval 7 is said
to be operator convex if

f(1=A)A+AB) < (1 -A)f(A) +Af (B) (1.1)

for all A € [0,1] and for all selfadjoint operators A, B € % (H) whose spectra are
contained in I. A real valued continuous function f is said to be operator concave it
the reverse inequality (1.1) holds.

The following assertion is a special case of a general result proved in [3].

THEOREM A. If f € C([m,M]) is an operator convex function on [m,M],

Jj=1 Wk Jj=1
k
< (f(m) +f (M))1g — Wi S wif (4) (1.2)
=1
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If a function f is operator concave, then inequalities (1.2) are reversed.

REMARK 1. From a general result proved in [2] it follows that the Jensen-Mercer
inequality for operators

k k
f <m+M>1HWik;ijj <7 (n) o f () L= 5 S wf () (13)

=1

holds, more generally, for all convex functions.

In this paper we give some refinements of the Jensen-Mercer inequality, and we
present several applications of them. In Section 2 we prove refinements of (1.3), using
an index set function. For related results in the real case see [4, p. 87]. In Section 3 we
use these results to refine some inequalities among power and quasi-arithmetic means
of Mercer’s type for operators.

2. Main results

Let I be a finite nonempty set of positive integers. Let A; (i € I) be selfadjoint
operators in % (H) with spectra contained in [m, M] for some scalars m < M, and
let w; (i € I) be positive real numbers. Observe that spectra of Wil Zie ;wid; is also

contained in [m, M]. If we define the index set function F as
1
() =W, l(f (m) + 1 (M) 1t = > owif (4)

icl

L=y

)

then the following theorem is valid.

THEOREM 1. Let I and J be finite nonempty sets of positive integers such that
INJ =0. Let w; (i€l1UJ) be positive real numbers and let A; (i € 1UJ) be
selfadjoint operators in % (H) with spectra contained in [m,M). If f € C([m,M]) is
an operator convex function, then

F(IUJ) = F(I)+ F(J). (2.1)
If a function f is operator concave, then inequality (2.1) is reversed.

Proof. Suppose that f is operator convex. From Theorem A it follows that the
following inequality holds for every selfadjoint operators By, B, € % (H) with spectra
contained in [m, M], and for every uy,u; >0

1By + uxBy
M)ly — ———
(u1 + I/tz)f <(m + ) H Tt >

<M]f ((m+M) IH—Bl)+M2f ((m+M) IH—Bz). (22)
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If we let
1 1
uy = Wyuy =W;,By = — wiA;, By = — wiA;
W 2B 2
in (2.2), then we obtain

1
W, m+M)ly — W,‘A,‘
i <( i Wius ieZIL;J )

< Wif ((m+M) Iy — Wi Zw;-/h)
1

iel
1
+ Wyf (m+M)1H__ZWiAi .
Wi

Multiplying the above inequality by (—1) and adding to the both sides the term

uJ

> wif (Ai)l ,

ieluJ

Wius [(f(m) +f(M)) 1y —

it follows that

—f ((m +M) 1y — > WiAi>
107 oy
1
> Wi [(f(rn) L) 1 = = 3 wf (4)
icl
1
—f ((m—i—M) IH—— W,‘A,‘)]
W
1
£ Wo | (Fom) +f (M) L = 7 > wif (A)
icJ
1
—f ((m+M) Iy — — Zw,-A,)] :
Wi ig
Analogously, if f is operator concave, then reversed inequality (2.1) follows from
reversed inequality (2.2). O
COROLLARY 1. Let Iy, ..., I; be finite nonempty sets of positive integers such that

LNL=0,foral i #je{l,....,k}. Let wi (i € Uj_I;) be positive real numbers
and A; (i € Uj_1I;) selfadjoint operators in 8 (H) with spectra contained in [m, M].
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If f € C([m,M)) is an operator convex function, then

k

F(Ur) = imj). (23)
j=1

=1
If a function f is operator concave, then the inequality (2.3) is reversed.
Proof. Directly from Theorem 1 by induction. ]
The following corollaries give refinements of (1.3).

COROLLARY 2. Let I, = {1,...,k} (k=1,...,n). Let w; (i € I,) be positive
real numbers and A; (i € 1,,) selfadjoint operators in % (H) with spectra contained in
[m,M]. If f € C([m,M)]) is an operator convex function, then

F(l,)2F(I,—1) 2--->F(L) > F() >0. (2.4)
If a function f is operator concave, then inequalities (2.4) are reversed.

Proof. If we let n = 1 in Theorem A, then we have
f((m+M)lg —Ar) < (f(m)+f(M)) 1y —f (A1)

Since wy > 0, it follows that F(I;) > 0. Similarly, we may conclude that F ({k}) > 0
forall k € I,,. Now, from Theorem 1 it follows that

F(Ix) = F(Iy—1 U {k}) = F(lt—1) + F ({k}) = F(Ix-1)
forall k € {2,...,n}. O

COROLLARY 3. Let Iy = {1,...,k} (k=1,...,n). Let w; (i € I,) be positive
real numbers and A; (i € I,) selfadjoint operators in 9B (H) with spectra contained in
[m,M]. If f € C([m,M]) is an operator convex function, then

~owif (A) +wif (4))

Wi+Wj

F(l) > (w4 w) [<f<m> P 1

—f ((m—&-M)lH—M)} forall 1<i<j<n
Wit Wi (2.5)
and
F(L,) = wi[(f (m) +f(M)) 1 — f (A)
—f(m+M)1ly—A)], forall 1<i<n. (2.6)

If a function f is operator concave, then inequalities (2.5) and (2.6) are reversed.

Proof. Similarly as F(I,,) > F(I;) in Corollary 2, we may conclude that F(I,) >
F({i,j}) forall i #j € {1,...,n} and analogously, that F(I,) > F ({i}) for all
ie{l,...,n}. O
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3. Applications

Let M,[,r] be the (weighted) power mean of order r of selfadjoint operators A; €
2 (H) with spectra contained in [m, M], for some scalars 0 < m < M, formed with
positive weights w; (i=1,...,n),i.e.,

1

[ Siweds] . r 0,

Ml =
exp (Win Zle w; In (A,-)) , r=0.

n

If we define

1
A = ((’"r + M) 1y — g WiA?) . r#0,
exp ((lan) lg — WLHZ:'C:I Wiln(Ai)) . =0,

n

then we have the following results.

THEOREM 2.
W, (ln]\z[lo] — lnM,[ll]) < W, (ln[@oll — lnl\z[llll)

<KW (1n1f4£°] - 1nM£”) <o. (3.1)

Proof. Applying Corollary 2 to the operator concave function f(x) = Inx we
obtain (3.1), since in this case

k

F(L) = W, [(mmM) 1y — Wik > wiln(4))
i=1

k
—1In ((m+M) lH — Wik ZW#%)]
i=1

= Wi (lnMIEO] — lnM,[f]) .

COROLLARY 4.

W, (ln]\z[l_l] — ln]\},[lo]) < W,y (1n1\71,[1__11] — In M )

n—1

<< Wy (1n1\71£‘” - 1n1\71£0]) <0.

Proof. Directly from Theorem 2 by the substitutions m — m=', M — M~
A,‘ — Al_1 . O
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THEOREM 3. If r < —1 or 5 <r <1, then
W, (A}m _ M,L’])Wn_l (Mﬂll v )
>z w (i -m) >o. (32)
If r > 1, then inequalities (3.2) are reversed.

Proof. Suppose that r < —1. Applying Corollary 2 to the operator convex
function f (x) = x7, and replacing m, M, and A; with m", M", and A! respectively,
we obtain (3.2), since in this case

k

1
F(Il) = Wy [(m+M) 1y — A > i
i=1

1
¥

k
1
(o My = S Al
((m+ )H W, i:1w 1>

e (i) )
If 1 < r <1, then the function f (x) = x+ is operator convex, so (3.2) also hold. If
r > 1, then the function f (x) = x* is operator concave, so (3.2) are reversed. O

THEOREM 4. Let r,s € R, r <.
(i) If0<rand s<2r,or 0<s< —r, then

e ((97) = (1)) 2 wer (211 = (38,))

s () (37 ) >0

(3.3)
(ii) If s <0, then inequalities (3.3) are reversed.
(iii) If s<0and 2s <r,or 0 < —r < s, then
o () — ) v () ()
o () - @) 2o
(3.4)

(iv) If 0 < r, then inequalities (3.4) are reversed.

Proof. (i) Suppose that 0 < r < s < 2r. Applying Corollary 2 to the operator
convex function f(x) = x7, and replacing m, M, and A; with m", M", and A!
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respectively, we obtain (3.3), since in this case

k

, , 1 ,
F([k) = Wk (mé +Mb) lH - Wk ZW,A?

(( -‘er)lH——iwA);
i=1
(i) - (1))

If r<sand 0 <s < —r, then the function f (x) = x7 is operator convex, so (3.3)
also hold.

(if) If r < s < 0, then the function f (x) = x* is operator concave, so (3.3) are
reversed.

(iii) Suppose that 25 < r < s < 0. Applying Corollary 2 to the operator convex
function f (x) = x5 , and replacing m, M, and A; with m®, M*, and A} respectively,
we obtain (3.3), since in this case

k
(m" +M") 1H——ZwAr
i=1

— ((m + M) 1y — —ZwA*)
- (3t - ().

If r <sand 0 < —r < s, then the function f (x) = x5 is operator convex, so (3.4)
also hold.

(iv) If 0 < r < s, then the function f (x) = x5 is operator concave, so (3.4) are
reversed. 0

F(I) = Wy

r
s

Let ¢ € C([m,M]) be strictly monotonic function on an interval [m,M]. Let

M([Z] be the quasi-arithmetic mean of selfadjoint operators A; € % (H) with spectra
contained in [m, M], for some scalars 0 < m < M, formed with positive weights w;

(i=1,...,n),ie,
L;—(p1< Zwl )

Mgl]::‘l’_l (((P( )+ o (M lH——ZW, l).

then we have the following results.

If we define
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THEOREM 5. Let @,y € C ([m,M]) be strictly monotonic functions. If y o ¢!
is operator convex, then

e o 08) v () o o ()~ ()

> wW (u/ (W) -V (M‘["”)) >0 (3.5)

U is operator concave, then inequalities (3.5) are reversed.

If woo~

Proof. Applying Corollary 2 to the operator convex function f = y o ¢!, and

replacing m, M, and A; with @ (m), @ (M), and @ (A;) respectively, we obtain (3.5),
since in this case

k
F(Ix) = Wy ((w(m) +w (M) 1y — WLk ZWiW(Ai)

—(voo™) (((p(m) +¢ (M) 1y — W%Zwmo (A,-)>>

= we (v (i)~ w (1)) .

O

REMARK 2. Theorems 2, 3 and 4 follow from Theorem 5 by choosing adequate
functions ¢ and y, and appropriate substitutions.

THEOREM 6. Let @,y € C ([m,M)) be strictly monotonic functions. If y o ¢!
is operator convex, then

W (v (3757) v (32))
>0w+wﬂwwﬂ+ww»m—WW@ijW%’

_ W@ A) w9 AN
wi +w; ’

<i<j<n
(3.6)

i[(w (m) + w (M) 1y — y (A)
— (woo ) ((@(a)+ ¢ M) 1y — @ (A))], forall 1<i<n .

1

If wo @~ is operator concave, then inequalities (3.6) and (3.7) are reversed.
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REMARK 3. From Theorem 6, analogous assertions for the power means M,[,r]
follow by choosing adequate functions ¢ and Y, and appropriate substitutions.
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