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GENERAL THREE-POINT QUADRATURE FORMULAE WITH
APPLICATIONS FOR o -L-HOLDER TYPE FUNCTIONS

M. KLARICIC BAKULA, J. PECARIC, M. RIBICIC PENAVA

(communicated by N. Elezovic)

Abstract. In this paper we present two types of general three-point weighted quadrature formulae.
The obtained formulae are used to establish several Ostrowski type inequalities for o-L -Holder
functions and some error estimates for three-point Gauss-Chebyshev quadratures.

1. Introduction

The most elementary quadrature rules in three nodes are:
Simpson’s rule based on Simpson’s formula

[?mmz

the dual Simpson’s rule based on the following three point formula

/f [2f<3a+b> f(a;rb> 2f<a+3b>}+72(1;7850)5f(4>(5)’
(1.2)

and Maclaurin’s rule based on Maclaurin’s formula

fron- S (52) () o (52)] e
(1.3)

where in all three formulae we take & € [a,b]. These formulae are valid for any
function f with continuous fourth derivative f ) on [a, b].

Let f : [a,b] — R be differentiable on [a,b] and f’ : [a,b] — R integrable on
[a, b]. Then the Montgomery identity holds [3]

@ (F2) vr o] - Gedsoe, o

b b
%a/ f(t)dr+/ P(x,0)f" (1) dt, (1.4)
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where P (x,1) is the Peano kernel defined by

1.5
x<t<b (1:3)

Now, let’s suppose w : [a,b] — [0,00) is some probability density function, that is an
integrable function satisfying f: w(t)dt =1,and W (1) = ['w(x)dx for t € [a,b],
W(t) =0 for t <aand W(t) =1 for t > b. In [4] J. PeCari¢ proved a weighted
generalization of the well known Montgomery identity :

b b
f )= / w(B)f (1) di + / Pu (e ) f' (),

where the weighted Peano kernel is defined by

PW(x,t)—{ W (1), ait

X
W) —1, x<t<b

NN

In [2] G. A. Anastassiou proved the following equality:

n () . . y
IORHOEDI = =" = (n_1 1)! / (g("> (1) — g™ (x)) (y—1"""dt,
i=1 s Jx

i!

where g : I C R — R is such that for some n € N the derivative g exists for all
t € [a,b] CI (a < b) and where x,y belong to [a,b].

These two results were used in the recent paper [1], where A. Agli¢ Aljinovié and
J. Pecari¢ introduced two new extensions of the weighted Montgomery identity.

In this paper we use those new weighted Montgomery identities to establish for
each x € [a, (a + b) /2) two general three-point quadrature formulae of the type

/W(t)f(t)dt=A(X)[f(X)+f(a+b—X)}
a+b

+(12A(x))f( )+R(f,w;x), (1.6)

where R (f, w; x) stands for the reminder. Considering the function A : [a, (a + b) /2) —
R as an arbitrary coefficient function we see that (1.6) defines a family of quadrature
formulae which contains the formulae with same nodes as Simpson’s formula, the dual
Simpson’s formula and Maclaurin’s formula. The obtained three-point formulae are
used to prove several Ostrowski type inequalities for ¢-L-Holder functions. At the end
of the paper we show how these results can be applied to obtain some error estimates
for three-point Gauss-Chebyshev quadrature rules.
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2. Variant I of general three-point quadrature formula

Let I be an open interval in R, [a,b] C I, and let f : I — R be such that
=1 is absolutely continuous for some n > 2. In [1] the following extension of the
Montgomery identity has been proved:

b et () X .
/W(t)f(t)dIZf(x)—Zfii!()/ W (1) (1—a)' dt

i=0
n=1l o(it1) b .
el (”)/X (=W (1)) (1-b) ds

i=0

+ﬁ { / 0 { / ' (r™(@) ")) (-9 ds} dr

v [ a-way [ (0 r96) - ds] dt} 7

(2.1)

where x belongsto [a,b] and w : [a,b] — [0,00) is some probability density function.

In this section we use (2.1) to study for each number x € [a, #) the general three-

point quadrature formula of the type (1.6).
Let f : [a,b] — R besuch that f ") exists on [a, b] forsome n > 2. We introduce

the following notation for each x € [a, 4t2) :

Dx)=A@)[f(x)+f(a+b—x)]+(1-24x))f (a;b>.

Furthermore, we define

B n—lf(iJrl)(b) b i b i
ty (x) = A (x) {g 7 /x (1-W (1)) (t—b) dt+/a+bx(1_W(t)) (t—b) dt
n=1 g (it1 x atb—x
_gw V W (1) (t—a)"dt+/a b W (1) (t—a)idt]}

nl (it b .
+(1—2A(x)){zf,7(b)ﬁb (1=W (1)) (1—b) dt

- i! a+b
=0 2

+b

e, .
—Zfi()/ W(t)(t—a)’dt}

i!
i=0

and

Ty (x) =A ) [T () + T (x) + T (a+b—x)+ T2 (a+b—x)]
+(1-24(x)) [T;; (“;b> 4T (“;bﬂ,
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where

10 = o WO [ (@ 0) 6

(n—

o= o | 1w [ / (0 6 - ) - sy ds] ar.

(n—

In the next theorem we establish the first variant of the generalized three-point
quadrature formula based on the extended Montgomery identity which will play the key
role in this section.

THEOREM 1. Let I be an open interval in R, [a,b] C I, and let w : [a,b] —
[0,00) be some probability density function. Let f : I — R be such that £~V is
absolutely continuous for some n > 2. Then for each x € [a, #) the following
identity holds

b
/ w () f (1) dt =D (x) + 1 (x) + Ty (x). (2.2)

Proof. We put x = x,x = “2andx = a+ b — x in (2.1) to obtain three
new formulae. After multiplying these three formulae by A (x),1 — 24 (x),A (x)
respectively and adding, we obtain (2.2). O

Before we give an estimation of the term

b

b
/ w(O)f (1) di — D (x) — 1, (x)

let us recall that a function ¢ : [a,b] — R is said to be of o-L-Holder type if
|o (x) — @ (y)] < L|x—y|* forevery x,y € [a,b], where L >0 and a € (0,1]. We
will also make use of the Beta function of Euler type which is for x,y > 0 defined by

B(x,y) _/01 A=) e

In what follows for x € [a, “52) we denote

- W(t), a<t<ux,

W(x’t)_{ 1-W(), x<t<b

a+n—1
<t <
L (50) {Et a) , a<t<x,

b—0)*""1 x<i<b
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THEOREM 2. Suppose that all the assumptions of Theorem I hold and additionally

assume that ) : [a,b] — R is an a-L-Holder type function. Then for each x €

[a, %) the following inequalities hold

b
/W@f@w—DM—mw

<B(a+1n) {|A \/Wxt o (x, 1) de

(

+ A (x \/Waerfx U, (a+b—x,t)dt

s (23205

2B(a+1,n—1)
(¢ +n)(n—2)!

+12A(x)|(b7“)m}.

Proof. From (2.2) we have

{\A @) [[(x = @)™ + (b = x)*™"]

b
[ @ a0 -0

= ‘A(x) [T (x) + T2 (x) + T¢ (a+ b —x) + T, (a+ b — x)]

+(1 =24 (x)) {Ts (a;b) £ (“;b)H

AW [IT2 )]+ 72 ()] + 172 (a+ b — )] + |72 (a+b—)]]

ACRRER)] e

Since £ is an o-L-Holder type function, from (2.3) we obtain

+|1—2A(x)|{

b
/wmfmw—DM—%w

< (:(x;J!L {/:W(t) {/at (s—a)* (1—s)"" ds} dr
+ /:+b_x W (2) {/at (s—a)*(t— s)”f2 ds} dr
+/Xb(1 — W (1)) th(bs)“ (st)"_zds] dr




348 M. KLARICIC BAKULA, J. PECARIC, M. RIBICIC PENAVA

+L;ﬁuwmm[[%b@%erZM]m}
n l(niAz())? L{/u_
+L;awmmljﬂbswwﬁ“%%M} (24)
The first integral 0\2/er ds in (2.4) can be written as
/a’ (5= )% (r— s\ 2ds = (ta)a+n_2/a' (j_;‘:)a (;_D”ds
=l
:(tfa)(Hn_l/o u® (1 —u)"*du

=(t—a) " 'Bla+1,n—1).

Similarly can be done with other integrals in (2.4), hence we obtain

b
[ @ wa-pe-uw

(O‘(“’; {A |/Wxt () di

e \/Wa+b—xt) (a+b—x1)dt

1 — 24 (x |/ (“H’ )U,(#,t)dt}. ns)

o<W <1, t€]ab],

Since we have

from (2.5) we obtain

B(a+1,n—1)
o {|A \/Wxt  (x, 1) dr

+|A (x |/ W (a+b—x,t) U, (a+b—x, 1) dt

o [ n () (52
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2B (a+1,n—-1)

= (a+n) (n—2)! L{A @) | [(x=a)*"" + (b—x)"""]

412A<x>|(égf)a+"},

which completes the proof. (]

3. Variant I of non-weighted three-point quadrature formula and applications

Here we define

~ B — ip(it it (x— a)HZ +(b— x)i+2
tn (x) = A (x) 2 [(*1) £ (b) = p Y (a)} i'i+2)(b—a)
n—1 P i (b _ a)i+1
+(1—-24(x)) > (=17 ) = ) (@) TiT2)277
and
T () = A ) [T 00+ 70 + T3 e+ b =) + T a5 — )]
~ a-+b ~ (a+b
+ (1 - 24 (x)) {Tn ( 5 >+T,’§< 5 )]
where

50 = g | 0| [ (7 @~ 0) -5 0

Abx ,; b - b (n) o) s _ 2 s
EU—mﬂwmml@fw[v(@f(DU) ol

COROLLARY 1. Let I be an open interval in R, [a,b] C I, andlet f : 1 — R be
such that "=V is absolutely continuous for some n > 2. Then for each x € [a, ﬂ)

2
the following identity holds

b
bia/f(t)dt:D(x)+?,,(x)+Tn(x) (3.2)

Proof. This is a special case of Theorem 1 for w () = ;- 1 € [a, ] . O

COROLLARY 2. Let I be an open interval in R, [a,b] C I, andlet f : 1 — R be
such that £ "=V is absolutely continuous and that f™ : [a,b] — R isan o-L-Hélder
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type function for some n > 2. Then for each x € [a, #)

holds

b
o [ f0a-pw i
2B(oe+1,n—1)
S (b—a)(a+n+1)(n—2)!L{|A(x)‘ {(

+[1— 24 (v)] (l’Ta)WH}.

the following inequality

e a)oc+n+l - x)ochnJrl}

Proof. This is a special case of Theorem 2 for w () = 71—, 1 € [a, ] . O
The next step is setting
b— )
Ax) = (—a)p x € [a,4L) .
6(a+b—2x)

This special choice of the function A enables us to establish our generalizations of the
well known Simpson’s formula (x = a), dual Simpson’s formula (x = (3a + b) /4)
and Maclaurin’s formula (x = (5a +b) /6). We will also show how to apply the
results of Section 2 to obtain some error estimates for these quadrature rules if they
involve o-L-Holder type functions.

31. x=a

Suppose that all the assumptions of Corollary 1 hold. Then our generalization of
Simpson’s formula states

~

b
/ f () dt=D(a)+1,(a) +T,(a),

b—a

D(a)—é[ﬂ) i (50) s )]

n—1

where

+1)(b—a)™!
201 (i + 2)

[ JaG) (b) PGS (a)} (2!

O\I'—*

i=0

7, (a) = é {T”( )+4T“< ;b) 44T (“;b> +f,‘,‘(b)},

where 79 (x) and 77 (x) are as in (3.1).

and

COROLLARY 3. Suppose that all the assumptions of Corollary 2 hold. Then the
following inequality holds
B(a+1,n—1) 297" 1+1) (b—a)*™"
32001 (g4n+1) (n—2)!

~X

b
ﬁ/ﬂ f (H)dt—D(a) —1, (a)| <
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Proof. This is a special case of Corollary 2 for x = a. (]

For example, if in Corollary 3 we have n = 2 we obtain this estimation

L / bf(r)dr—é{ >+4f(““’ ) +f(b)] 5 ()| <

where

(21 41) (b—a)* "’ L
320t (o+1) (a+3)’

(b—a)
2

// +f// )

_ 3a+b
32, x=7~

Suppose that all the assumptions of Corollary 1 hold. Then our generalization of
the dual Simpson’s formula states

3a+b ~ (3a+b ~ (3a+b
_a/f dt < 2 )+tn< 4 )+Tn( 4 >
[2f<3a:—b)_f(a;—b> 2f(a+3b>]7

~(3a+b) 1= - i 2 (37241) —2142] (b—a)™!
t”( . )_5 {(*l)ﬂ ()= >(“)] = 4i+)2i!(i+;)( )

1 . [3a+Db ~ (3a+b ~fa+b
-5 () () - ()
~ (a-+b ~ (a+3b ~, (a+3b
TP 2T¢ 277
H(57) e () o (5]

where T¢ (x) and 77 (x) are as in (3.1).

n

where

COROLLARY 4. Suppose that all the assumptions of Corollary 2 hold. Then we
have

1 b 3a+b\ ~ (3a+b
b_a/af(t)dtD( a: )t,,( a: )

- B((X+ l,l’l— 1) (3a+n+l +2a+n + 1) (b_a)OCJrn
h 3-4%n (g +n+1)(n—2)!

L.

. . . o 3(1 b
Proof. This is a special case of Corollary 2 for x = T+' ]
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_ Sa+b
33. x=22%=

Suppose that all the assumptions of Corollary 1 hold. Then our generalization of
Maclaurin’s formula states

b
bia/f(t)dt:D<5a6+b)+?n<5a6+b)+fn(5a6+b>
Sa+b 1 Sa+b a+b a+5b
p(567) sl () v (7)o (557))

_(5a+b\ 3 i (i) iy ] (23524 1] (b —a)!
t"( 6 >_§, [(_l)f IORTAN (“)} 62 il (i +2)

~ (Sa+b 1[,~, (5a+b ~ (Sa+b ~wfa+b
7 — - |37¢ 3T 274
(5) =5 [m (M50) eom () v (1)
_ b _ sh _ 5b
+2T,’;<aJ2r >+3T;;(“+6 >+3T5<“2 )]

where 79 (x) and 77 (x) are as in (3.1).

where

COROLLARY 5. Suppose that all the assumptions of Corollary 2 hold. Then we
have

1 b 5a+b\ ~ [(5a+b
m/af(t)dtD( a6+ )t,,( a6+ )

3 B(Oc+1,n—1) (5a+n+1+2.3a+n+1) (b—a)OHn
= 8.6 (x+n+1)(n—2)!

L.

. . . S5a b
Proof. This is a special case of Corollary 2 for x = T+' (]

4. Variant II of general three-point formula

In the paper [1] another extension of the Montgomery identity has been proved:
for x € [a, b] we have that

b
AR / P, (x,1) (t—x) dr

+ (n—12)! /ub Py (x,1) UZ =) s ds] dt’(4-1)
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where f and w are as in Section 2 and

Pw(x,t)—{ W), a<t<x,

W()—1, x<t<b

In this section we establish a general three-point quadrature formula based on the
extended Montgomery identity (4.1). We denote

D@ =AW )+ (@] + (12007 (437).

i=0
FEHY (a+b—x)

b
+,—'/ Po(a+b—x1)(t—a—b+x)d
i! p

(12A(x))n§w/abpw (“;—b,t) (r anrb)idt

i!
i=0

and

m@—@%{[m@auﬁwwfwwowHﬂm

+ / b, (a+b—x,1) [ / ' (f ™ (g-b—x) —f® (s)) (1—s)" > ds} dt}

+b—x

THEOREM 3. Suppose that all the assumptions of Theorem 1 hold. Then for each

X € [a, #) the following identity holds

b
/ w(0)f (£)dt = D (x) + ry (x) + Ry (x) - (4.2)

Proof. We put x = x,x = “2andx = a+ b — x in (4.1) to obtain three
new formulae. After multiplying these three formulae by A (x),1 — 24 (x), A (x)
respectively and adding, we get (4.2). O
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THEOREM 4. Suppose that all the assumptions of Theorem 2 hold. Then for each

X € [a #) the following inequalities hold

b
[ w0s @a-pw-nw
ng{m

b
/ P,y (x,7)| |x — 2| """ dr

b
+/ |Py (a+b—x,1)]| a+bxt|a+”1dt]

(n—2)!

P24 (x (““’ > a;rbtaﬂldt}
2B(05+1n x_ao(+n _xa+n
< Bl L AWl (- 0™+ -0
+|1—2A(x)<b;a> }
Proof. From (4.2) we have that
b
[ w5 @ -Dw -~ )] = R ). (43)

Since £ is an a-L-Holder type function, from (4.3) we obtain

/W@f@Wﬂ@%mM

<(n2{ Vpxt

/|P (a+b—x,1)

\sx (t—s)" % |ds| dt

| (s—a—b+x)* (1—s)""* |ds| d

a+b—x ]
t
/M
2

+|1-2A (x ds

(L5 e

From (4.4) similarly as in Theorem 2 we get

dt} .
(4.4)

b
‘——1/fwow—Duo—muo

b—a
(O(¢+12;z D) { U W (1) (x—1) " dr+
n

a+b—x
+ / W (1) (a+b—x — )*" ' dr
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b

+/b(1_W(t))(’_ ) 1df+/ (1=W @) (t—a—b+x)*" " dr

+b—x

W a+b (Hn_ldt
[ v (57
+/; (1=WwW(2)) <t a;b)aﬂldt] }

+]1-2A(x

ZB (OC + 1 n— o+n o+n
\—L |A@)| [(x—a)" + (b—x)
CENITESA |
b— o+n
+12A(x)( “) }
2
and this completes the proof. (]

5. Variant II of non-weighted three-point quadrature formula and applications

Here we define

D@ =AW )+ (a+b—]+ (=247 (457).

nel i+2 i+2
Al (1) () 4 (_ ) D) (g ] LX) —(a—x)
0 =403 [ 04 1 |
n—1 . a b 1+ (_1)i+1 (b - a)i+1
+(1-24 (x))Zf(lJrl)( ; ) ( ) (i)+2)! :

i=0

R )= o3 {A W | [P ([ (00 0) 62 a

+ / bP(aHHc, ) ( / ' (f<"> (a+b—x) —f " (s)) (t—s5)""? ds) dr

a+b—x

w240 [ (450) V_(ﬂ (42) ) (f—S)"zds] dt},

where P is defined as in (1.5).

COROLLARY 6. Let I be an open interval in R, [a,b] C I, andlet f : 1 — R be
such that "=V is absolutely continuous for some n > 2. Then for each x € [a, #)
the following identity holds

b
/f(t)dt:D(x)+?,,(x)+§n(x).

b—a |/,
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Proof. This is a special case of Theorem 3 for w () = 7=, ¢ € [a,]]. O

COROLLARY 7. Let I be an open interval in R, [a,b] C I, andlet f : 1 — R be
such that f "=V is absolutely continuous and that f ™ [a,b] — R isan o-L-Hélder
type function for some n > 2. Then for each x € [a, ”;b) the following inequality

holds

b
el AL RIS

2B(oe+1,n—1)L
Sh—a)(a+n)(a+n+1)(n—2)

] {|A (X)‘ {(x _ a)a+n+1 + (b 7x)a+n+1}

+]1— 24 (v)| (b%“)mﬂ}.

Proof. This is a special case of Theorem 4 for w (1) = =, t € [a,b]. O

Now similarly as in Section 3 we set
b —a)’ b
A(x):(—a)z,xe [%a—&— )7
6(a+b—2x)

and proceed with some special choices of x.

51. x=a

Suppose that all the assumptions of Corollary 6 hold. Then our second generaliza-
tion of Simpson’s formula states

where

~ ( ) _ lnil [f(z+l)( )+ (_1)i+1f(i+1)( ):| (b_a)i+1
T 6 i=0 ¢ (l+2)'
2 n—1 o a —|—b (1 + (_1)i+1) (b _ a)i+1
+3 i:of( 1)( : ) T .

COROLLARY 8. Suppose that all the assumptions of Corollary 7 hold. Then we
have

B(a+1,n—1) (297" 1+1) (b—a)*™"
3. 204n=1 (g+n) (o+n+1) (n—2)!

AN

b
b—ia/af(t)dt—D(a)—?n(a) <
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Proof. This is a special case of Corollary 7 for x = a. (]

For example, if in Corollary 8 we have n = 2 we obtain the following estimation

bla/abf (ar - ¢ [f(a)+4f (“;b> +f <b>} ~72(a)

_ 2+ 1) (b—a)*’L
S 320t (@ 1) (a4 2) (e +3)

B =0 @1 0) 5 (1@ (52) 41 ) o

_ 3a+b
5.2. x=>7

Suppose that all the assumptions of Corollary 6 hold. Then our second generaliza-
tion of the dual Simpson’s formula states

b
bia/af(t)dt:D(&z:b)+?n<3a;rb)+k\n<3a4+b)
3a+b 1 3a+b a+b a-+3b
p(35) =3y () () ¥ (F7)]

1

_ (3a+b 25 , 3a+b Pl 3b
rn( a:— ):gz{f@m (%)—F(—l)ﬂf@“) (%)]

i=0
| (3i+2+(_1)i+1) (b—a)™*! N niif(iﬂ) <ﬂ) (1+(_1)i+1) (b—a)™*!
472 (42)] 34 2 272 (i 1 2)!

COROLLARY 9. Suppose that all the assumptions of Corollary 7 hold. Then we
have

1 b 3a+b _(3a+b
m/af(t)dtD<a4.+>rn<a:)

- B(a+1,n— 1) (3a+n+1+2a+n+1) (b_a)a+n
= 3-4% (e +n) (e +n+1)(n—2)!

where

L.

.. . _ 3a+b
Proof. This is a special case of Corollary 7 for x = T+' ]
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_ Sa+b
53. x=2%=

Suppose that all the assumptions of Corollary 6 hold. Then our second generaliza-
tion of Maclaurin’s formula states

b
bla/f(t)dt:D(Sa;_b> +?n<5a6+b)+ﬁn<5a6+b)
Sa+b\ 1 Sa+b a+b a+5b
(M) =5 [ (50) v (50) v (6]

. (5a+b 3« [, Sa+b it e [(at+5b
A () =s S (50) e (450

S (1)) () 14 (= 1)) (h—a)™!
( ) S (%”) ( ) _

' 612 (i+2)! + 212 (i42)!

where

@)}

EN

i=0

COROLLARY 10. Suppose that all the assumptions of Corollary 7 hold. Then we
have

1 b 5a+b _(5a+b
b_a/uf(t)dtD( a6+ >rn< a; )

B(a+1,n—1) (50{+n+1+2.3a+n+1) (b—a)OHn
869t (or+n)(a+n+1)(n—2)!

.. . __ Sa+b
Proof. This is a special case of Corollary 7 for x = 2422 (]

6. Applications to the Gauss-Chebyshev quadratures

Gaussian quadrature rules are formulae of the following type

b k
[ owr a~>ar ). (6.1)
@ i=1
where k € N. Without loss of generality we may restrict ourselves to the special case
[a,b] = [—1,1]. Further, ifin (6.1) the function @ is defined by
@ (1) = ! te(—1,1)
- /1 — t2 ) )

we obtain Gauss-Chebyshev quadrature rule of the first kind. In this case

1 1 k
/,1 i ”;%f (%) (6.2)
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where the weights A; are defined by

and x; are zeros of the Chebyshev polynomials of the first kind defined by
Cr (x) = cos (karccos (x)) .

Each Cj (x) has exactly & distinct zeros

all of which lie in the interval (—1, 1) (see for instance [5]). Error of the approximation
formula (6.2) is

T

E (f) = mfm) &), &e(-11).

In case k = 3 (6.2) reduces to

11 7%f (1) dr = g lf (‘?) +f(0)+f (?)

where £ € (—1,1). Ifin (6.1) the function @ is defined by

w(t)=vV1-7, te[-1,1]

we obtain Gauss-Chebyshev quadrature rule of the second kind

1 k
/_1 V1= 2f (1) dr ~ g;Aif (), (6.3)

+ 5005 (€

where the weights A; are given by
in
Ai = : )
k+1 k+1

and x; are zeros of the Chebyshev polynomials of the second kind defined by

sin

i=1,...k

sin [(k + 1) arc cos (x)] .

Uk (x) = sin [arc cos (x)]

Uy (x) has exactly k distinct zeros

all of which lie in the interval (—1,1). Error of the approximation formula (6.3) is

T

E (f) = mfuk) €), ¢e(=L1).
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In case k = 3 (6.3) reduces to

/llvl—tzf (t)dt=7§r [f (—Q> +2f (0) +f (?)

2

+ 3 ()

where § € (—1,1).
Next we show how to apply the results of Section 2 to obtain some error estimates
for the Gauss-Chebyshev quadrature rules involving o - L-Holder type functions.

THEOREM 5. Let I be an open interval in R, [—1,1] C I, andlet f : I — R be
such that for some n > 2 the derivative f "~V is absolutely continuous and ") is an
o - L-Holder function. Then

Lz () (9] 9)

< 2B(“+1’”_1)L[<1—§>W+ <1+£>W+1

S 3(o4n)(n—2)! 2 2

)

where t, is defined as in Section 2 and W (t) = 1 (arcsint + %).
Proof. This is a special case of Theorem 2 for [a,b] = [-1,1], x = —/3/2,
A (fﬁ/z) = 1/3 and
1

ﬁ7 te (7171)

w(t) =

O

THEOREM 6. Let I be an open interval in R, [—1,1] C I, andlet f : I — R be
such that for some n > 2 the derivative f "~V is absolutely continuous and ™ is an
a - L-Hoélder function. Then

L 2V Rr e g [f (—?) +2f (0) +f (?)] 1, (—?)‘

B(a+17n_1) \/E o+n \/E o+n
<2(a+n)(n2)zL[<l_7> +<1+7> +2

)

where 1, is defined as in Section 2 and W (1) = 1 (t\/ 1 — 7 +arcsint + %) .

Proof. This is a special case of Theorem 2 for [a,b] = [~1,1], x = —/2/2,
A (—ﬁ/z) = 1/4 and

w(t) = %\/1 -2, te[-1,1].
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