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SHAFER-FINK TYPE INEQUALITIES
FOR THE ELLIPTIC FUNCTION sn(ulk)

A. McD. MERCER

(communicated by J. Pecaric)

Abstract. The inequalities of Shafer and Fink, namely,

3
al t ™ xel0,1)

— sinm () < ———m——
241 -2 ()\2+\/17x2/

are generalized to similar inequalities for the elliptic function sn(u|k) .

1. Introduction

We start by presenting two very simple proofs of the Shafer and Fink inequalities.
Consider the functions

£(0) = msin® — 26 — Ocos b, 0<e<g

and
I

g(0) =3sinH — 20 — O cos 0O, 0<9<§

Each of these is concave over its interval and the following boundary conditions are
satisfied f (0) = f(5) = 0 and g(0) = ¢’(0) = 0. Hence

§(6) <0 and f(0) 20, 6€0,7]

That is

3sin 6O msin O
—— <0< —,
2+ cos B 2+ cosB

or, on putting x = sin 6

T
FAS [07 E}

N o xe0,1] (1)

These are, respectively, the Shafer and Fink inequalities.
The origins of these are to be found in [1] and [2] and a large bibliography concerning

them and their extensions appears in [3].
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Our purpose in this note is to generalize these results to the case in which sin 0 is
replaced by the Jacobi elliptic function sn(u|k) . In short, it is our purpose to prove the
following inequalities:

THEOREM. Let 0 < k < 1. Then if

K(k)/l dt
o VIV -k

we have
3x —1 ZK(k)x
<sn™(xlk) < , x€|0,1 2
24+ V1 —x2V1 — k22 (xlf) 24+ V1 —x2V1 — k2 0.1 @)

2. The Jacobi elliptic functions

A very succinct introduction to these functions, when the independent variable is
real, can be found in [4]. And in [5] there is a comprehensive list of their properties. In
this section we remind the reader of some of these facts.

(a) Definitions. With 0 < k < 1 the three Jacobi elliptic functions sn(u|k),
cn(ulk) and dn(u|k) are usually defined by integrals such as, for example,

sn(ulk) dt
0 V1—1£2vV1—kr

Let us follow [4] and write
x = sn(ulk), y=cn(ulk) and z = dn(ulk)
Then, whenever the independent variable u is restricted to the real field an equivalent
definition of these functions is
dx dy dz 2
du 2 du Y dw s Y
with
x(0) =0, y(0) =z(0) =1
The parameter k is called the elliptic modulus and k', defined by

K=v1-k

is the complementary elliptic modulus.
Another constant involved in these matters is the following ;

! dt
k0= [

K 1is called the complete elliptic integral of the first kind.
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(b) Properties. We have, using the notations of [4] :
x(0)=0, x(K)=1
y(0)=1, y(K)=0

2000=1, z(K)=kK=V1-8

Py =1,
Kx? 472 =1,
2y + K2 = 2,
ey
Visualization of these functions may be helped by mentioning that x(u) increases from

0 to 1 and y(u) decreases from 1 to 0 in [0, K], their graphs generally resembling
those of sin(«) and cos(u). The function z decreases from 1 to &' in [0, K] with a

minimum at X when
z2=V1-k>0

These properties have been proved in [2], for example. The constant k£ will be
fixed in (0,1) throughout but we note that as k — 0

. /2
x —sin, y — cos, z— 1 and KHE

and,as k — 1
x — tanh, y — sech, z — sechand K — oo

We shall not be concerned with behaviour outside [0, K] but it may be mentioned
here that 4K is a period of x and y while 2K is a period of z.

3. The proofs

In the proofs of the Lemma and of the Theorem which follow it is convenient to
write

0 = [ + Ky — 4Kk%x°
We have:
LEMMA. X
If O >0, then y—Z>u, u€l0,K)
Proof. Consider
w(u) = x — uyz
Then
w (1) = yz — yz + ulxz® + k*xy?]
= ux[z? + K47
w (u) = X[ + Y] + uyzl2® + Ky°] + ux[—k*22xy — k*2yxg]
= X[ + K2y + wyz{[* + K*y*] — 427}
= x[22 + K] + uyzQ
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Since Q > 0 then w”’(u) > 0. So w(u) is convex and, since
w(0) =w'(0) =0
we have
w(u) >0, u€cl0,K]

and so

d >u, ucl0,K)
¥z

as was to be proved.

Proof of the Theorem (left side). Consider
f(u) =3sn(ulk) — 2u — ucn(ulk) dn(u|k)

or equivalently,
fu) =3x—2u—uyz
Differentiating with respect to u, we get
£ () = 2yz — 2 + ux[Z* + K47
Then
() = —2xz% — 2k2xy* + X[ + K] + uyz[2? + K27
+ ux[—k*2zxy — k*2yxz]
= —x[22 + K] + uyz{[z® + K*y*] — 4k*x*}
= —x[Z + K*y*] + uyzQ
where, again,
0 = [ + K] — 4k%x°
When u =0, Q = 1+k*> > 0 andwhen u = K, Q = 1—5k?, so that, depending
on k, O may take both signs.
When Q < 0 we see that '/ (u) is negative. And when Q > 0 we find that f"' ()
is negative again, by virtue of the Lemma and the fact that
ZHEY >0 =2+ Y] - 4N
So f (u) is concave. And since f(0) =f'(0) = 0 then
fu) <0, uel0,K]

and so 3 sn(ulk)
sn(u
0,K].
U S en(uk) ) € 10K
Putting x = sn(u) this reads
3
sn™! (x[k) > al x€0,1]

2+ V1 —2V1 — k22
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which is the left inequality of (2).
Proof of the Theorem (right side). The proof of this is very similar. We consider
g(u) = 2K sn(ulk) — 2u — u cn(ulk) dn(ulk)
or equivalently,
g(u) =2Kx — 2u — uyz
Differentiating with respect to u, we get
g'(u) = (2K — 1)yz = 2 + ux[” + K’
and
g (u) = —2(K — 1)x[z* + K] + uyzQ

Just as previously we see that if QO < 0 then g”(u) < 0. And if Q > 0 then
g" (1) < 0 by virtue the fact that

24K > 0= [+ 1] - 4N
and the Lemma, which, in this case, gives

X u

>
yz  2K-2

since 2K —2>m—2> 1.

(Note that since K(0) = m/2 and K = K(k) increases with k (see[ 2] ), this
inequality persists for k € (0,1)). So g(u) is concave. And since g(0) = g(K) =0
we have

g(u) >0, uc|0,K]

Hence
2K sn(ulk)
0,K].
3Tt dnGy’ € 0K
Putting x = sn (u|k) this reads
2Kx
-1
sn~(x]k) < , x€ 0,1
(k) 24+ V1 —x2/1 — kX2 0. 1]

and this is the right side of (2).
So the proof of the Theorem is complete.

A final note. If we let X — 0 in (2) we recover (1) and if we let k — 1 (2)
becomes
3x

—1
tanh X > m,

x €[0,1].
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