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SHAFER–FINK TYPE INEQUALITIES

FOR THE ELLIPTIC FUNCTION sn(u|k)

A. MCD. MERCER

(communicated by J. Pečarić)

Abstract. The inequalities of Shafer and Fink, namely,

3x

2 +
√

1 − x2
� sin−1(x) � πx

2 +
√

1 − x2
, x ∈ [0, 1)

are generalized to similar inequalities for the elliptic function sn(u|k) .

1. Introduction

We start by presenting two very simple proofs of the Shafer and Fink inequalities.
Consider the functions

f (θ) = π sin θ − 2θ − θ cos θ, 0 � θ � π
2

and
g(θ) = 3 sin θ − 2θ − θ cosθ, 0 � θ � π

2
Each of these is concave over its interval and the following boundary conditions are
satisfied f (0) = f ( π2 ) = 0 and g(0) = g′(0) = 0 . Hence

g(θ) � 0 and f (θ) � 0, θ ∈ [0,
π
2

]

That is
3 sin θ

2 + cos θ
� θ � π sin θ

2 + cosθ
, θ ∈ [0,

π
2
]

or, on putting x = sin θ

3x

2 +
√

1 − x2
� sin−1 x � πx

2 +
√

1 − x2
, x ∈ [0, 1] (1)

These are, respectively, the Shafer and Fink inequalities.
The origins of these are to be found in [1] and [2] and a large bibliography concerning

them and their extensions appears in [3].
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Our purpose in this note is to generalize these results to the case in which sin θ is
replaced by the Jacobi elliptic function sn(u|k) . In short, it is our purpose to prove the
following inequalities:

THEOREM. Let 0 < k < 1 . Then if

K(k) =
∫ 1

0

dt√
1 − t2

√
1 − k2t2

we have

3x

2 +
√

1 − x2
√

1 − k2x2
� sn−1(x|k) � 2K(k)x

2 +
√

1 − x2
√

1 − k2x2
, x ∈ [0, 1] (2)

2. The Jacobi elliptic functions

A very succinct introduction to these functions, when the independent variable is
real, can be found in [4]. And in [5] there is a comprehensive list of their properties. In
this section we remind the reader of some of these facts.

(a) Definitions. With 0 < k < 1 the three Jacobi elliptic functions sn(u|k) ,
cn(u|k) and dn(u|k) are usually defined by integrals such as, for example,

u =
∫ sn(u|k)

0

dt√
1 − t2

√
1 − k2t2

Let us follow [4] and write

x = sn(u|k), y = cn(u|k) and z = dn(u|k)
Then, whenever the independent variable u is restricted to the real field an equivalent
definition of these functions is

dx
du

= yz,
dy
du

= −zx,
dz
du

= −k2xy

with
x(0) = 0, y(0) = z(0) = 1

The parameter k is called the elliptic modulus and k′, defined by

k′ =
√

1 − k2

is the complementary elliptic modulus.
Another constant involved in these matters is the following ;

K(k) =
∫ 1

0

dt√
1 − t2

√
1 − k2t2

K is called the complete elliptic integral of the first kind.
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(b) Properties. We have, using the notations of [4] :

x(0) = 0, x(K) = 1

y(0) = 1, y(K) = 0

z(0) = 1, z(K) = k′ =
√

1 − k2

x2 + y2 = 1,

k2x2 + z2 = 1,

k2y2 + k′2 = z2,

y2 + k′2x2 = z2

Visualization of these functions may be helped by mentioning that x(u) increases from
0 to 1 and y(u) decreases from 1 to 0 in [0, K], their graphs generally resembling
those of sin(u) and cos(u). The function z decreases from 1 to k′ in [0, K] with a
minimum at K when

z =
√

1 − k2 > 0

These properties have been proved in [2], for example. The constant k will be
fixed in (0, 1) throughout but we note that as k → 0

x → sin , y → cos, z → 1 and K → π
2

and, as k → 1
x → tanh, y → sech, z → sech and K → ∞

We shall not be concerned with behaviour outside [0, K] but it may be mentioned
here that 4K is a period of x and y while 2K is a period of z.

3. The proofs

In the proofs of the Lemma and of the Theorem which follow it is convenient to
write

Q ≡ [z2 + k2y2] − 4k2x2

We have:

LEMMA.
If Q > 0, then

x
yz

� u, u ∈ [0, K)

Proof. Consider
w(u) = x − uyz

Then

w′(u) = yz − yz + u[xz2 + k2xy2]

= ux[z2 + k2y2]

w′′(u) = x[z2 + k2y2] + uyz[z2 + k2y2] + ux[−k22zxy − k22yxz]

= x[z2 + k2y2] + uyz{[z2 + k2y2] − 4k2x2]}
= x[z2 + k2y2] + uyzQ
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Since Q > 0 then w′′(u) > 0. So w(u) is convex and, since

w(0) = w′(0) = 0

we have
w(u) � 0, u ∈ [0, K]

and so
x
yz

� u, u ∈ [0, K)

as was to be proved.

Proof of the Theorem (left side). Consider

f (u) = 3 sn(u|k) − 2u − u cn(u|k) dn(u|k)
or equivalently,

f (u) = 3x − 2u − uyz

Differentiating with respect to u , we get

f ′(u) = 2yz − 2 + ux[z2 + k2y2]

Then

f ′′(u) = −2xz2 − 2k2xy2 + x[z2 + k2y2] + uyz[z2 + k2y2]

+ ux[−k22zxy − k22yxz]

= −x[z2 + k2y2] + uyz{[z2 + k2y2] − 4k2x2}
= −x[z2 + k2y2] + uyzQ

where, again,
Q ≡ [z2 + k2y2] − 4k2x2

When u = 0 , Q = 1+k2 > 0 and when u = K , Q = 1−5k2 , so that, depending
on k , Q may take both signs.

When Q < 0 we see that f ′′(u) is negative. And when Q > 0 we find that f ′′(u)
is negative again, by virtue of the Lemma and the fact that

z2 + k2y2 > Q = [z2 + k2y2] − 4k2x2

So f (u) is concave. And since f (0) = f ′(0) = 0 then

f (u) < 0, u ∈ [0, K]

and so

u >
3 sn(u|k)

2 + cn(u|k) dn(u|k) , u ∈ [0, K].

Putting x = sn(u) this reads

sn−1(x|k) >
3x

2 +
√

1 − x2
√

1 − k2x2
, x ∈ [0, 1]
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which is the left inequality of (2).

Proof of the Theorem (right side). The proof of this is very similar. We consider

g(u) = 2K sn(u|k) − 2u − u cn(u|k) dn(u|k)

or equivalently,

g(u) = 2Kx − 2u − uyz

Differentiating with respect to u , we get

g′(u) = (2K − 1)yz − 2 + ux[z2 + k2y2]

and

g′′(u) = −2(K − 1)x[z2 + k2y2] + uyzQ

Just as previously we see that if Q < 0 then g′′(u) < 0. And if Q > 0 then
g′′(u) < 0 by virtue the fact that

z2 + k2y2 > Q = [z2 + k2y2] − 4k2x2

and the Lemma, which, in this case, gives

x
yz

>
u

2K − 2

since 2K − 2 � π − 2 > 1.

(Note that since K(0) = π/2 and K = K(k) increases with k (see[ 2] ), this
inequality persists for k ∈ (0, 1) ). So g(u) is concave. And since g(0) = g(K) = 0
we have

g(u) � 0, u ∈ [0, K]

Hence

u <
2K sn(u|k)

2 + cn(u|k) dn(u|k) , u ∈ [0, K].

Putting x = sn (u|k) this reads

sn−1(x|k) <
2Kx

2 +
√

1 − x2
√

1 − k2x2
, x ∈ [0, 1]

and this is the right side of (2).
So the proof of the Theorem is complete.

A final note. If we let k → 0 in (2) we recover (1) and if we let k → 1 (2)
becomes

tanh−1 x >
3x

3 − x2
, x ∈ [0, 1].



382 A. MCD. MERCER

RE F ER EN C ES

[1] R. E. SHAFER, Problem E1867, Amer. Math. Monthly, 74 (6) (1967), 726–727.
[2] A. M. FINK, Two Inequalities, Univ. Beograd. Pub. Elekt. Fak., 6 (1995), 48–49.
[3] LING ZHU, On Shafer-Fink-Type Inequalities, J. Ineq. Appl. Vol. (2007), Article ID 67430.
[4] MEYER, K. R., Jacobi elliptic functions from a dynamical systems point of view, Amer. Math. Monthly,

108 (8) (0ctober 2001), 729–737.
[5] Wolfram MathWorld, URL: http://mathworld.wolfram.com/JacobiEllpticFunctions.html
[6] G. T. WHITTAKER, G. N. WATSON, A Course of Modern Analysis, Cambridge University Press, Cam-

bridge (1952).

(Received November 16, 2007) A. McD. Mercer
The Dept. of Math. and Stats.
University of Guelph Ontario

Box 12, RR7, Belleville
Ontario K8N4Z8

Canada
e-mail: rex@mail2pisces.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


