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EXTENSIONS OF THE GENERALIZED WILKER

INEQUALITY TO BESSEL FUNCTIONS

ÁRPÁD BARICZ AND JÓZSEF SÁNDOR

(communicated by A. Laforgia)

Abstract. In this note our aim is to extend the weighted and exponential generalization of Wilker’s
inequality and the Sándor-Bencze conjectured inequality to Bessel functions of the first kind.
Our main motivation to write this note is a recent publication of Wu and Srivastava, which we
wish to complement.

1. Introduction and Preliminaries

The inequality ( sin x
x

)2
+

tan x
x

� 2, (1)

which holds for all x ∈ (−π/2, π/2), is known in literature as Wilker’s inequality [15].
Here and throughout this paper, it should be understood that functions such as (sin x)/x,
which have removable singularities at x = 0, have had these singularities removed in
statements like (1). Wilker’s inequality has generated considerable interest and has
been investigated by many mathematicians in the last few decades. For more details the
interested reader is referred to the papers [1, 8, 12, 14, 17] and to the references therein.
Another inequality which is of interest in this paper is the so-called Huygens inequality
[9], i.e.

2
(sin x

x

)
+

tan x
x

� 3, (2)

which holds for all x ∈ (−π/2, π/2). We note that in fact the inequalities (1) and (2)
are simple consequences of the well-known Lazarević-type inequality [11, p. 238]

( sin x
x

)3
� cos x, (3)

which holds for all x ∈ (−π/2, π/2), and of the arithmetic-geometric mean inequality.
Using this idea, recently, Wu and Srivastava [16, Theorem 1], in order to unify and
extend the inequalities (1) and (2), proved that if λ ,μ, q > 0, x ∈ (0, π/2) and
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p � 2qμ/λ , then the following weighted and exponential generalization of Wilker’s
inequality holds true:

λ
λ + μ

(sin x
x

)p
+

μ
λ + μ

(
tan x

x

)q

> 1. (4)

Since the left hand side of (4) is even in x, and if x tends to zero, then the left hand side
of (4) tends to 1, we can conclude that (4) in fact holds true for all x ∈ (−π/2, π/2),
provided that when x → 0, then we have equality in (4). Moreover, the authors in
[16, Theorem 1] proved that the weighted and exponential generalization of Wilker’s
inequality (1), i.e. the inequality (4) holds true if we replace the condition q > 0 with
q � min{−λ/μ,−1}. The key tool in the proof of this it was the following Wilker-type
inequality [16, Lemma 3] ( x

sin x

)2
+

x
tan x

> 2, (5)

which holds for each x ∈ (0, π/2). We note that inequality (5) holds true for each
x ∈ (−π/2, π/2). Moreover, (5) is in fact an immediate consequence of Wilker’s
inequality (1). Namely, if we consider the function f : (−π/2, π/2) → R, defined by

f (x) =
( x

sin x

)2
+

x
tan x

− 2,

then we easily have

f ′(x) =
x2 cos x
sin3 x

[( sin x
x

)2
+

tan x
x

− 2

]
.

This in turn together with (1) implies that f is decreasing on (−π/2, 0] and increasing
on [0, π/2), and consequently one has f (x) � f (0) = 0 for all x ∈ (−π/2, π/2), as
we requested. With other words, the Lazarević-type inequality (3) implies the Wilker
inequality (1), which implies the Wilker-type inequality (5). Moreover, the inequalities
(1), (3) and (5) can be rewritten in terms of the arithmetic, geometric and harmonic
means of the values [x/(sin x)]2 and x/ tan x, i.e.

1
2

[( x
sin x

)2
+

x
tan x

]
� 1 �

√( x
sin x

)2 ( x
tan x

)
� 2

[(sin x
x

)2
+

tan x
x

]−1

or in terms of the arithmetic, geometric and harmonic means of the values [(sin x)/x]2

and (tan x)/x, i.e.

1
2

[(sin x
x

)2
+

tan x
x

]
�

√( sin x
x

)2
(

tan x
x

)
� 1 � 2

[( x
sin x

)2
+

x
tan x

]−1

,

where in both of inequalities x ∈ (−π/2, π/2).
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2. Extensions of the generalized Wilker inequality to Bessel functions

In this section our aim is to extend the inequality (4) to Bessel functions of the first
kind. This is motivated by the simple fact that the above inequalities can be rewritten
in terms of Bessel functions. For this suppose that ν > −1 and consider the function
Jν : R → (−∞, 1], defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑
n�0

(−1/4)n

(ν + 1)nn!
x2n,

where Γ is the Euler gamma function, (ν + 1)n = Γ(ν + n + 1)/Γ(ν + 1) for each
n � 0 is the well-known Pochhammer (or Appell) symbol, and Jν, defined by

Jν(x) =
∑
n�0

(−1)n(x/2)ν+2n

n!Γ(ν + n + 1)
,

stands for the Bessel function of the first kind of order ν. It is worth mentioning that in
particular the function Jν reduces to some elementary functions, like sine and cosine.
More precisely, in particular we have

J−1/2(x) =
√
π/2 · x1/2J−1/2(x) = cos x, (6)

J1/2(x) =
√
π/2 · x−1/2J1/2(x) =

sin x
x

, (7)

J3/2(x) = 3
√
π/2 · x−3/2J3/2(x) = 3

(sin x
x3

− cos x
x2

)
, (8)

respectively, which can verified easily by using the series representation of the function
Jν and of the cosine and sine functions, respectively. Taking into account the relations
(6) and (7), as wementioned above, the inequalities (1), (2), (3) and (5) can be rewritten
in terms of J−1/2 and J1/2. For example, using (6) and (7) the inequality (4) can be
rewritten as

λ
λ + μ

[
J−1/2+1(x)

]p +
μ

λ + μ

[
J−1/2+1(x)
J−1/2(x)

]q

� 1

and thus it is natural to ask what is the general form of the inequalities (4) and (5) for
arbitrary ν. We note that, recently the inequalities (1) and (3) has been extended to
Bessel functions [5, Theorem 3] (see inequalities (17) and (14) below).

Our first main result provides an affirmative answer to the above problem and it is
an extension of inequalities (4) and (5) to Bessel functions of the first kind. We note
this result improves the earlier result of the first author [5, Eq. 2.11].

THEOREM 1. Let ν > −1 and let jν,1 the first positive zero of the Bessel function
Jν of the first kind. Then the following assertions are true:

1. If ν � −1/2 and x ∈ (−jν+1,1, jν+1,1), then the following inequality holds

1

[Jν+1(x)]
2 +

Jν(x)
Jν+1(x)

� 2. (9)
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2. If ν ∈ (−1, ν0], where ν0 = (−3 +
√

5)/2 � −0.381966011 and x ∈
(−jν+1,1, jν+1,1), then

1

[Jν+1(x)]
1/(ν+1) +

Jν(x)
Jν+1(x)

� 2. (10)

3. Suppose that λ ,μ > 0 and x ∈ (−jν,1, jν,1). Then the generalized and extended
Wilker’s inequality

λ
λ + μ

[Jν+1(x)]
p +

μ
λ + μ

[
Jν+1(x)
Jν(x)

]q

� 1 (11)

holds in the following cases:
a) if q > 0, ν > −1 and p(ν + 1) � qμ/λ ;
b) if q � min{−λ/μ,−1}, ν � −1/2 and p � 2qμ/λ ;
c) if q � min{−λ/μ,−1}, ν ∈ (−1, ν0] and p(ν + 1) � qμ/λ .

Proof. 1. Consider the function ϕν : (−jν+1,1, jν+1,1) → R, defined by

ϕν(x) =
1

[Jν+1(x)]
2 +

Jν(x)
Jν+1(x)

− 2.

Clearly ϕν is an even function and ϕν(0) = 0. Moreover, a simple computation yields

2(ν + 1)(ν + 2)ϕ′
ν(x) =

x

[Jν+1(x)]
2

[
2(ν + 1)

Jν+2(x)
Jν+1(x)

+(ν + 1)Jν(x)Jν+2(x) − (ν + 2) [Jν+1(x)]
2
]

� x

[Jν+1(x)]
2

[
2(ν + 1)

Jν+2(x)
Jν+1(x)

− 1

]

� (2ν + 1)x

[Jν+1(x)]
2 � 0,

where ν � −1/2 and x ∈ [0, jν+1,1). Here we have used that for each ν > −1 and
x ∈ R the differentiation formula

J ′
ν (x) = − x

2(ν + 1)
Jν+1(x) (12)

holds, which can be verified easily by using the series representation of the function
Jν. Moreover, we used on the one hand the Turán-type inequality [10, Eq. 2.9]

(ν + 1)Jν(x)Jν+2(x) − (ν + 2) [Jν+1(x)]
2 � −1, (13)

which holds for all x ∈ R and ν > −1, and on the other hand the well-known
fact [5, Theorem 3] that the function ν �→ Jν(x) is increasing on (−1,∞) for all
fixed x ∈ (−jν,1, jν,1), i.e. for each ν > −1 and x ∈ (−jν+1,1, jν+1,1) we have
Jν+2(x) � Jν+1(x). Thus we have proved that the function ϕν is increasing on
[0, jν+1,1) and since is even it is decreasing on (−jν+1,1, 0]. Consequently for each
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ν � −1/2 and x ∈ (−jν+1,1, jν+1,1) one has ϕν(x) � ϕν(0) = 0, and with this the
proof of the inequality (9) is done.

2. Consider the function φν : (−jν+1,1, jν+1,1) → R, defined by

φν(x) =
1

[Jν+1(x)]
1/(ν+1) +

Jν(x)
Jν+1(x)

− 2.

Clearly φν is an even function and φν(0) = 0. Moreover, using (12) and (13) we have

2(ν + 1)(ν + 2)φ ′
ν(x) =

x

[Jν+1(x)]
2

[
[Jν+1(x)]

ν
ν+1 Jν+2(x)

+(ν + 1)Jν(x)Jν+2(x) − (ν + 2) [Jν+1(x)]
2
]

� x

[Jν+1(x)]
2

[
[Jν+1(x)]

ν
ν+1 Jν+2(x) − 1

]

� x

[Jν+1(x)]
2

[
[Jν+1(x)]

2(ν2+3ν+1)
ν2+4ν+3 − 1

]
� 0,

where ν ∈ (−1, ν0] and x ∈ [0, jν+1,1). Here we have used the fact that for all ν > −1
and x ∈ (−jν,1, jν,1) the generalized Lazarević-type inequality [5, Theorem 3]

[Jν+1(x)]
ν+2 � [Jν(x)]

ν+1 (14)

holds and that for each ν > −1 and x ∈ (−jν,1, jν,1) we have Jν(x) ∈ (0, 1], since
the function x �→ Jν(x) is increasing [5, Theorem 3] on (−jν,1, 0] and is decreasing
on [0, jν,1). Thus we have proved that the function φν is increasing on [0, jν+1,1) and
since is even it is decreasing on (−jν+1,1, 0]. Consequently for each ν ∈ (−1, ν0] and
x ∈ (−jν+1,1, jν+1,1) one has φν(x) � φν(0) = 0, and with this the proof of inequality
(10) is complete.

3.a) First consider the case when λ ,μ, q > 0, ν > −1 and p(ν + 1) � qμ/λ .
Using the well-known weighted arithmetic-geometric inequality and the generalized
Lazarević-type inequality (14) we easily obtain that

λ
λ + μ

[Jν+1(x)]
p +

μ
λ + μ

[
Jν+1(x)
Jν(x)

]q

� [Jν+1(x)]
pλ
λ+μ

[
Jν+1(x)
Jν(x)

] qμ
λ+μ

= [Jν+1(x)]
pλ+qμ
λ+μ [Jν(x)]

− qμ
λ+μ

� [Jν(x)]
pλ+qμ
λ+μ · ν+1

ν+2 [Jν(x)]
− qμ

λ+μ

= [Jν(x)]
(ν+1)pλ−qμ
(ν+2)(λ+μ) � 1.

Here we have used that from hypothesis (ν+1)pλ −qμ � 0 and for each ν > −1 and
x ∈ (−jν,1, jν,1) we have Jν(x) ∈ (0, 1], since the function x �→ Jν(x) is increasing
[5, Theorem 3] on (−jν,1, 0] and is decreasing on [0, jν,1).
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3.b) Now consider the case when λ ,μ > 0, ν � −1/2, q � min{−λ/μ,−1}
and p � 2qμ/λ . Then from (9) we easily obtain that

λ
λ + μ

[Jν+1(x)]
p +

μ
λ + μ

[
Jν+1(x)
Jν(x)

]q

� λ
λ + μ

[Jν+1(x)]
2qμ
λ +

μ
λ + μ

[
Jν+1(x)
Jν(x)

]q

=
λ

λ + μ

[
1

Jν+1(x)

]− 2qμ
λ

+
μ

λ + μ

[
Jν(x)

Jν+1(x)

]−q

� λ
λ + μ

[
2 − Jν(x)

Jν+1(x)

]− qμ
λ

+
μ

λ + μ

[
Jν(x)

Jν+1(x)

]−q

� 1.

Here we used that the function g : [0, 1] → R, defined by

g(t) =
λ

λ + μ
(2 − t)−qμ/λ +

μ
λ + μ

t−q, (15)

is decreasing [16, p. 533] and hence for all t ∈ [0, 1] we have g(t) � g(1) = 1,
and the fact [5, Theorem 3] that the function ν �→ Jν(x) is increasing on (−1,∞)
for all fixed x ∈ (−jν,1, jν,1), i.e. for each ν > −1 and x ∈ (−jν,1, jν,1) we have
Jν+1(x) � Jν(x). All that remains is to observe that for each ν > −1 we have
(−jν,1, jν,1) ⊂ (−jν+1,1, jν+1,1), since the function ν �→ jν,n, where jν,n is the n− th
positive root of Jν, is strictly increasing [7] on [0,∞), and consequently in particular
we have jν+1,n > jν,n for each n � 1 integer.

3.c)Finally, consider the casewhen λ ,μ > 0, ν ∈ (−1, ν0], q � min{−λ/μ,−1}
and p(ν + 1) � qμ/λ . The proof of this part is similar to the proof of part b, so we
just sketch the proof. Using (10) we easily obtain that

λ
λ + μ

[Jν+1(x)]
p +

μ
λ + μ

[
Jν+1(x)
Jν(x)

]q

� λ
λ + μ

[Jν+1(x)]
qμ

λ (ν+1) +
μ

λ + μ

[
Jν+1(x)
Jν(x)

]q

=
λ

λ + μ

[
1

Jν+1(x)

]− qμ
λ (ν+1)

+
μ

λ + μ

[
Jν(x)

Jν+1(x)

]−q

� λ
λ + μ

[
2 − Jν(x)

Jν+1(x)

]− qμ
λ

+
μ

λ + μ

[
Jν(x)

Jν+1(x)

]−q

� 1,

wherewe have used again that the function g, defined by (15), satisfies g(t) � g(1) = 1
for all t ∈ [0, 1]. �
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3. Concluding remarks

1. First note that choosing ν = −1/2 in (9) or in (10) in view of the relations
(6) and (7) we reobtain the Wilker-type inequality (5). It is important to note here that
the interval of validity for this inequality from (9) or (10) becomes (−j1/2,1, j1/2,1), i.e.
(−π, π), and not (−j−1/2,1, j−1/2,1), i.e. (−π/2, π/2), as it was stated in [16, Lemma
3]. Here we used that for each n � 1 integer j−1/2,n = (2n − 1)π/2 and j1/2,n = nπ,
which can be deduced easily from (6) and (7) or from the infinite product representation
of the Bessel function Jν and from the relations (6) and (7) keeping in mind the infinite
product representations of the cosine and sine functions. Now, choosing ν = −1/2 in
(11) we get back the inequality (4). Here we used again the formulae (6) and (7).

2. Taking in (11) the values λ = μ = 1 we obtain the following inequality

[Jν+1(x)]
p +

[
Jν+1(x)
Jν(x)

]q

� 2, (16)

which hold for all x ∈ (−jν,1, jν,1) in the following cases:
a) if q > 0, ν > −1 and p(ν + 1) � q;
b) if q � −1, ν � −1/2 and p � 2q;
c) if q � −1, ν ∈ (−1, ν0] and p(ν + 1) � q.

Now, choosing in (16) the values p = 1/(ν+ 1) and q = 1, then we reobtain the
inequality

[Jν+1(x)]
1/(ν+1) +

Jν+1(x)
Jν(x)

� 2, (17)

which was proved recently by the first author [5, Eq. 2.11]. It is worth mentioning
that recently the first author has been extended many elementary inequalities like of
Mitrinović, Mahajan, Jordan, Redheffer, Cusa, Wilker, etc. to Bessel functions of the
first kind. The interested reader is referred to the papers [2, 3, 4, 5, 6].

3. Using the relations (7) and (8) from the extended Wilker-type inequality (9)
for ν = 1/2 we obtain the following inequality

x6

(sin x − x cos x)2
+

3x2

1 − x cot x
� 18,

which holds for all x ∈ (−j3/2,1, j3/2,1), where j3/2,1 � 4.493409457 in view of (8) is
in fact the first positive zero of the equation tan x = x.

4. Finally, choosing ν = 1/2 in part 3 of Theorem 1 and using (8) we get the
inequality

λ
λ + μ

[
3

(sin x
x3

− cos x
x2

)]p
+

μ
λ + μ

[
3

(
1
x2

− cot x
x

)]q

� 1,

which holds in the following cases:
a) if λ ,μ, q > 0 and 3p � 2qμ/λ ;
b) if λ ,μ > 0, q � min{−λ/μ,−1} and p � 2qμ/λ .
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Here the interval of validity for x is (−j1/2,1, j1/2,1), i.e. (−π, π).

Recently, Sándor and Bencze [13] posed the following open problem: prove that
for each x ∈ (0, π/2) and α > 0 the following inequality holds( sin x

x

)α
>

cosα x
1 + cosα x

. (18)

Motivated, by this problem, Wu and Srivastava [16, Corollary] by using the inequality
(4) proved that the following inequalities hold( sin x

x

)α
>

4 cosα x

1 +
√

1 + 8 cos2α x
>

2 cosα x
1 + cosα x

>
cosα x

1 + cosα x
(19)

for all x ∈ (0, π/2) and α > 0. Moreover, they [16, Theorem 2] proved that the
left hand side of (19) holds true for α � −1 and the following reversed version [16,
Corollary 4] of the Sándor-Bencze conjectured inequality holds

(sin x
x

)α
<

cosα x +
√

8 + cos2α x
4

, (20)

where x ∈ (0, π/2) and α � 1. In what follows our aim is to extend these inequalities
to Bessel functions, by using part 3 of Theorem 1. We note that if we choose ν = −1/2
in (21), (22) and (23), respectively, then we reobtain the inequalities (18), (19) and
(20), respectively.

COROLLARY 1. Suppose that x ∈ (−jν,1, jν,1). Then the following assertions are
true:

1. If ν ∈ (−1,−1/2] and α > 0 or ν � −1/2 and α � −1, then

[Jν+1(x)]
α � 4 [Jν(x)]

α

1 +
√

1 + 8 [Jν(x)]
2α

. (21)

2. If ν ∈ (−1,−1/2] and α > 0, then

[Jν+1(x)]
α � 4 [Jν(x)]

α

1 +
√

1 + 8 [Jν(x)]
2α

� 2 [Jν(x)]
α

1 + [Jν(x)]
α >

[Jν(x)]
α

1 + [Jν(x)]
α . (22)

3. If ν � −1/2 and α � 1, then

[Jν+1(x)]
α �

[Jν(x)]
α +

√
[Jν(x)]

2α + 8

4
. (23)

Proof. 1. Choosing λ = μ = 1, p = 2α and q = α in part 3 of Theorem 1, we
obtain the following generalized Wilker-type inequality

[Jν+1(x)]
2α +

[
Jν+1(x)
Jν(x)

]α
� 2,
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which holds for all x ∈ (−jν,1, jν,1), ν ∈ (−1,−1/2] and α > 0 or for all x ∈
(−jν,1, jν,1), ν � −1/2 and α � −1. Straightforward computations show that the
above inequality is equivalent to the following inequality⎡
⎣[Jν+1(x)]

α +
[Jν(x)]

−α +
√

[Jν(x)]
−2α + 8

2

⎤
⎦

·
⎡
⎣[Jν+1(x)]

α +
[Jν(x)]

−α −
√

[Jν(x)]
−2α + 8

2

⎤
⎦ � 0,

which implies that the inequality

[Jν+1(x)]
α +

[Jν(x)]
−α −

√
[Jν(x)]

−2α + 8

2
� 0

holds, since the for each ν > −1 and x ∈ (−jν,1, jν,1) we have Jν(x) > 0, as we
mentioned above in the proof of Theorem 1. Now, from the above inequality we deduce
the inequality (21), i.e.

[Jν+1(x)]
α �

√
[Jν(x)]

−2α + 8 − [Jν(x)]
−α

2
=

4 [Jν(x)]
α

1 +
√

1 + 8 [Jν(x)]
2α

.

2.&3. Finally, the inequality (22) follows from (21) by using the fact that Jν
maps (−jν,1, jν,1) into (0, 1], while (23) follows also from (21) by replacing α with
−α. With this the proof is complete. �
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[4] Á. BARICZ, Jordan-type inequalities for generalized Bessel functions, J. Inequal. Pure Appl. Math., 9
(2) (2008), 39.
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