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Abstract. We give a theorem on implicit difference functional inequalities of the Volterra type
for functions of several variables. We apply this general result in the investigation of the stability
of implicit difference functional equations with initial boundary conditions.

Classical solutions of parabolic functional differential equations are approximated in the
paper by solutions of suitable implicit difference schemes. The proofs of the convergence
of difference methods are based on comparison technique and results on difference functional
inequalities are used. Numerical examples are presented.

1. Introduction

Differential inequalities found applications in several topics concerning differential
or functional differential equations. Such problems as: estimates of solutions of ordinary
or partial differential or functional differential equations, estimates of the domain of the
existence of classical or generalized solutions, criteria of uniqueness and continuous
dependence, are classical examples, however not the only ones. Moreover discrete
versions of differential inequalities, the so called difference inequalities, are frequently
used to prove the convergence of numerical methods.

Explicit difference schemes for evolution functional differential equations consist
in replacing partial derivativeswith difference operators. Moreover, because differential
equations contain functional variables, some interpolating operators are needed. This
leads to difference functional problems which satisfy consistency conditions on suffi-
ciently regular solutions of original equations. The main task in these investigations is to
find functional difference problems which are stable. Methods of difference inequalities
are used in the investigation of the stability of nonlinear difference functional equations
generated by initial or initial boundary value problems for functional differential equa-
tions see [4] Chapter 3 and [5], [9], [10] [18]. Explicit difference inequalities and explicit
difference schemes are investigated in these papers.

The aim of the paper is to show a theorem on implicit difference inequalities
corresponding to nonlinear parabolic functional differential problems. We give also
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applications of a result on implicit difference inequalities. More precisely, we pro-
pose implicit difference schemes for the numerical solving of functional differential
equations. We give a complete convergence analysis for the methods and we show by
examples that new difference schemes are considerable better than classical methods.

Results presented in the paper are new also in the case of differential equations
without the functional dependence.

We formulate our functional differential problems. For any metric spaces X and Y
we denote by C(X, Y) the class of all continuous functions from X into Y. We will use
vectorial inequalities with the understanding that the same inequalities hold between
their corresponding components. Write

E = [0, a]× (−b, b), D = [−d0, 0] × [−d, d],

where a > 0 , b = (b1, . . . , bn) ∈ Rn , bi > 0 for 1 � i � n and d0 ∈ R+ ,
R+ = [0, +∞). Let c = b + d and

E0 = [−d0, 0] × [−c, c], ∂0E = [0, a]× (
[−c, c] \ (−b, b)

)
, Ω = E ∪ E0 ∪ ∂0E.

For a function z : Ω → Rk , z = (z1, . . . , zk) , and for a point (t, x) ∈ Ē where Ē is
the closure of E , we define a function z(t,x) : D → Rk by z(t,x)(τ, y) = z(t + τ, x + y) ,
(τ, y) ∈ D. Then z(t,x) is the restriction of z to the set [t − d0, t] × [x − d, x + d] and
this restriction is shifted to the set D.

Let us denote by Mn×n the class of all n × n matrices with real elements. Write
Ξ = E × C(D, Rk) × Rn × Mn×n and suppose that F = (F1, . . . , Fk) : Ξ → Rk

and ϕ : E0 ∪ ∂0E → Rk are given functions. We consider the system of functional
differential equations

∂tzi(t, x) = Fi
(
t, x, z(t,x), ∂xzi(t, x), ∂xxzi(t, x)

)
, i = 1, . . . , k, (1)

with the initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E, (2)

where

∂xzi =
(
∂x1zi, . . . , ∂xnzi

)
, ∂xxzi =

[
∂xμ xν zi

]
μ,ν=1,...,n

, i = 1, . . . , k.

We consider classical solutions of (1), (2). We give examples of equations which can
be obtained from (1) by specializing the operator F.

EXAMPLE 1.1. Suppose that the function α : E → R1+n satisfies the condition:
α(t, x) − (t, x) ∈ D for (t, x) ∈ E. For a given F̃ = (F̃1, . . . , F̃k) : E × Rk × Rk ×
Rn × Mn×n → Rk , we put

F(t, x, w, q, s) = F̃(t, x, w(0, θ), w(α(t, x) − (t, x)), q, s) on Σ,

where θ = (0, . . . , 0) ∈ Rn , w ∈ C(D, Rk) , q ∈ Rn , s ∈ Mn×n . Then (1) reduces to
the system of differential equations with deviated variables

∂tzi(t, x) = F̃i( t, x, z(t, x), z(α(t, x)), ∂x zi(t, x), ∂xxzi(t, x) ), i = 1, . . . , k.
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EXAMPLE 1.2. For the above F̃ we define

F(t, x, w, q, s) = F̃(t, x, w(0, θ),
∫

D
w(τ, y) dy dτ, q, s) on Σ.

Then (1) is equivalent to the system of differential integral equations

∂tzi(t, x) = F̃i(t, x, z(t, x),
∫

D
z(t + τ, x + y) dy dτ, ∂xzi(t, x), ∂xxzi(t, x) ), i = 1, . . . , k.

It is clear that more complicated differential systems with deviated variables and differ-
ential integral systems can be obtained from (1) by a suitable definition of F. Sufficient
conditions for the existence and uniqueness of classical or generalized solutions of
parabolic functional differential problems can be found in [1], [2], [3], [6], [13], [14].
Functional differential inequalities and applications were studied in [11], [12], [15] -
[17].

Our motivations for investigations of implicit difference functional inequalities
and for the construction of implicit difference schemes are the following. Two types of
assumptions are needed in theorems on the stability of difference functional equations
generated by (1), (2). The first type conditions concern regularity of F . It is assumed
that

(i) the function F of the variables (t, x, w, q, s) , q = (q1, . . . , qn) , s = [sμν]μ,ν=1,...,n ,
is of class C1 with respect to (q, s) and the functions

∂qFi = (∂q1Fi, . . . , ∂qnFi), ∂sFi =
[
∂sμνF

]
μ,ν=1,...,n

, 1 � i � k,

are bounded,
(ii) F satisfies the Perron type estimates with respect to the functional variable w.

The second type conditions concern the mesh. The following condition is needed in the
analysis of the convergence of explicit difference schemes for (1), (2):

1 − 2h0

n∑
μ=1

1
h2
μ

∂sμμFi(P) + h0

n∑
μ,ν=1μ �=ν

1
hμhν

∣∣∂sμνFi(P)
∣∣ � 0, P ∈ Ξ, i = 1, . . . , k,

(3)
see [5] and [9], [10]. It is clear that strong assumptions on relations between h0

and h′ = (h1, . . . , hn) are required in (3). It is important in our considerations that
assumption (3) is omitted in a theorem on difference functional inequalities and in a
theorem on the convergence of implicit difference methods for (1), (2).

It important in the paper that we use nonlinear estimates for F with respect to the
functional variable and ordinarydifferential functional equations are used as comparison
problems.

The paper is organized as follows. In Section 2 we prove a general theorem on
implicit difference functional inequalities with unknown function of several variables.
In the next section we prove a theorem on the existence and uniqueness of a solution
of implicit difference equation with an initial boundary condition. We establish also
some estimates for the difference between exact and approximate solutions to difference
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functional problems. They are used in the investigation of the stability of difference
schemes generated by (1), (2).

The second part of the paper deals with applications of the above general results.
We propose implicit difference schemes for the numerical solving of evolution func-
tional differential equations. Convergence results and error estimates are presented in
Sections 3 and 4. Theorems on difference inequalities are used in the investigation of
the stability of implicit difference methods. Numerical examples are given in the last
part of the paper.

2. Functional difference inequalities

For any two sets U and W we denote by F(U, W) the class of all functions
defined on U and taking values in W . If A ⊂ U and α ∈ F(U, W) then α |A is
the restriction of α to the set A. Let N and Z be the sets of natural numbers and
integers respectively. For x = (x1, . . . , xn) ∈ Rn , p = (p1, . . . , pk) ∈ Rk we put
‖x‖ = |x1|+ . . . + |xn| and ‖p‖∞ = max { |pi| : 1 � i � k }. We define a mesh on Ω
in the following way. Suppose that (h0, h′) , h′ = (h1, . . . , hn), stand for steps of the
mesh. For (r, m) ∈ Z1+n where m = (m1, . . .mn) , we define nodal points as follows:

t(r) = rh0, x(m) = (x(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . , mnhn).

Let us denote by H the set of all h = (h0, h′) such that there are K0 ∈ Z and K =
(K1, . . . , Kn) ∈ Zn satisfying the conditions: K0h0 = d0 and (K1h1, . . . , Knhn) = d.
Set

R1+n
h = { (t(r), x(m)) : (r, m) ∈ Z1+n }

and
Dh = D ∩ R1+n

h , Eh = E ∩ R1+n
h , E0.h = E0 ∩ R1+n

h ,

∂0Eh = ∂0E ∩ R1+n
h , Ωh = Eh ∪ E0.h ∪ ∂0Eh.

Let N0 ∈ N be defined by the relations: N0h0 � a < (N0 + 1)h0 and

E′
h = { (t(r), x(m)) ∈ Eh : 0 � r � N0 − 1 }.

For functions w : Dh → Rk and z : Ωh → Rk we write w(r,m) = w(t(r), x(m)) on Dh and
z(r,m) = z(t(r), x(m)) on Ωh . We need a discrete version of the operator (t, x) → z(t,x).

For a function z : Ωh → Rk and for a point (t(r), x(m)) ∈ Eh we define a function
z[r,m] : Dh → Rk by z[r,m](τ, y) = z(t(r) + τ, x(m) + y) , (τ, y) ∈ Dh. Write χ = 1 + 2n2

and

Λ = { λ = (λ1, . . . , λn) : λi ∈ {−1, 0, 1} for 1 � i � n and ‖λ‖ � 2 },
Λ′ = Λ \ { θ }

Note that χ is the number of elements of Λ. Let ψ : Λ → { 1, 2, . . . , χ } be a function
such that ψ(λ ) 	= ψ(λ̃ ) for λ 	= λ̃ . We assume that ≺ is an order in Λ defined in
the following way: λ ≺ λ̃ if ψ(λ ) < ψ(λ̃ ).
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Elements of the space Rχ will be denoted by ξ = { ξ (λ ) }λ∈Λ. Write Yh =
E′

h×F(Dh, Rk)×Rχ and suppose that the function Gh = (Gh.1, . . . , Gh.k) : Yh → Rk of
the variables (t, x, w, ξ) is given. For (t(r), x(m), w, ξ) ∈ Yh we write Gh.i[w, ξ ](r,m) =
Gh.i(t(r), x(m), w, ξ), i = 1, . . . , k. For a function ω : Ωh → R and for a point
(t(r), x(m)) ∈ Eh we put ω〈 r,m〉 = {ω (r,m+λ ) }λ∈Λ and

δ0ω (r,m) =
1
h0

[
ω (r+1,m) − ω (r,m) ]. (4)

Given ϕh ∈ F(E0.h ∪ ∂0Eh, Rk), we consider the system of functional difference equa-
tions

δ0z
(r,m)
i = Gh.i[z[r,m], (zi)〈 r+1,m〉 ](r,m), i = 1, . . . , k, (5)

with the initial boundary condition

z(r,m) = ϕ(r,m)
h on E0.h ∪ ∂0Eh. (6)

Note that the numbers z(r+1,m+λ )
i where λ ∈ Λ appear in (zi)〈 r+1,m〉 . Then (5), (6) is

an implicit difference functional problem.

REMARK 2.1. Let us denote by δ = (δ1, . . . , δn) and δ (2) =
[
δμν

]
μ,ν=1,...,n

difference operators corresponding to the derivatives ∂x = (∂x1 , . . . , ∂xn) and ∂xx =[
∂xμ xν

]
μ,ν=1,...,n

. Then implicit difference scheme corresponding to (1) has the form

δ0z
(r,m)
i = Fi

(
t(r), x(m), Thz[r,m], δz(r+1,m)

i , δ (2)z(r+1,m)
i

)
, i = 1, . . . , k, (7)

where Th : F(Dh, Rk) → C(D, Rk) is an interpolating operator. It is clear that system
(7) is a particular case of (5).

We prove a theorem on difference inequalities generated by (5), (6). For w, w̄ ∈
F(Dh, Rk) we write w � w̄ if w(r,m) � w̄(r,m) where (t(r), x(m)) ∈ Dh and ‖w‖Dh =
max{‖w(t(r), x(m))‖∞ : (t(r), x(m)) ∈ Dh}.

ASSUMPTION H[Gh] . The function Gh : Yh → Rk satisfies the conditions:
1) there exist the partial derivatives

{
∂ξ (λ )Gh.i[w, ξ ](r,m) }

λ∈Λ, i = 1, . . . , k,

and ∂ξ (λ )Gh.i[w, · ](r,m) ∈ C(Rχ , R) for λ ∈ Λ , (t(r), x(m), w) ∈ E′
h × F(Dh, Rk) ,

i = 1, . . . , k ,
2) for each (t(r), x(m), w) ∈ E′

h× ∈ F(Dh, Rk) and λ ∈ Λ , 1 � i � k the function
∂ξ (λ )Gh.i[w, · ](r,m) is bounded on Rχ ,

3) the conditions
∂ξ (λ )Gh.i[w, ξ ](r,m) � 0 for λ ∈ Λ′, (8)

∑
λ∈Λ

∂ξ (λ )Gh.i[w, ξ ](r,m) = 0 (9)

are satisfied on Yh for i = 1, . . . , k ,
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4) the followingmonotonicity conditionholds: if w, w̄ ∈ F(Dh, Rk) , w = (w1, . . . , wk) ,
w̄ = (w̄1, . . . , w̄k), and w � w̄ then

w(0,θ)
i +h0Gh.i[w, ξ ](r,m) � w̄(0,θ)

i +h0Gh.i[w̄, ξ ](r,m) on E′
h×Rk for i = 1, . . . , k.

REMARK2.2. Suppose that G̃h : E′
h×R×F(Dh, Rk)×Rχ → Rk , G̃h = (G̃h.1, . . . , G̃h.k) ,

is a given function of the variables (t, x, p, w, ξ) and Gh is defined by

Gh.i(t, x, w, ξ) = G̃h.i(t, x, wi(0, θ), w, ξ) on Yh, i = 1, . . . , k.

Then system (5) has the form

δ0z
(r,m)
i = G̃h.i(t(r), x(m), z(r,m)

i , z[r,m], (zi)〈 r,m〉 ), i = 1, . . . , k.

The dependence of the right hand of (5) on the classical variable z(r,m) is distinguished
in the above system. Suppose that

1) G̃h is nondecreasing with respect to the functional variable,
2) there exist the derivatives

(
∂pG̃h.1, . . . , ∂pG̃h.k

)
= ∂pG̃h and there is L̃ ∈ R+

such that

∂pG̃h.i(t, x, p, w, ξ) � L̃, 1 � i � k,

and 1 + L̃h0 � 0.

Then the above Gh satisfies the monotonicity condition 4) from Assumption H[Gh].

THEOREM 2.3. Suppose that Assumption H[Gh] is satisfied and
1) h ∈ H and the functions u, v : Ωh → Rk , u = (u1, . . . , uk) , v = (v1, . . . , vk),

satisfy on E′
h the difference functional inequalities

δ0u
(r,m)
i −Gh.i[u[r,m], (ui)〈 r+1,m〉 ](r,m) � δ0v

(r,m)
i −Gh.i[v[r,m], (vi)〈 r+1,m〉 ](r,m) (10)

where i = 1, . . . , k,
2) the initial boundary estimate u(r,m) � v(r,m) holds on E0.h ∪ ∂0Eh.

Then

u(r,m) � v(r,m) on Eh. (11)

Proof. We prove (11) by induction on r. It follows from assumption 2) that
estimate (11) is satisfied for r = 0 and (t(0), x(m)) ∈ Eh. Assume that u(j,m) � v(j,m) for
(t(j), x(m)) ∈ Eh ∩

(
[0, t(r)]× Rn

)
. We prove that u(r+1,m) � v(r+1,m) for (t(r+1), x(m)) ∈

Eh. Write

U(r,m)
i = u(r,m)

i + h0Gh.i[u[r,m], (ui)〈 r+1,m〉 ](r,m) − v(r,m)
i − h0Gh.i[v[r,m], (ui)〈 r+1,m〉 ](r,m)

where i = 1, . . . , k. It follows from (10) that

(ui − vi)(r+1,m) � U(r,m)
i + h0

[
Gh.i[v[r,m], (ui)〈 r+1,m〉 ](r,m) − Gh.i[v[r,m], (vi)〈 r+1,m〉 ](r,m)
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where i = 1, . . . , k. The monotonicity condition 4) of Assumption H[Gh] implies
the inequalities U(r,m)

i � 0 for (t(r), x(m)) ∈ E′
h , i = 1, . . . , k . Then there exist

intermediate points Q(r+1,m)
i ∈ Rχ such that

(ui−vi)(r+1,m)
[
1−h0∂ξ (θ)Gh.i[v[r,m], Q

(r+1,m)
i ](r,m)

]

� h0

∑
λ∈Λ′

∂ξ (λ )Gh.i
[
v[r,m], Q

(r+1,m)
i

](r,m) (
ui−vi

)(r+1,m+λ )
, i = 1, . . . , k.

(12)

We define m̃ ∈ Zn and j ∈ N , 1 � j � k , as follows

(uj − vj)(r+1,m̃) = max
1�i�k

max
{

(ui − vi)(r+1,m) : (t(r+1), x(m)) ∈ Ωh
}
.

If (t(r+1), x(m̃)) ∈ ∂0Eh then assumption 2) implies that (uj − vj)(r+1,m̃) � 0. Let us
consider the case when (t(r+1), x(m̃)) ∈ Eh. Then we have from (12) that

(uj − vj)(r+1,m̃)
[
1 − h0∂ξ (θ))Gh.j[v[r,m̃], Q

(r+1,m̃)
j ](r,m̃)

]

� (uj − vj)(r+1,m̃)
∑
λ∈Λ′

∂ξ (λ )Gh.j[v[r,m̃], Q
(r+1,m̃)
j ](r,m̃).

It follows from (8), (9) that (uj − vj)(r+1,m̃) � 0. Then the proof of (11) is completed
by induction. �

3. Approximate solutions of difference functional equations

We define N = (N1, . . . , Nn) ∈ Nn by the relations: (N1h1, . . . , Nnhn) <
(b1, . . . , bn) � ( (N1 + 1)h1, . . . , (Nn + 1)hn ) and we assume that (Ni + 1)hi = bi

if di = 0. We first prove a theorem on the existence and uniqueness of solutions to (5),
(6).

THEOREM 3.1. If conditions 1) - 3) of Assumption G[Gh] are satisfied and
ϕh ∈ F(E0.h ∪ ∂0Eh, Rk) then there exists exactly one solution uh = (uh.1. . . . , uh.k) :
Ωh → Rk of (5), (6).

Proof. Suppose that 0 � r � N0 − 1 is fixed and that the solution uh of problem
(5), (6) is given on the set Ωh ∩

(
[−d0, t(r)]×Rn

)
. We prove that the vectors u(r+1,m)

h ,
−N � m � N, exists and that they are unique. It is sufficient to show that there exists
exactly one solution of the system of equations

1
h0

(
z(r+1,m)
i − u(r,m)

h.i

)
= Gh.i[(uh)[r,m], (zi)〈 r+1,m〉 ](r,m), −N � m � N, i = 1, . . . , k,

(13)
with the initial boundary condition (6). There exists Qh > 0 such that

Qh � −h0∂ξ (θ)Gh.i[(uh)[r,m], ξ ](r,m), ξ ∈ Rχ , −N � m � N, λ ∈ Λ, i = 1, . . . , k.
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It is clear that system (13) is equivalent to the following one

z(r+1,m)
i =

1
Qh + 1

[
Qhz

(r+1,m)
i + u(r,m)

h.i + h0Gh.i[(uh)[r,m], (zi)〈 r+1,m〉
](r,m)

(14)

where −N � m � N, i = 1, . . . , k. Write Sh = {x(m) : x(m) ∈ [−c, c] }. Elements
of the space F(Sh, Rk) are denoted by ζ , ζ̄ . For ζ : Sh → Rk , ζ = (ζ1, . . . , ζk), we
write ζ (m) = ζ(x(m)) and

(ζi)〈m〉 =
{
ζ (m+λ )

i

}
λ∈Λ, i = 1, . . . , k.

The norm in the space F(Sh, Rk) is defined by ‖ζ‖� = max { ‖ζ (m)‖∞ : x(m) ∈ Sh }.
Let us consider the set

Xh =
{
ζ ∈ F(Sh, Rk) : ζ (m) = ϕ(r+1,m) for x(m) ∈ [−c, c] \ (−b, b)

}
.

We apply the operator Wh : Xh → Xh , Wh = (Wh.1, . . . , Wh.k), defined by

Wh.i[ζ ](m) =
1

Qh + 1

[
Qhζ (m)

i + u(r,m)
h.i + h0Gh.i[(uh)[r,m], (ζi)〈m〉 ](r,m)

]
, (15)

where −N � m � N, i = 1, . . . , k, and

Wh[ζ ](m) = ϕ(r+1,m)
h for x(m) ∈ [−c, c] \ (−b, b) (16)

where ζ = (ζ1, . . . , ζk) ∈ F(Sh, Rk) . We prove that

‖Wh[ζ ] − Wh[ζ̄ ]‖� � Qh

Qh + 1
‖ζ − ζ‖� on F(Sh, Rk). (17)

It follows from (15) that we have for −N � m � N :

Wh.i[ζ ](m) − Wh.i[ζ̄ ](m)

=
1

Qh + 1

{
Qh(ζi − ζ̄i)(m)

+ h0

∑
λ∈Λ

∂ξ (λ )Gh.i

[
(uh)[r,m], P

(r,m)
i

](r,m) (
ζi − ζ̄i

)(m+λ )
}

=
1

Qh + 1

{[
Qh + h0∂ξ (θ)Gh.i

[
(uh)[r,m], P

(r,m)
i

](r,m)
] (
ζi − ζ̄i

)(m)

+ h0

∑
λ∈Λ′

∂ξ (λ )Gh.i

[
(uh)[r,m], P

(r,m)
i

](r,m) (
ζi − ζ̄i

)(m+λ )
}

, i = 1, . . . , k,

where P(r,m)
i ∈ Rk are intermediate points. It follows from the above relations and from

(8), (9) that

∣∣Wh.i[ζ ](m) − Wh.i[ζ̄ ](m)
∣∣ � Qh

Qh + 1
‖ζ − ζ̄‖� for − N � m � N, i = 1, . . . , k.

According to (16) we have

Wh[ζ ](m) − Wh[ζ̄ ](m) = 0 for x(m) ∈ [−c, c] \ (−b, b).
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This completes the proof of (17). �
It follows from the Banach fixed point theorem that there exists exactly one solution

ζ̃ : Sh → Rk of the equation ζ = Wh[ζ ] and consequently, there exists exactly one
solution of (6), (14). Then the vectors u(r+1,m)

h , −N � m � N, exist and they are
unique. Then the proof is completed by induction with respect to r , 0 � r � N0.

Suppose that the functions vh : Ωh → Rk , vh = (vh.1, . . . , vh.k), and α0, γ : H →
R+ satisfy the conditions:

∣∣ δ0v
(r,m)
h.i − Gh.i[(vh)[r,m], (vh.i)〈 r+1,m〉 ](r,m)

∣∣ � γ (h) on E′
h, i = 1, . . . , k, (18)

∥∥ϕ(r,m)
h − v(r,m)

h

∥∥
∞ � α0(h) on E0.h ∪ ∂0Eh (19)

and
lim
h→0

α0(h) = 0, lim
h→0

γ (h) = 0. (20)

The function vh satisfying the above relations is considered as an approximate solution
of (5), (6).

We give a theorem on the estimate of the difference between the exact and approx-
imate solutions of (5), (6). Write I = [−d0, 0] , J = [0, a] and

Ih = { t(r) : −K0 � r � 0 }, Jh = { t(r) : 0 � r � N0 }, J′h = Jh \ { t(N0) }.

For η : Ih ∪ Jh → R we write η(r) = η(t(r)). We will need the following operator
Vh : F(Dh, Rk) → F(Ih, R+). Put

Vh[w](r) = Vh[w](t(r)) = max { ‖w(r,m)‖∞ : −K � m � K }, −K0 � r � 0,

where w ∈ F(Dh, Rk). For a function η : I∪J → R and for a point t ∈ I we denote by
ηt : I → R the function defined by ηt(τ) = η(t + τ) , τ ∈ I. The maximum norm in
the space C(I, R) we denote by ‖ · ‖I . We will need a discrete version of the operator
t → ηt. For a function η : Ih ∪ Jh → R and for a point t(r) ∈ Jh we define a function
η[r] : Ih → R by η[r](τ) = η(t(r) + τ) , τ ∈ Ih. Let Th0 : F(Ih, R) → C(I, R denote
the interpolating operator defined by

Th0 [η](t) =
t − t(r)

h0
η(r+1) +

(
1 − t − t(r)

h0

)
η(r) for t(r) � t � t(r+1),

where η ∈ F(Ih, R). We will use the operator Uh : F(Dh, Rk) → C(I, R+) given by

Uh[w](t) = Th0

[
Vh[w]

]
(t), t ∈ I,

where w ∈ F(Dh, Rk). We formulate assumptions on comparison functions correspond-
ing to (5), (6).

ASSUMPTION H[σ] . The function σ : J×C(I, R+) → R+ satisfies the conditions:
1) σ is continuous and it is nondecreasing with respect to the both variables,
2) σ(t, 0) = 0 for t ∈ I where 0 ∈ C(I, R+) is given by 0(τ) = 0 for τ ∈ I,
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3) the maximal solution of the Cauchy problem

η′(t) = σ(t,ηt), η(t) = 0 for t ∈ I,

is η̃(t) = 0 for t ∈ I ∪ J.

THEOREM 3.2. Supose that Assumption H[Gh] is satisfied and
1) h ∈ H and uh : Ωh → Rk is a solution of (5), (6) where ϕh ∈ F(E0.h∪∂0Eh, Rk) ,
2) vh : Ωh → Rk and there are α0, γ : H → R+ such that conditions (18) - (20)

are satisfied,
3) there exists σ : J × C(I, R+) → R such that Assumption H[σ] is satisfied and

Gh.i[w, ξ ](r,m) − Gh.i[w̄, ξ ](r,m) � σ(t(r), Uh[w − w̄]), i = 1, . . . , k, (21)

where (t(r), x(m), ξ) ∈ E′
h × Rχ , w, w̄ ∈ F(Dh, Rk) and w � w̄ .

Then ∥∥ (uh − vh)(r,m)
∥∥
∞ � β (r)

h on Eh (22)

where βh : Ih ∪ Jh → R+ is a solution of the difference problem

β (r+1) = β (r) + h0σ(t(r), Th0 [β[r]]) + h0γ (h), 0 � r � N0 − 1, (23)

β (r) = α0(h) for − K0 � r � 0, (24)

and there is α : H → R+ such that∥∥(uh − vh)(r,m)
∥∥
∞ � α(h) on Eh and lim

h→0
α(h) = 0. (25)

Proof. The proof falls naturally into two parts.
I. The existence of uh follows from Theorem3.1. Let ṽh = (ṽh.1, . . . , ṽh.k) : Ωh →

Rk be defined by

ṽ(r,m)
h.i = v(r,m)

h.i + β (r)
h on Ωh for i = 1, . . . , k.

We prove that the difference functional inequalities

δ0ṽ
(r,m)
h.i � Gh.i[(ṽ)[r,m], (ṽh.i)〈 r+1,m〉 ](r,m), i = 1, . . . , k, (26)

are satisfied on E′
h. It follows from Assumption H[Gh] and (18) that

δ0ṽ
(r,m)
h.i = δ0v

(r,m)
h.i +

1
h0

(
β (r+1)

h − β (r)
h

)

� Gh.i[(ṽh)[r,m], (ṽh.i)〈 r+1,m〉 ](r,m) − γ (h) +
1
h0

[
β (r+1)

h − β (r)
h

]

+ Gh.i[(vh)[r,m], (vh.i)〈 r+1,m〉 ](r,m) − Gh.i[(ṽh)[r,m], (vh.i)〈 r+1,m〉 ](r,m)

+
∑
λ∈Λ

∂ξ (λ Gh.i[(ṽh)[r,m], Q
(r+1,m)
i ](r,m), i = 1, . . . , k, (27)

where Q(r+1,m)
i are intermediate points. It is easily seen that

Uh.i[ (ṽh)[r,m] − (vh)[r,m] ](τ) � Th0 [ (βh)[r] ](τ), i = 1, . . . , k, for τ ∈ I0. (28)
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We conclude from (21), (27), (28) that

δ0ṽ
(r,m)
h.i � Gh.i[(ṽh)[r,m], (ṽh.i)〈 r+1,m〉 ](r,m) − γ (h) +

1
h0

(
β (r+1)

h − β (r)
h

)

− σ(t(r), Th0 [ (βh)[r] ]) − β (r+1)
h

∑
λ∈Λ

∂ξ (λ Gh.i[(ṽh.i)[r,m], Q
(r+1,m)](r,m)

= Gh[(ṽh)[r,m], (ṽh)〈 r+1,m〉 ](r,m), i = 1, . . . , k.

where (t(r), x(m)) ∈ E′
h. This completes the proof of (26). Since v(r,m)

h � ṽ(r,m)
h on

E0.h ∪ ∂0Eh , it follows from Theorem 2.3 that

u(r,m)
h � v(r,m)

h + β (r)
h on Eh.

In a similar way we prove that

v(r,m)
h − β (r)

h � u(r,m)
h on Eh.

The above estimates imply (22).

II. Now we prove (25). Consider the Cauchy problem

η′(t) = σ(t,ηt) + (κ(h))t) + γ (h), η(t) = α0(t) for t ∈ I (29)

where κ : H → R+ , limh→0 κ(h) = 0 and the symbol (κ(h))t denotes a constant
function: (κ(h))t(τ) = κ(h) for τ ∈ I. It follows from Assumption H[σ] that there is
ε̃ > 0 such that the maximal solution η(·, h) of (29) is defined on I ∪ J for ‖h‖ < ε̃
and

lim
h→0

η(t, h) = 0 uniformly on I ∪ J.

Suppose that h̃ ∈ H is fixed and ‖h̃‖ < ε̃. Let us denote by C[h̃] the set of all h ∈ H
such that ‖h‖ < ε̃ and γ (h) � γ (h̃) , κ(h) � κ(h̃). It follows easily from theorems
on differential functional inequalities that for h ∈ C[h̃] we have η(t, h) � η(t, h̃) on
I ∪ J. Let ηh0( · , h) denote the restriction of η( · , h) to the set Ih ∪ Jh. Since η( · , h)
is a convex function, the definition of Th0 shows that for h ∈ C[h̃] we have

(
η( · , h)

)
t(r)

(τ) − Th0 [ (ηh0( · , h))[r]](τ) � −h0η′(a, h) � −h0η′(a, h̃)

where t(r) ∈ Ih and τ ∈ I. There is ε0 > 0 such that for h ∈ C[h̃] and ‖h‖ < ε0 we
have

κ(h̃) > κ(h) � h0η′(a, h̃).

It follows from condition 1) of Assumption H[σ] and from the above inequalities that
for h ∈ C[h̃] and ‖h‖ < ε0 we have

η′(t(r), h) = σ
(
t(r), (η( · , h))t(r) + (κ(h))t(r)

)
+ γ (h)

= σ
(
t(r), Th0 [ (ηh0( · , h))[r]] + (η( · , h))t(r)

− Th0 [ (ηh0( · , h))[r]] + (κ(h))t(r)
)

+ γ (h)

� σ
(
t(r), Th0 [ (ηh0( · , h))[r]] − (h0η′(a, h̃))t(r) + (κ(h))t(r)

)
+ γ (h)
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and consequently

η′(t(r)h) � σ
(
t(r), Th0 [ (ηh0( · , h))[r]]

)
+ γ (h), 0 � r � N0.

Since η( · , h is a convex function then the above relations imply the difference func-
tional inequality

ηh0(t
(r+1), h) � ηh0(t

(r), h) + h0σ(t(r), Th0 [(ηh0( · , h))[r]]) + h0γ (h)

where 0 � r � N0 − 1. Since βh satisfies (23), (24) then the above relations and (29)
show that β (r)

h � η(t(r), h) for 0 � r � N0. It follows from (22) that condition (25) is
satisfied with α(h) = η(a, h), where h ∈ C[h̃] and ‖h‖ < ε0.

This completes the proof. �
The following particular case of Theorem 3.2 is important in simple applications.

LEMMA 3.3. Suppose that Assumption H[Gh] is satisfied and
1) uh : Ωh → R is a solution of (5), (6) where ϕh ∈ F(E0.h ∪ ∂0Eh, Rk) ,
2) vh : Ωh → R and there are α0, α : H → R+ such that conditions (18) - (20)

are satisfied,
3) there exists L ∈ R+ such that the estimates

Gh.i[w, ξ ](r,m) − Gh.i[w̄, ξ ](r,m) � L‖w − w̄‖Dh , i = 1, . . . , k,

are satisfied for (t(r), x(m), ξ) ∈ E′
h , w, w̄ ∈ F(Dh, Rk) and w � w̄.

Then ∥∥(uh − vh)(r,m)
∥∥
∞ � α̃(h) on Eh (30)

where

α̃(h) = α0(h)eLa + γ (h)
eLa − 1

L
if L > 0, (31)

α̃(h) = α0(h) + aγ (h) if L = 0. (32)

Proof. It follows that the solution βh : Jh → R+ of the difference problem

β (r+1) = (1 + Lh0)β (r) + h0γ (h), 0 � r � N0 − 1,

β (0) = α0(h)

satisfies the condition: β (r)
h � α̃(h) for 0 � r � N0. Then we obtain the assertion

(30) from Theorem 3.2. �

REMARK 3.4. It is important in our considerations that differential functional equa-
tions appear in comparison problems. Consider the Cauchy problem

η′(t) = A α
√
η(tβ ) + Bη(t), η(0) = 0, (33)

where β � α > 1. It is easy to see that η̄(t) = 0 for t ∈ [0, 1] is the maximal solution
of (33).

If α > 1 , β = 1 then problem (33) does not contain a deviated variable and it
has a positive maximal solution on (0, 1].
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4. Parabolic functional difference inequalities

Solutions of difference equations are functions defined on the mesh. On the other
hand equations (1) contain the functional variable z(t,x) which is an element of the space
C(D, Rk). Then we need an interpolating operator Th : F(Dh, Rk) → C(D, Rk). We
define Th in the following way. Let us denote by (ϑ1, . . .ϑn) the family of sets defined
by

ϑi = { 0, 1 } if di > 0 and ϑi = { 0 } if di = 0, 1 � i � n.

Set υ = (υ1, . . . ,υn) ∈ Zn and υi = 0 if di = 0 , υi = 1 if di > 0 where 1 � i � n.
Write

Δ+ = { λ = (λ1, . . . , λn) : λi ∈ ϑi for 1 � i � n }.
Let w ∈ F(Dh, Rk) and (t, x) ∈ D. Suppose that d0 > 0. There exists (t(r), x(m)) ∈ Dh

such that (t(r+1), x(m+υ)) ∈ Dh and t(r) � t � t(r+1) , x(m) � x � x(m+χ)). Write

Th[w](t, x) =
(
1 − t − t(r)

h0

) ∑
λ∈Δ+

w(r,m+λ )
(x − x(m)

h′
)λ(

1 − x − x(m)

h′
)1−λ

+
t − t(r)

h0

∑
λ∈Δ+

w(r+1,m+λ )
(x − x(m)

h′
)λ(

1 − x − x(m)

h′
)1−λ

where

(x − x(m)

h′
)λ

=
n∏

i=1

(xi − x(mi)
i

hi

)λi
,

(
1
x − x(m)

h′
)1−λ

=
n∏

i=1

(
1 − xi − x(mi)

i

hi

)1−λi

and we take 00 = 1 in the above formulas. If d0 = 0 then we put

Th[w](t, x) =
∑
λ∈Δ+

w(r,m+λ )
(x − x(m)

h′
)λ(

1 − x − x(m)

h′
)1−λ

.

Then we have defined Th[w] on D. It is easy to see that Th[w] ∈ C(D, Rk). The above
interpolating operator has been first proposed in [4], Chapter 5.

For z : Ωh → Rk and (t(r), x(m)) ∈ Eh we write Thz[r,m] instead of Th[z[r,m]]. For
w ∈ C(D, Rk) we put ‖w‖ = max{‖w(t, x)‖∞ : (t, x) ∈ D }. The following properties
of the operator Th are important in our considerations.

LEMMA 4.1. Suppose that w : D → Rk is of class C1 and wh = w |Dh . Let C̃
be such a constant that ‖∂tw‖D , ‖∂xiw‖D � C̃ for 1 � i � n. Then ‖Th[wh]−w‖D �
C̃‖h‖ where ‖h‖ = h0 + h1 + . . . + hn.

LEMMA 4.2. Suppose that w : D → Rk is of class C2 and wh = w |Dh . Let
C̃ be such a constant that ‖∂ttw‖D , ‖∂txiw‖D , ‖∂xixjw‖D � C̃ , i, j = 1, . . . , n. Then
‖Th[wh] − w‖D � C̃‖h‖2.
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The above lemmas are consequences of Lemma 3.19 and Theorem 5.27 in [4].
We formulate a difference functional problem corresponding to (1), (2). Write

Γ = { (μ, ν) ∈ N2 : 1 � μ, ν � n, μ 	= ν }
and suppose that we have defined the sets Γ+, Γ− ⊂ Γ such that Γ+ ∪ Γ− = Γ ,
Γ+ ∩ Γ− = ∅. In particular, it may happens that Γ+ = ∅ or Γ− = ∅. Moreover, we
assume that (i, j) ∈ Γ+ when (j, i) ∈ Γ+. Let ω : Ωh → R and (t(r), x(m)) ∈ Eh. Let
δ0 be defined by (4) and

δ+
i ω

(r,m) =
1
hi

[
ω (r,m+ei) − ω (r,m)], δ−

i ω (r,m) =
1
hi

[
ω (r,m) − ω (r,m−ei)

]
, i = 1, . . . , n.

We consider the difference operators (δ1, . . . , δn) = δ defined by

δiω (r,m) =
1

2hj

[
ω (r,m+ej) − ω (r,m−ej)

]
, j = 1, . . . , n. (34)

We apply the difference operators δ (2) =
[
δμ,ν

]
μ,ν=1,...,n

given by

δμμω (r,m) = δ+
μ δ

−
μ ω (r,m) for μ = 1, . . . , n, (35)

and

δμνω (r,m) =
1
2

[
δ+
μ δ

−
ν ω (r,m) + δ−

μ δ+
ν ω

(r,m) ]
for (μ, ν) ∈ Γ−, (36)

δμνω (r,m) =
1
2

[
δ+
μ δ+

ν ω (r,m) + δ−
μ δ−

ν ω (r,m) ] for (μ, ν) ∈ Γ+. (37)

Given ϕh : E0.h ∪ ∂0Eh → Rk, we consider the functional difference system

δ0z
(r,m)
i = Fi

(
t(r), x(m), Thz[r,m], δz(r+1,m)

i , δ (2)z(r+1,m)
i

)
, i = 1, . . . , k, (38)

with the initial boundary condition

z(r,m) = ϕ(r,m)
h on E0.h ∪ ∂0Eh. (39)

The above problem is considered as an implicit difference scheme for (1), (2). It is
important that the difference operators δzi and δ (2)zi , 1 � i � k, are calculated in
(38) at the point (t(r+1), x(m)) and the functional variable Thz[r,m] appears in a classical
sense.

We begin with a theorem on implicit difference functional inequalities generated
by (38), (39). Write

Fh.i[z](r,m) = Fi

(
t(r), x(m), Thz[r,m], δz(r+1,m)

i , δ (2)z(r+1,m)
i

)
, i = 1, . . . , k.

ASSUMPTION H[F]. The function F = (F1, . . . , Fk) : Ξ → Rk of the variables
(t, x, w, q, s) , s = [ sμ,ν ]μ,ν=1,...,n , is continuous and

1) the partial derivatives

∂qFi = (∂q1Fi, . . . , ∂qnFi), ∂sFi =
[

∂sμνF
]
μ,ν=1,...,n

, i = 1, . . . , k,

exist on Ξ and the functions ∂qFi , ∂sFi , 1 � i � k, are continuous and bounded
on Ξ,
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2) for each i, 1 � i � k, the matrix ∂sFi is symmetric and

∂sμνFi(P) � 0 for (μ, ν) ∈ Γ+, ∂sμνFi(P) � 0 for (μ, ν) ∈ Γ− (40)

and

1
hμ

∂sμμFi(P)− 1
2
| ∂qμFi(P) |−

n∑
ν=1,ν �=μ

1
hν

∣∣ ∂sijF(P)
∣∣ � 0, μ = 1, . . . , n, (41)

where P = (t, x, w, q, s) ∈ Ξ , i = 1, . . . , k
3) there is ε0 > 0 such that for 0 < h0 < ε0 and w, w̄ ∈ C(D, Rk) , w � w̄, we

have
wi(0, θ) + h0Fi(t, x, w, q, s) � w̄i(0, θ) + h0Fi(t, x, w̄, q, s),

where (t, x, q, s) ∈ E × Rn × Mn×n , i = 1, . . . , k.

REMARK 4.3. It is required in condition 2) of Assumption H[F] that for each (μ, ν) ∈
Γ and 1 � i � k the function gμ,ν(P) = sign ∂sμνFi(P), P ∈ Ξ, is constant on Ξ.
Relations (40) can be considered as definitions of the sets Γ+ and Γ−.

REMARK 4.4. Suppose that for each i, 1 � i � k the matrix ∂sFi satisfies the
condition: there is ε̃ > 0 such that

∂sμμFi(P) −
n∑

ν=1ν �=μ

∂sμνFi(P) � ε̃, P ∈ Ξ.

If h1 = h2 = . . . = hn then there is ε̄ > 0 such that condition (41) is satisfied for
‖h′‖ < ε̄.

REMARK 4.5. Given the function G̃ = (G̃1, . . . , G̃k) : E×R×C(D, Rk)×Rn ×Mn×n

of the wariables (t, x, p, w, q, s) Put

Fi(t, x, w, q, s) = F̃i(t, x, wi(0, θ), w, q, s) on Ξ, i = 1, . . . , k..

Then system (1) has the form

∂tzi(t, x) = F̃i
(
t, x, zi(t, x), z(t,x), ∂xzi(t, x), ∂xxzi(t, x)

)
. (42)

It is important that the the dependence of F̃ on the classical variable z(t, x) is distin-
guished in (42). Suppose that

1) F̃ is nondecreasing with respect to the functional variable,
2) there exists the derivatives (∂pF̃1, . . . , ∂pF̃k) and ∂pF̃i(t, x, p, w, q, s) � L for

1 � i � k and 1 + Lh0 � 0.
Then the monotonicity condition 3) of Assumption H[F] is satisfied.

For ξ ∈ Rχ , ξ = { ξ (λ ) }λ∈Λ, we put

δ+
j ξ

(θ) =
1
hj

[
ξ (ej) − ξ (θ)], δ−

j ξ (θ) =
1
hj

[
ξ (θ) − ξ (−ej)

]
, j = 1, . . . , n.
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The expressions

δξ (θ) = (δ1ξ (θ), . . . , δnξ (θ)), δ (2)ξ (θ) =
[
δμνξ (θ) ]

μ,ν=1,...,n
,

are defined in the following way:

δμξ (θ) =
1

2hμ

[
ξ (eμ) − ξ (−eμ)] for μ = 1, . . . , n,

δμμξ (θ) = δ+
μ δ

−
μ ξ (θ) for μ = 1, . . . , n

and

δμνξ (θ) =
1
2

[
δ+
μ δ

−
ν ξ (θ) + δ−

μ δ+
ν ξ

(θ)] for (μ, ν) ∈ Γ−,

δμ,νξ (θ) =
1
2

[
δ+
μ δ

+
ν ξ

(θ) + δ−
μ δ−

ν ξ (θ)] for (μ, ν) ∈ Γ+.

We consider the sets

Λ̄ = {λ ∈ Λ : there is i, 1 � i � n, such that λ = ei or λ = −ei },
Λ+ = { λ ∈ Λ : there is (μ, ν) ∈ Γ+ such that λ = eμ + eν or λ = −eμ − eν },
Λ− = { λ ∈ Λ : there is (μ, ν) ∈ Γ− such that λ = eμ − eν or λ = −eμ + eν },

and Λ� = Λ \ ( { θ } ∪ Λ̄∪Λ+ ∪Λ−
)
. Let the function Gh : Yh → R+ be defined by

Gh.i[w, ξ ](r,m) = Fi
(
t(r), x(m), Thw, δξ (θ), δ (2)ξ (θ) ), i = 1, . . . , k. (43)

LEMMA 4.6. Let Assumption H[F] holds. Then the function Gh defined by (43)
satisfies Assumption H[Gh].

Proof. It is clear that conditions 1), 2), 4) of Assumption H[Gh] are satisfied. It re-
mains to prove relations (8), (9). Write Q(r,m)[w, ξ ] =

(
t(r), x(m), Thw, δξ (θ), δ (2)ξ (θ)

)
.

It follows from (43) that

∂ξ (θ)Gh.i[w, ξ ](r,m) = −2
m∑

μ=1

1
h2
μ
∂sμμFi(Q(r,m)[w, ξ ])+

∑
(μ,ν)∈Γ

1
hμhν

∣∣ ∂sμνFi(Q(r,m)[w, ξ ])
∣∣,

∂ξ (eμ )Gh.i[w, ξ ](r,m) =
1
h2
μ
∂sμμFi(Q(r,m)[w, ξ ]) −

n∑
nu=1,ν �=mu

1
hμhν

∣∣∂smuνFi(Q(r,m)[w, ξ ])
∣∣

+
1

2hμ
∂qμFi(Q(r,m)[w, ξ ]) for μ = 1, . . . , n,

∂ξ (−eμ )Gh.i[w, ξ ](r,m) =
1
h2
μ
∂sμμFi(Q(r,m)[w, ξ ]) −

n∑
ν=1,ν �=μ

1
hμhν

∣∣∂sμνFi(Q(r,m)[w, ξ ])
∣∣

− 1
2hμ

∂qμFi(Q(r,m)[w, ξ ]) for μ = 1, . . . , n,
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∂ξ (eμ+eν )Gh.i[w, ξ ](r,m) = ∂ξ (−eμ−eν )Gh.i[w, ξ ](r,m)

=
1

2hμhν
∂sμνFi(Q(r,m)[w, ξ ]) for (μ, ν) ∈ Γ+,

∂ξ (eμ−eν )Gh.i[w, ξ ](r,m) = ∂ξ (−eμ+eν )Gh.i[w, ξ ](r,m)

= − 1
2hμhν

∂sμνFi(Q(r,m)[w, ξ ]) for (μ, ν) ∈ Γ−.

we put i = 1, . . . , k in the above formulas. Moreover, we have

∂ξ (λ )Gh.i[w, ξ ](r,m) = 0 for λ ∈ Λ�, i = 1, . . . , k.

The above relations and condition 2) of Assumption H[F] show that conditions (8), (9)
are satisfied on Yh. This completes the proof. �

THEOREM 4.7. Suppose the Assumption H[F] is satisfied and
1) h ∈ H , h0 < ε0 and the functions u, v : Ωh → Rk satisfy the difference

functional inequalities

δ0u
(r,m)
i − Fh.i[u](r,m) � δ0v

(r,m)
i − Fh.i[v](r,m) on E′

h for i = 1, . . . , k,

2) the initial boundary estimate u(r,m) � v(r,m) holds on E0.h ∪ ∂0Eh.
Then

u(r,m) � v(r,m) on Eh. (44)

Proof. We apply Theorem 2.3 to prove (44). Let Gh : Yh → Rk be defined by
(43). Then the difference functional inequality (10) is satisfied. We conclude from
Lemma 4.6 that all the assumptions of Theorem 2.3 are satisfied and the assertion (44)
follows. �

5. Implicit difference methods

We need the following operator V : C(D, Rk) → C(I, R+). For w ∈ C(D, Rk)
we put

V[w](t) = max ‖w(t, x)‖∞ : x ∈ [−d, d] }, t ∈ I.

For w, w̄ ∈ C(D Rk) we write w � w̄ if w(t, x) � w̄(t, x) for (t, x) ∈ D. We consider
now the problem of the convergence of the implicit difference schemes for (1), (2).

ASUMPTION H[F,σ]. There is σ : J × C(I, R+) → R+ such that Assumption
H[σ] is satisfied and for w, w̄ ∈ C(D, R) , w � w̄ we have

Fi(t, x, w, q, s) − Fi(t, x, w̄, q, s) � σ(t, V[w − w̄]), i = 1, . . . , k,

where (t, x, q, s) ∈ E × Rn × Mn×n , w̄ ∈ C(D, Rk) and w � w̄ .

THEOREM 5.1. Suppose that Assumption H[F] and H[F,σ] are satisfied and
1) v : Ω → Rk is a solution of (1), (2) and v is of class C2 on Ω,
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2) h ∈ H , h0 < ε and ϕh : E0.h ∪ ∂0Eh → Rk and there is α0 : H → R+ such
that ∥∥ϕ(r,m) − ϕ(r,m)

h

∥∥
∞ � α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Under these assumptions we have
1) there is a solution uh : Ωh → Rk of (38), (39),
2) there is α : H → R+ such that∥∥(uh − vh)(r,m)

∥∥
∞ � α(h) on Eh and lim

h→0
α(h) = 0, (45)

where vh = v |Ωh .

Proof. Let Gh : Yh → R be defined by (43). The existence of uh follows from
Theorem 3.1 and Lemma 4.6. The assertion (45) is a consequence of Theorem 3.2 and
Lemma 4.6. This is our claim. �

REMARK 5.2. Suppose that all the assumption of Theorem 5.1 are satisfied and
σ(t,η) = L‖η‖0 on J × C(I, R+) . Then

∣∣ (uh − vh)(r,m)
∣∣ � α̃(h) on Eh. where α̃ is

given by (31), (32).
The above observation is a consequence of Lemma 3.3.

REMARK 5.3. Suppose that a � 1 and there are A, B ∈ R+ and β � α > 1
such that

Fi(t, x, q, q, s) − Fi(t, x, w̄, q, s) � A α
√

V[w − w̄](tβ − t) + B‖w − w̄‖D, i = 1, . . . , k,

where (t, x, q, s) ∈ E × Rn × Mn×n , w, w̄ ∈ C(D, Rk) and w � w̄. Then comparison
problem has the form

η′(t) = A α
√
η(tβ ) + Bη(t), η(0) = 0,

and Assumption H[F,σ] is satisfied.

The above observation is a consequence of Remark 33. Then Theorem 5.1 is a gener-
alization of results presented in [7], [8].

Now we give numerical examples.

EXAMPLE 5.4. Put n = 2 and E = [0, 0.5]×[−0.5, 0.5]×[−0.5, 0.5]. Consider
the differential integral equation

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y) + cos
[
∂xxz(t, x, y) + ∂yyz(t, x, y) + 2π2z(t, x, y)

]

− 1
π2

∂xyz(t, x, y) + π2
∫ x

−0.5

∫ y

−0.5
z(t, ξ , ζ)dζ dξ −

∫ t

0
z(τ, x, y)dτ

+2π2z(t, x, y) − 1 + cos(πx) cos(πy)
with the initial boundary condition

z(0, x, y) = 0, (x, y) ∈ [−0.5, 0.5]× [−0.5, 0.5],
z(t,−0.5, y) = z(t, 0, 5, y) = 0, (t, y) ∈ [0, 0.5]× [−0.5, a] × [−0.5, 0.5],
z(t, x,−0.5, ) = z(t, x, 0.5) = 0, (t, x) ∈ [0, 0.5] × [−0.5, 0.5]
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The function v(t, x, y) = sin t cos(πx) cos(πy) is the solution of the above problem.
Let us denote by zh an approximate solution which is obtained by using the implicit
difference scheme. The Newton method is used for solving nonlinear systems generated
by the implicit scheme. Write m = (m1, m2) and

ε(r)
h =

1
(2N1 − 1)(2N2 − 1)

∑
m∈Π

∣∣z(r,m)
h − v(r,m)

∣∣, 0 � r � N0, (46)

where

Π = {m = (m1, m2) ∈ Z2 : −N1 + 1 � m1 � N1 − 1, −N1 + 1 � m2 � N2 − 1 }

and N1h1 = 0.5 , N2h2 = 0.5 , N0h0 = 0.5. The numbers ε(r)
h can be called average

errors of the difference method for fixed t(r). We put h0 = h1 = h2 = 0.005 and we
have the following values of the above defined errors.

Table of errors

t(r)

ε(r)
h

0.25

0.0047

0.30

0.0056

0.35

0.0065

0.40

0.0074

0.45

0.0083

0.50

0.0091

Note that our equation and the steps of the mesh do not satisfy condition (3) which is
necessary for the explicit differencemethod to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 106 .

EXAMPLE 5.5. For n = 2 we put E = [0, 0.5]× [−1, 1]× [−1, 1] . Consider the
differential equations with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y) + x2y2∂xyz(t, x, y)

+ arc tan
[
∂xxz(t, x, y) + ∂yyz(t, x, y) − 4t2(x2 + y2)z(t, x, y)

]
+z(t, 0.5(x + y), 0.5(x − y)) + f (t, x, y)z(t, x, y),

f (t, x, y) = x2 − y2 − 4t2(x2 + y2 − x3y3) − exp
[
t(xy − x2 + y2)

]
,

with the initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−1, 1] × [−1, 1],

z(t,−1, y) = z(t, 1, y) = et(1−y2), (t, y) ∈ [0, 0.5] × [−1, 1],

z(t, x,−1) = z(t, x, 1) = et(x2−1), (t, x) ∈ [0, 0.5]× [−1, 1].

The function v(t, x, y) = exp
[
t(x2 − y2)

]
is the solution of the above problem.

Let us denote by zh an approximate solutionwhich is obtained by using the implicit
difference scheme. The Newton method is used for solving nonlinear systems generated
by the implicit scheme. Let εh be the average error defined by (46) with N0h0 = 0.5 ,
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N1h1 = 1 , N2h2 = 1 . We put h0 = h1 = h2 = 0.005 and we have the following
values of the above defined errors.

Table of errors

t(r) :

ε(r)
h :

0.25

0.0045

0.30

0.0055

0, 35

0.0064

0.40

0.0072

0.45

0.0078

0.50

0.0083

Note that our equation and the steps of the mesh do not satisfy condition (3) which is
necessary for the explicit differencemethod to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 106 .

The above examples show that there are implicit difference schemes which are
convergent and the corresponding classical method are not convergent. This is due to
the fact that we need assumption (3) for explicit difference methods. We do not need
this this condition in our implicit methods.

Our results show that implicit difference schemes are convergent on all meshes.
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