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A CLASS OF NEW TRIGONOMETRIC

INEQUALITIES AND THEIR SHARPENINGS

KUN ZHU, HONG ZHANG AND KAIQING WENG

(communicated by V. Volenec)

Abstract. Some sufficient or necessary conditions for Schur-convexity of a function of two
variables F(x, y) = (f (y) − f (x))/(g(y) − g(x)) were considered. These results are applied to
establish a class new inequalities in a triangle. In the fourth section we prove two theorems for
a kind of symmetric function. These theorems are used to sharpen some of the inequalities and
yield two inequalities in the last section.

1. Introduction

In the paper [5], the author consider necessary and sufficient conditions for
convexity of a function x �→ f (x) in terms of some properties of the associated
function of two variables F(x, y) = (f (y) − f (x))/(y − x) . These results are ap-
plied to the theory of the Gamma function. This paper follows the ideas in [5] and
discusses the conditions for Schur-convexity and some statements of the function
F(x, y) = (f (y) − f (x))/(g(y) − g(x)) , and use them to yield some new inequali-
ties in a triangle. For example it is shown that in an acute �ABC ,

1 <
sin A − sin B

A − B
+

sinB − sinC
B − C

+
sin C − sin A

C − A
� 3

2
.

Actually the best lower bound of the inequality above is not 1 but 4
π . The similar case

is happened to some other inequalities. In the fourth section, we prove two theorems to
find the optimal lower or upper bound of each inequality.

Firstly, we recall the concepts of majorization and Schur-convexity. For any
x = (x1, x2, · · · , xn) ∈ Rn , let x[1] � x[2] � · · · � x[n] , denote the components of x in
decreasing order.

DEFINITION. The vector x is said to be majorized by the vector y (denoted x ≺ y )
if

k∑
i=1

x[i] �
k∑

i=1

y[i], k = 1, 2, · · · , n − 1, (1.1)
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and
n∑

i=1

x[i] =
n∑

i=1

yi. (1.2)

DEFINITION. If x ≺ y but x is not a permutation of y , then x is said to be strictly
majorized by y (denoted x ≺≺ y ).

DEFINITION. A function ϕ : Rn → R is called Schur-convex if x ≺≺ y ⇒ ϕ(x) �
ϕ(y) .

If, in addition, ϕ(x) < ϕ(x) whenever x ≺≺ y , then ϕ(x) is said to be strictly
Schur-convex. Of course ϕ(x) is said to be (strictly) Schur-concave if and only if
−ϕ(x) is (strictly) Schur-convex.

2. Conditions for Schur-convexity of the function

Let f , g be functions defined on an interval I and their derivative f ′ , g′ exist,
and g′ �= 0 . Define the function F of two variables by

F(x, y) =
f (y) − f (x)
g(y) − g(x)

, (x �= y), F(x, x) =
f ′(x)
g′(x)

, (2.1)

where (x, y) ∈ I2 . Let us now consider the following statements:
(A) f ′ is convex, g′ is concave, f ′ � 0 and g′ > 0 on I ; or f ′ is concave, g′

is convex, f ′ � 0 and g′ < 0 on I ,

(B) F(x, y) �
f ′( x+y

2 )
g′( x+y

2 )
for all x, y ∈ I ,

(C) F(x, y) � f ′(x) + f ′(y)
g′(x) + g′(y)

for all x, y ∈ I ,

(D) F is Schur-convex on I2 ,
and

(A′) f ′ is concave, g′ is convex, f ′ � 0 and g′ > 0 on I ; or f ′ is convex, g′ is
concave, f ′ � 0 and g′ < 0 on I ,

(B′) F(x, y) �
f ′( x+y

2 )
g′( x+y

2 )
for all x, y ∈ I ,

(C′) F(x, y) � f ′(x) + f ′(y)
g′(x) + g′(y)

for all x, y ∈ I ,

(D′) F is Schur-concave on I2 .

THEOREM 2.1. if f ′′′(t), g′′′(t) is continuous on I ,
1. if (A) holds then the conditions (B) − (D) hold;
2. if (A′) holds then the conditions (B′) − (D′) hold.

Proof. (A) ⇒ (C) : Let f ′ is convex, g′ is concave and x, y ∈ I, x < y . Then
for each t ∈ [x, y] we have t = λ (t)x + (1 − λ (t))y , where λ (t) = (y − t)/(y − x) .
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By Jensen’s inequality, we have f ′(t) � f ′(x)λ (t) + f ′(y(1 − λ (t))) . The integration
over t ∈ [x, y] yields

∫ y

x
f ′(t)dt � f ′(x)

∫ y

x
λ (t)dt + f ′(y)

∫ y

x
[1 − λ (t)]dt, (2.2)

which is equivalent to

f (y) − f (x) � f ′(x) + f ′(y)
2

(y − x). (2.3)

Similarly,

g(y) − g(x) � g′(x) + g′(y)
2

(y − x). (2.4)

And if f ′ � 0, g′ > 0 on I , then f (y) − f (x) � 0 and g(y) − g(x) > 0 .We get

f (y) − f (x)
g(y) − g(x)

� f ′(x) + f ′(y)
g′(x) + g′(y)

, (2.5)

which is the statement (C).
The second part follows upon replacing f by −f and g by −g .
(C) ⇔ (D) : It’s evident that F(x, y) is symmetric on I2 . Since

∂F(x, y)
∂x

=
g′(x)(f (y) − f (x)) − f ′(x)(g(y) − g(x))

(g(y) − g(x))2
, (2.6)

∂F(x, y)
∂y

=
f ′(y)(g(y) − g(x)) − g′(y)(f (y) − f (x))

(g(y) − g(x))2
, (2.7)

we see that the partial derivatives are continuous in each point (x, y) ∈ I2, x �= y . Let
x < y , then F(x, y) is Schur-convexon I2 if and only if ([4,3.A.4]) ∂F(x,y)

∂y − ∂F(x,y)
∂x � 0,

which is equivalent to (C).
(D) ⇒ (B) : Suppose that F is Schur-convex, for sufficiently small ε > 0 it

follows that ( x+y
2 − ε, x+y

2 + ε) ≺ (x, y) , so

F(
x + y

2
− ε,

x + y
2

+ ε) � F(x, y). (2.8)

Letting ε → 0 , we get f ′( x+y
2 )

g′( x+y
2 )

� F(x, y) , which is the statement (B).

This ends the proof of (1). The proof of (2) is similar to (1). �
Let us now consider the other four statements:

(A1) g′ is concave on I ,
(A′

1) g′ is convex on I ,
(A2) f ′ is convex on I ,
(A′

2) f ′ is concave on I .

THEOREM 2.2. if g′′′(t) is continuous on I and f (t) = t , then the conditions
(A1), (B), (C), (D) are equivalent, and the conditions (A′

1), (B
′), (C′), (D′) are equiv-

alent.
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Proof. If g′ is concave on I , let x, y(x < y) be arbitrary points in I . By Taylor’s
expansion around c = (x + y)/2 , we have

g(x) = g(c) + g′(c)(x − c) +
g′′(c)

2
(x − c)2 + g′′′(ξ1)(x − c)3, (2.9)

g(y) = g(c) + g′(c)(y − c) +
g′′(c)

2
(y − c)2 + g′′′(ξ2)(y − c)3, (2.10)

where ξ1 ∈ (x, c), ξ2 ∈ (c, y) and g′′′(ξ1)(x − c)3 � 0, g′′′(ξ2)(y − c)3 � 0 . Then
from (2.9) and (2.10) we get

g(y)−g(x) = g′(c)(y− x)+g′′′(ξ2)(y− c)3 −g′′′(ξ1)(x− c)3 � g′(c)(y− x). (2.11)

Therefore y−x
g(y)−g(x) � 1

g′(c) wherefrom (B) follows.
(B) ⇒ (A1) : Suppose that (B) holds and that (A1) does not hold. Therefore,

there exists t ∈ I with g′′′(t) < 0 . By continuity of g′′′ , there is an interval I∗ ⊂ I so
g′′′(t) < 0 for t ∈ I∗ . Then the function −g′ is convex on I∗ and by the above proof
of (A1) ⇒ (B) , we conclude that (B) holds for −g on I∗ , hence (B) does not hold for
g , which is a contradiction.

(A1) ⇒ (C) : Similar to prove (A) ⇒ (C) , if g′ is concave on I , then (2.4)
holds. (2.4) is equivalent to (C).

The proofs of (C) ⇒ (D) and (D) ⇒ (B) are the same with theorem 2.1.
This is the end of the proof of the first part. The second part follows upon replacing

g by −g . �
Similarly we have the theorem 2.3, which has been proved by Milan Merkle[5].

THEOREM 2.3. if f ′′′(t) is continuous on I and g(t) = t , then the conditions
(A2), (B), (C), (D) are equivalent, and the conditions (A′

2), (B
′), (C′), (D′) are equiv-

alent.

3. Some new trigonometric inequalities

A , B , C are the angles of an acute triangle ABC .

PROPOSITION 3.1.1.

1 <
sinA − sin B

A − B
+

sin B − sin C
B − C

+
sinC − sin A

C − A
� 3

2
(3.1)

Proof. Let f (t) = sin t , g(t) = t and I = (0, π2 ) , then f ′ = cos t is convex on
I . From theorem 2.3, we get

cosA + cos B
2

� sin A − sin B
A − B

� cos
A + B

2
= sin

C
2

.

Similarly we have

cos B + cos C
2

� sin B − sin C
B − C

� sin
A
2
,
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and
cos C + cosA

2
� sin C − sin A

C − A
� sin

B
2
.

Adding the three inequalities upon, it yields

∑
cyclic

cosA �
∑
cyclic

sin A − sin B
A − B

�
∑
cyclic

sin
A
2

.

∑
cyclic

cosA > 1 had been shown in [1] and
∑

cyclic
sin A

2 � 3
2 in [3]. �

Similarly we can get

PROPOSITION 3.1.2.

− 3
√

3
2

� −
∑
cyclic

cos A �
∑
cyclic

cosA − cosB
A − B

� −
∑
cyclic

sinA < 0, (3.2)

∑
cyclic

csc2 A
2

�
∑
cyclic

tan A − tanB
A − B

�
∑
cyclic

sec2 A, (3.3)

−
∑
cyclic

csc2 A �
∑
cyclic

cotA − cot B
A − B

� −
∑
cyclic

sec2 A
2

� −4. (3.4)

And using theorem 2.2, we get

PROPOSITION 3.2.

6 �
∑
cyclic

csc
A
2

�
∑
cyclic

A − B
sin A − sin B

�
∑
cyclic

2
cosA + cos B

(3.5)

−
∑
cyclic

2
sin A + sin B

�
∑
cyclic

A − B
cosA − cos B

� −
∑
cyclic

sec
A
2

� −2
√

3, (3.6)

∑
cyclic

2
sec2 A + sec2 B

�
∑
cyclic

A − B
tan A − tanB

�
∑
cyclic

sin2 A
2

< 1, (3.7)

− 9
4

� −
∑
cyclic

cos2 A
2

�
∑
cyclic

A − B
cotA − cot B

� −
∑
cyclic

2
csc2 A + csc2 B

. (3.8)

Using theorem 2.1, we have

PROPOSITION 3.3

∑
cyclic

cos A + cosB
sec2 A + sec2 B

�
∑
cyclic

sinA − sin B
tanA − tan B

�
∑
cyclic

sin3 A
2

�
√

2
2

, (3.9)

24 �
∑
cyclic

sec2 A + sec2 B
cos A + cosB

�
∑
cyclic

tanA − tan B
sinA − sin B

�
∑
cyclic

csc3 A
2

, (3.10)
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∑
cyclic

cos3 A
2

�
∑
cyclic

cosA − cosB
cotA − cotB

�
∑
cyclic

sinA + sin B
csc2 A + csc2 B

, (3.11)

8
√

3
3

�
∑
cyclic

sec3 A
2

�
∑
cyclic

cotA − cotB
cosA − cosB

�
∑
cyclic

csc2 A + csc2 B
sinA + sinB

. (3.12)

Till this section, we have found 12 new inequalities. But some of these inequalities
don’t have the best lower or upper bounds. This problem will be solved in the next two
sections.

4. Theorems for Symmetric Function

In this section, we prove the theorem of a kind of symmetric function. Moreover,
improvement of certain known results is also presented.

LEMMA 4.1. (Schur, 1923) If I ⊂ R is an interval and g : I → R is convex, then

ϕ(x) =
n∑

i=1

g(xi)

is Schur-convex on In .

Define the symmetric function G of three variables by

G(x, y, z) =
∑
cyclic

F(x, y) = F(x, y) + F(y, z) + F(z, x)

where (x, y, z) ∈ I3 .

THEOREM 4.2. Let x + y + z = s > 0, x, y, z ∈ I = (0, s
2 ) ,

1. if F is Schur-convex on I2 , φ1(t) = F(t, t) is convex and φ2(t) = F( s
2 , t) is

strictly convex on I , then G( s
3 ,

s
3 ,

s
3 ) � G(x, y, z) < G( s

2 ,
s
2 , 0) ;

2. if F is Schur-concave on I2 , φ1(t) = F(t, t) is concave and φ2(t) = F( s
2 , t) is

strictly concave on I , then G( s
3 ,

s
3 ,

s
3 ) � G(x, y, z) > G( s

2 ,
s
2 , 0) .

Proof. (1). It is evident that ( s−z
2 , s−z

2 ) ≺ (x, y) ≺ ( s
2 ,

s
2 − z) and F(x, y) is

Schur-convex on I2 , we get F( s−z
2 , s−z

2 ) � F(x, y) � F( s
2 ,

s
2 − z) . Therefore

∑
cyclic

F

(
s − z

2
,
s − z

2

)
� G(x, y, z) �

∑
cyclic

F(
s
2
,
s
2
− z).

Let X1 = s−x
2 , Y1 = s−y

2 , Z1 = s−z
2 , then ( s

3 ,
s
3 ,

s
3 ) ≺ (X1, Y1, Z1) and

∑
cyclic

F
(

s−z
2 , s−z

2

)
=

∑
cyclic

φ1(Z1) . By the lemma 4.1, we know that
∑

cyclic
φ1(Z1) is Schur-convex on I3 . We

get ∑
cyclic

φ1(Z1) � 3φ1(
s
3
) =

∑
cyclic

F(
s
3
,
s
3
) = G(

s
3
,
s
3
,
s
3
),
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so G( s
3 ,

s
3 ,

s
3 ) � G(x, y, z) .

Similarly, let X2 = s
2 − x, Y2 = s

2 − y, Z2 = s
2 − z , then (X2, Y2, Z2) ≺≺ ( s

2 , 0, 0) and∑
cyclic

F
(

s
2 ,

s
2 − z

)
=

∑
cyclic

φ2(Z2) , we have

∑
cyclic

φ2(Z2) < φ2(
s
2
) + 2φ2(0) = 2F(

s
2
, 0) + F(

s
2
,
s
2
) = G(

s
2
,
s
2
, 0),

so G(x, y, z) < G( s
2 ,

s
2 , 0) .

This is end of the proof of (1). The (2) follows upon replacing F by −F . �
Actually, from above, if F is strictly Schur-convex (concave), and φ2(t) is convex

(concave), the inequalities are also satisfied. By a similar proof as Theorem 4.2 we get

THEOREM 4.3. Let x + y + z = s > 0, x, y, z ∈ I = (0, s) ,
1. if F is Schur-convex on I2 , φ1(t) = F(t, t) is convex and φ2(t) = F(t, 0) is

strictly convex on I , then G( s
3 ,

s
3 ,

s
3 ) � G(x, y, z) < G(s, 0, 0) ;

2. if F is Schur-concave on I2 , φ1(t) = F(t, t) is concave and φ2(t) = F(t, 0) is
strictly concave on I , then G( s

3 ,
s
3 ,

s
3 ) � G(x, y, z) > G(s, 0, 0)

This theorem can be formulated for a function in n variables.

THEOREM 4.4. Define the function G1 of n variables by

G1(x) = F1(x1, · · · , xn−1) + F1(x2, · · · , xn) + · · · +1 F(xn, x1, · · · , xn−2)

Let x ∈ In = [0, s]n , s =
n∑

i=1
xi > 0 ,

1. if F1 is Schur-convex on In−1 , φ1(t) = F1(t, t, · · · , t) is convex and φ2(t) =
F1(t, 0, · · · , 0) is convex on I , then G1( s

n ,
s
n , · · · , s

n ) � G1(x) < G1(s, 0, · · · , 0) ;
2. if F1 is Schur-concave on In−1 , φ1(t) = F1(t, t, · · · , t) is concave and φ2(t) =

F1(t, 0, · · · , 0) is concave on I , then G1( s
n ,

s
n , · · · , s

n ) � G1(x) � G1(s, 0, · · · , 0) .

5. Sharpening Some Inequalities

In this section we will use the theorem 4.2 and 4.3 to find some inequalities’
optimal bounds. From [5] we know that

F(x, y) =

⎧⎨
⎩

sin x − sin y
x − y

, x �= y

cos x, x = y

is Schur-concave on (0, π
2 )2 . It is easy to prove that F( π2 , t) is strictly concave on

(0, π2 ) . Hence by theorem 4.2 we get G( π2 , π
2 , 0) < G(x, y, z) � G( π3 , π

3 , π3 ) , which is
equivalent to the inequality (5.1). Similarly we can prove the inequalities (5.2)-(5.6).

PROPOSITION 5.1. In an acute �ABC

4
π

<
∑
cyclic

sinA − sinB
A − B

� 3
2
. (5.1)
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− 3
√

3
2

�
∑
cyclic

cos A − cosB
A − B

< −1 − 4
π

, (5.2)

0 <
∑
cyclic

A − B
tanA − tanB

� 3
4
, (5.3)

− 9
4

�
∑
cyclic

A − B
cotA − cot B

< −1, (5.4)

0 <
∑
cyclic

sin A − sin B
tanA − tanB

� 3
8
, (5.5)

1 <
∑
cyclic

cosA − cosB
cotA − cotB

� 9
√

3
8

. (5.6)

And using theorem 4.3 we get

PROPOSITION 5.2. In an arbitrary �ABC ,

− 3
√

3
2

�
∑
cyclic

cos A − cos B
A − B

< − 4
π

, (5.7)

∑
cyclic

A − B
cos A − cos B

� −2
√

3. (5.8)
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