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MEDA INEQUALITY FOR REARRANGEMENTS OF

THE B–CONVOLUTIONS AND SOME APPLICATIONS

V. S. GULIYEV, A. SERBETCI AND Z. V. SAFAROV

(communicated by W. Desmond Evans)

Abstract. In this paper we prove the Meda inequality for rearrangements of the convolution
operator ( B –convolution) associated with the Laplace-Bessel differential operator. By using the
Meda inequality for rearrangements we obtain an O’Neil type inequality for the B –convolution.
As applications of these results, we obtain necessary and sufficient conditions on the parameters
for the boundedness of the fractional B -maximal operator and B –fractional integral operator
with rough kernels, from the spaces Lp,γ to Lq,γ and from the spaces L1,γ to the weak spaces
WLq,γ .

1. Introduction

Let Kα ∈ WLn/(n−α)(Rn) , 0 < α < n , and f ∈ Lp(Rn) , 1 < p < n/α . Then
for the convolution Kα ∗ f , S. Meda [10] proved the following pointwise rearrangement
estimate

(Kα ∗ f )∗∗(t) � C
(
δα f ∗∗(t) + δα−n/p‖f ‖p

)
, δ > 0, (1)

and gave a new proof of the Hardy-Littlewood-Sobolev theorem for Kα ∗ f by using
this inequality.

The potential type integral operators associated with the Laplace-Bessel differential
operator

ΔB =
n∑

i=1

∂2

∂x2
i

+
n∑

i=k+1

γi
xi

∂

∂xi

(see [1]–[6], [8, 9]), are playing an important role in harmonic analysis, theory of
functions and partial differential equations.

In this paper we study the convolution (B -convolution), the fractional maximal
function (fractional B -maximal function) and fractional integral (B -frac-tional inte-
gral) with rough kernels, associated with the Laplace-Bessel differential operator. We
get the Meda inequality given in (1) for rearrangements of the B–convolution. By us-
ing the Meda inequality for rearrangements we obtain an O’Neil type inequality for the
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B–convolution. As applications, we obtain necessary and sufficient conditions on the
parameters for the boundedness of the fractional B -maximal operator and B–fractional
integral operator with rough kernels from the spaces Lp,γ to Lq,γ and from the spaces
L1,γ to the weak spaces WLq,γ .

Let R
n
k,+ = {x = (x1, ..., xn) ∈ R

n : x1 > 0, . . . , xk > 0, 1 � k � n} , and define

Lp,γ ≡ Lp,γ (Rn
k,+) =

⎧⎨
⎩f : ‖f ‖p,γ ≡

(∫
R

n
k,+

|f (x)|p(x′)γ dx

)1/p

< ∞
⎫⎬
⎭ , 1 � p < ∞

where (x′)γ = xγ11 · . . . ·xγkk , γ = (γ1, ..., γk) is a multi-index consisting of fixed positive
numbers such that |γ | = γ1 + ... + γk .

If p = ∞ , we assume

L∞,γ (Rn
k,+) = L∞(Rn

k,+) = {f : ‖f ‖L∞ = ess sup
x∈R

n
k,+

|f (x)| < ∞}.

Denote by Ty the shift operator (B–shift) acting according to the law

Tyf (x) = Ck,γ

∫ π

0
. . .

∫ π

0
f
(
(x′, y′)α , x′′ − y′′

)
dν(α),

where

Ck,γ = π−k/2
k∏

i=1

Γ
(
γi+1

2

)
Γ
( γi

2

) , (xi, yi)αi =
√

x2
i − 2xiyi cosαi + y2

i , 1 � i � k,

(x′, y′)α =
(
(x1, y1)α1 , . . . , (xk, yk)αk

)
and dν (α) =

k∏
i=1

sinγi−1 αi dαi, 1 � k � n.

We remark that the B -shift is closely related to the Laplace-Bessel differential
operator ΔB . The shift operator Ty generates the corresponding convolution (B -
convolution)

(f ⊗ g)(x) =
∫

R
n
k,+

f (y)Tyg(x)(y′)γ dy.

Let Ω ∈ Ls,γ (Sn−1
k,+ ) , s � 1 , Sn−1

k,+ = {x ∈ R
n
k,+ : |x| = 1} , and Ω be homoge-

neous of degree zero on R
n
k,+ , i.e., Ω(tx) = Ω(x) for all t > 0 , x ∈ R

n
k,+ , and let

0 < α < Q , Q = n + |γ | . We define the fractional B -maximal function with a rough
kernel by

MΩ,α,γ f (x) = sup
r>0

1
rQ−α

∫
B(0,r)

|Ω(y)| Ty|f (x)| (y′)γ dy,

and the B–fractional integral with a rough kernel by

IΩ,α,γ f (x) =
∫

R
n
k,+

Ω(y)
|y|Q−α Tyf (x) (y′)γ dy,
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where B(0, r) = {x ∈ R
n
k,+ : |x| < r} . It is clear that, when Ω ≡ 1, MΩ,α,γ and IΩ,α,γ

are the usual fractional B–maximal operator Mα,γ ([4]) and the B–Riesz potential Iα,γ
([1, 3, 9]), respectively.

The paper is organized as follows. In Section 2, we give some lemmas needed to
facilitate the proofs of our theorems. In Section 3, we show that the Meda inequality
for rearrangements of the B -convolution holds. In Section 4, we prove an O’Neil type
inequality for B -convolutions. In Section 5, we give some applications of the results
above. We show that the conditions on the parameters ensuring the boundedness cannot
be weakened for the fractional B -maximal operator and B–fractional integral operator
with rough kernels from the spaces Lp,γ to Lq,γ , and from the spaces L1,γ to the weak
spaces WLq,γ .

2. Some auxiliary lemmas

In this section we formulate some lemmas that will be needed later. We establish
a relation between shift operator Tyf and γ -rearrangement of f .

For the B -shift operator the following two lemmas hold.

LEMMA 1. 1. Let 1 � p � ∞ , f ∈ Lp,γ (Rn
k,+) , then for all y ∈ R

n
k,+

‖Tyf (·)‖p,γ � ‖f ‖p,γ . (2)

2. Let 1 � p, r � q � ∞ , 1/p− 1/q = 1/r′ , (r′ = r/(r− 1)) , f ∈ Lp,γ (Rn
k,+) ,

g ∈ Lr,γ (Rn
k,+) . Then f ⊗ g ∈ Lq,γ (Rn

k,+) and

‖f ⊗ g‖q,γ � ‖f ‖p,γ ‖g‖r,γ .

LEMMA 2. For any measurable set A = (A′, A′′) ⊂ R
n
k,+ , A′ = A1 × . . . × Ak ⊂

(0,∞)k , A′′ ⊂ R
n−k and for any y ∈ R

n
k,+ the following equality holds∫

A
Tyg(x)(x′)γ dx = Ck,γ

∫
(y,0)+A

g

(√
z2
1 + z2

1, · · · ,
√

z2
k + z2

k , z
′′
)

dμ(z, z′), (3)

where (x, 0) = (x, 0, . . . , 0︸ ︷︷ ︸
k−times

) , z′ = (z1, . . . , zk) , dμ(z, z′) = z′
γ−1

dzdz′ , dz′ =

dz1 · · · dzk , z′
γ−1

= zγ1−1
1 · · · zγk−1

k , (z, z′) ∈ R
n
k,+ × (0,∞)k, mi = supAi , i =

1, . . . , k, A = ((−m1, m1) × [0, m1) × .... × (−mk, mk) × [0, mk)) × A′′ .
The proof of Lemma 2 is straightforward after applying the following substitutions

z′′ = x′′, zi = xi cosαi, zi = xi sinαi, 0 � αi < π,

i = 1, . . . , k, z′ = (z1, . . . , zk), (z, z′) ∈ R
n
k,+ × (0,∞)k.

Let f : R
n
k,+ → R be a measurable function and for any measurable set E ,

|E|γ =
∫

E(x′)γ dx . We define γ -rearrangement of f in decreasing order by

f ∗(t) = inf {s > 0 : f∗(s) � t}, ∀t ∈ [0,∞),
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where f∗(t) denotes the γ -distribution function of f given by

f∗(t) =
∣∣{x ∈ R

n
k,+ : |f (x)| > t}∣∣γ .

We note the following properties of γ -rearrangement of functions (see [5, 7, 12]):

1) if 0 < p < ∞ , then∫
R

n
+

|f (x)|p(x′)γ dx =
∫ ∞

0
f ∗(t)p dt;

2) for any t > 0 ,

sup
|E|γ=t

∫
E
|f (x)|(x′)γ dx =

∫ t

0
f ∗(s) ds;

3) ∫
R

n
+

|f (x)g(x)|(x′)γ dx �
∫ ∞

0
f ∗(t)g∗(t) dt.

The function f ∗∗ on (0,∞) is defined by f ∗∗(t) = 1
t

t∫
0

f ∗(s) ds, t > 0.

If 1 < p < ∞ the following inequality is valid

‖f ∗∗‖Lp(0,∞) � p′ ‖f ∗‖Lp(0,∞),

where p′ = p/(p − 1) .
We denote by WLp,γ (Rn

k,+) the weak Lp,γ space of all measurable functions f
with finite norm

‖f ‖WLp,γ = sup
t>0

tf∗(t)1/p, 1 � p < ∞.

LEMMA 3. For any measurable set A ⊂ R
n
k,+ and for any y ∈ R

n
k,+ , the following

equality holds

sup
|A|γ=t

∫
A
Ty|f (x)|(x′)γ dx = Ck,γ

∫ t

0
f ∗(s)ds.

Proof. From Lemma 2 we have∫
A
Ty|f (x)|(x′)γ dx = Ck,γ

∫
(y,0)+A

∣∣f (z, z′)
∣∣ dμ(z, z′), (4)

where f (z, z′) = f

(√
z2
1 + z2

1, · · · ,
√

z2
k + z2

k , z
′′
)

. For the function f (z, z′) the

analogous equality (2) is also valid (see, for example [7])

sup
μ(A)=t

∫
A
|f (z, z′)dμ(z, z′) =

∫ t

0

(
f
)∗
μ (s)ds, (5)
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where
(
f
)∗
μ (s) = inf

{
t > 0 : μ

({
(z, z′) :

∣∣f (z, z′)
∣∣ > t

})
� s
}

.

Note that μ
(
(y, 0) + A)

)
= |A|γ and

(
f
)∗
μ (s) = f ∗(s) .

From (4) and (5) we get

sup
|A|γ=t

∫
A
Ty|f (x)|(x′)γ dx = Ck,γ sup

μ(A)=t

∫
(y,0)+A

|f (z, z′)|dμ(z, z′)

= Ck,γ

∫ t

0

(
f
)∗
μ (s)ds

=
∫ t

0
f ∗(s)ds.

Thus Lemma 3 is proved. �

3. Meda inequality for rearrangements of B -convolutions

In this section we prove the Meda inequality for rearrangements of the B -
convolution.

THEOREM 1. Let g ∈ WLr,γ (Rn
k,+) , 1 < r < ∞ , f ∈ Lp,γ (Rn

k,+) , 1 � p < r′ .
Then for any δ > 0

(g ⊗ f )∗∗(t) � C1δQ/r′ f ∗∗(t) + C2 δQ/r′−Q/p‖f ‖p,γ , (6)

where C1 = B1‖g‖r
WLr,γ , B1 = 2 r(2 r−1 − 1)−1 and C2 = B2‖g‖r/p′

WLr,γ , B2 =

2
(
2p′−r − 1

)−1/p′
for 1 < p < r′, and B2 = 1 for p = 1 .

Proof. Suppose Fδ = {y ∈ R
n
k,+ : |g(y)| � δ−Q/r}, then

|(g ⊗ f )(x)| �
(∫

Fδ

+
∫

R
n
k,+\Fδ

)
Ty|f (x)| |g(y)| (y′)γ dy = D1(x) + D2(x).

Suppose that Fδ =
⋃∞

j=1 F′
δ,j, where

F′
δ,j = {y ∈ R

n
k,+ : 2j−1δ−Q/r � |g(y)| < 2jδ−Q/r}.

Then taking into account Lemma 3, we get

1
|E|γ

∫
E
D1(x)(x′)γ dx =

1
|E|γ

∫
E

(∫
Fδ

|g(y)|Ty|f (x)|(y′)γ dy

)
(x′)γ dx

�
∞∑
j=1

2jδ−Q/r
∫

F′
δ,j

(
1

|E|γ

∫
E

Ty|f (x)|(x′)γ dx

)
(y′)γ dy

� δ−Q/rf ∗∗(t)
∞∑
j=1

2j
∫

F′
δ,j

(y′)γ dy
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� 2rδ−Q/rf ∗∗(t) ‖g‖r
WLr,γ

∞∑
j=1

2j (2jδ−Q/r)−r

= C1δQ/r′ f ∗∗(t),

where C1 = 2r(2r−1 − 1)−1 ‖g‖r
WLr,γ .

Thus
1

|E|γ

∫
E

D1(x)(x′)γ dx � C1δQ/r′ f ∗∗(t).

Let p = 1 . Then from the inequality (2) we have

|D2(x)| � ‖Txf (·)‖1,γ sup
R

n
k,+\Fδ

|g(y)| � ‖f ‖1,γ δ−Q/r.

Now let 1 < p < r′ . By using Hölder inequality and the inequality (2) we get

|D2(x)| � ‖Txf (·)‖p,γ

(∫
R

n
k,+

\Fδ

|g(y)|p′(y′)γ dy

)1/p′

� ‖f ‖p,γ

(∫
R

n
k,+\Fδ

|g(y)|p′(y′)γ dy

) 1
p′

.

Since g ∈ WLr,γ (Rn
k,+) and R

n
k,+ \ Fδ =

⋃∞
j=1 Bδ,γ , where

Bδ,j = {y ∈ R
n
k,+ : 2−jδ−Q/r � |g(x)| < 2−j+1δ−Q/r},

then∫
R

n
k,+\Fδ

|g(y)|p′(y′)γ dy =
∞∑
j=1

∫
Bδ,j

|g(y)|p′(y′)γ dy

�
∞∑
j=1

(2−j+1δ−Q/r)p′
∫

{y∈R
n
k,+: |g(y)|�2−jδ−Q/r}

(y′)γ dy

� 2p′δ−Qp′/r‖g‖r
WLr,γ

∞∑
j=1

2−jp′(2−jδ−Q/r)−r

= 2p′ δQ−Qp′/r ‖g‖r
WLr,γ

∞∑
j=1

2−j(p′−r)

= Cp′
2 δ

Q−Q/rp′ ,

where C2 = 2
(
2p′−r − 1

)−1/p′
‖g‖r/p′

WLr,γ .

Hence
|D2(x)| � C2‖f ‖p,γ δQ/r′−Q/p.



MEDA INEQUALITY FOR REARRANGEMENTS OF THE B -CONVOLUTIONS 443

Thus

1
|E|γ

∫
E
|(g ⊗ f )(x)|(x′)γ dx � C1δQ/r′ f ∗∗(t) + C2δQ/r′−Q/p‖f ‖p,γ .

Therefore we get (6) and Theorem 1 is proved. �

COROLLARY 1. Let Ω be homogeneous of degree zero on R
n
k,+ and 0 < α < Q,

Ω ∈ LQ/(Q−α),γ (S
n−1
k,+ ) . Then for any δ > 0 the following inequality holds(

IΩ,α,γ f
)∗∗ (t) � C3δα f ∗∗(t) + C4δα−Q/p‖f ‖p,γ ,

where C3 = B3(A/Q), C4 = B4(A/Q)1/p′ , B3 = 2Q/(Q−α)(2α/(Q−α) − 1)−1 , B4 =

2
(
2p′−Q/(Q−α) − 1

)−1/p′
for 1 < p < Q/α and B4 = 1 for p = 1 .

Proof. If we take g(x) = Ω(x)/|x|Q−α , 0 < α < Q , and r = Q/(Q − α) in
Theorem 1, then the proof of Corollary 1 is straightforward, where Ω is homogeneous
of degree zero on R

n
k,+ and Ω ∈ LQ/(Q−α),γ (S

n−1
k,+ ) . In this case

g∗(t) = (A/Q) t−Q/(Q−α), g∗(t) = (A/Q)t1−α/Q, and A = ‖Ω‖Q/(Q−α)
LQ/(Q−α),γ

,

where

‖Ω‖LQ/(Q−α),γ =

(∫
Sn−1
k,+

|Ω(x′)|Q/(Q−α)dx′
)(Q−α)/Q

.

Therefore g ∈ WLQ/(Q−α),γ (Rn
k,+) and ‖g‖WLQ/(Q−α),γ = (A/Q)1−α/Q . �

COROLLARY 2. For the B -Riesz potential

Iα,γ f (x) =
∫

R
n
k,+

Ty|x|α−Qf (y)(y′)γ dy, 0 < α < Q,

for all 0 < t < ∞ (
Iα,γ f

)∗∗ (t) � C5δα f ∗∗(t) + C6δα−Q/p‖f ‖p,γ ,

where C5 = ω(n, k, γ )B3 and C6 = ω(n, k, γ )1/p′B4 for 1 � p < Q/α .

Proof. By the same argument in Corollary 1 if we take

g(x) = |x|α−Q ∈ WLQ/(Q−α),γ (Rn
k,+), 0 < α < Q,

in Theorem 1, we easily get the proof of the Corollary. In this case

g∗(t) = ω(n, k, γ ) t−Q/(Q−α), g∗(t) =
(
ω(n, k, γ ) t−1

)1−α/Q
,

and
‖g‖WLQ/(Q−α),γ = ω(n, k, γ )1−α/Q,

where ω(n, k, γ ) = |B(0, 1)|γ . �
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Note that, the following estimate

MΩ,α,γ f (x) � I|Ω|,α,γ (|f |)(x) (7)

is valid. Indeed, for all r > 0 we have

I|Ω|,α,γ (|f |)(x) �
∫

B(0,r)

|Ω(y)|
|y|Q−α Ty|f (x)| (y′)γ dy

� 1
rQ−α

∫
B(0,r)

|Ω(y)| Ty|f (x)| (y′)γ dy.

Taking supremum over all r > 0 , we get (7).
From Corollary 1 and inequality (7) we get the following.

COROLLARY 3. Suppose that Ω is homogeneous of degree zero on R
n
k,+ and

Ω ∈ L(Q)/(Q−α),γ (S
n−1
k,+ ), 0 < α < Q, then for all δ > 0(
MΩ,α,γ f

)∗∗ (t) � C3δα f ∗∗(t) + C4‖f ‖p,γ δα−Q/p.

4. O’Neil type inequality for the B -convolution

In this section we prove an O’Neil type inequality for the B -convolution (see [11]).

THEOREM 2. 1. Let g ∈ WLr,γ (Rn
k,+) , 1 < r < ∞ , f ∈ Lp,γ (Rn

k,+) , 1 < p < r′

and 1/p − 1/q = 1/r′ . Then f ⊗ g ∈ Lq,γ (Rn
k,+) and

‖f ⊗ g‖q,γ � 2B1−p/r′
1 Bp/r′

2 (p′)p/q ‖g‖WLr,γ ‖f ‖p,γ .

2. Let f ∈ L1,γ (Rn
k,+) , g ∈ WLq,γ (Rn

k,+) , 1 < q < ∞ . Then f ⊗g ∈ WLq,γ (Rn
k,+)

and
‖f ⊗ g‖WLq,γ

� 2B1/q
1 ‖g‖WLq,γ ‖f ‖1,γ .

Proof. Step 1. g ∈ WLr,γ (Rn
k,+) , 1 < r < ∞ , f ∈ Lp,γ (Rn

k,+) , 1 < p < r′ and
1/p − 1/q = 1/r′ . If we take

δ =
(

C1f ∗∗(t)
C2‖f ‖p,γ

)−p/Q

in (6), then we get

(f ⊗ g)∗∗(t) � 2(C1f
∗∗(t))1−p/r′ (C2‖f ‖p,γ )p/r′

= 2C1−p/r′
1 Cp/r′

2 f ∗∗(t)p/q‖f ‖1−p/q
p,γ

= 2B1−p/r′
1 Bp/r′

2 ‖g‖WLr,γ ‖f ‖1−p/q
p,γ f ∗∗(t)p/q.
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Thus

‖f ⊗ g‖q,γ � ‖(f ⊗ g)∗∗‖Lq(0,∞)

� 2B1−p/r′
1 Bp/r′

2 ‖g‖WLr,γ ‖f ‖1−p/q
p,γ ‖(f ∗∗)p/q‖Lq(0,∞)

= 2B1−p/r′
1 Bp/r′

2 ‖g‖WLr,γ ‖f ‖1−p/q
p,γ ‖f ∗∗‖p/q

Lp(0,∞)

= 2B1−p/r′
1 Bp/r′

2 (p′)p/q ‖g‖WLr,γ ‖f ‖p,γ .

Step 2. Let p = 1 , 1 < q < ∞ , f ∈ L1,γ (Rn
k,+) and g ∈ WLq,γ (Rn

k,+) .
We take

δ =
(

C1f ∗∗(t)
C2‖f ‖p,γ

)−1/Q

in (6), then we get

(f ⊗ g)∗∗(t) � 2B1/q
1 ‖g‖WLq,γ ‖f ‖1/q′

1,γ f ∗∗(t)1/q.

Thus

‖(f ⊗ g)‖WLq,γ = sup
t>0

t1/q(f ⊗ g)∗(t)

� 2B1/q
1 ‖g‖WLq,γ ‖f ‖1/q′

1,γ sup
t>0

t1/qf ∗∗(t)1/q

= 2B1/q
1 ‖g‖WLq,γ ‖f ‖1/q′

1,γ sup
t>0

(∫ t

0
f ∗(s)ds

)1/q

� 2B1/q
1 ‖g‖WLq,γ ‖f ‖1/q′

1,γ ‖f ∗‖1/q
L1(0,∞)

= 2B1/q
1 ‖g‖WLq,γ ‖f ‖1,γ

and therefore the proof of Theorem 2 is completed. �

COROLLARY 4. Let Ω be homogeneous of degree zero on R
n
k,+ and Ω ∈

LQ/(Q−α),γ (Sn−1
k,+ ) , 0 < α < Q.

1) If 1 < p < Q/α , f ∈ Lp,γ (Rn
k,+) and 1/p − 1/q = α/Q, then IΩ,α,γ f ∈

Lq,γ (Rn
k,+) and

‖IΩ,α,γ f ‖q,γ � 2(A/Q)1−α/Q B1−αp/Q
3 Bαp/Q

4 (p′)p/q ‖f ‖p,γ .

2) If f ∈ L1,γ (Rn
k,+) and 1 − 1/q = α/Q, then IΩ,α,γ f ∈ WLq,γ (Rn

k,+) and

‖IΩ,α,γ f ‖WLq,γ � 2(A/Q)1−α/Q B1/q
3 ‖f ‖1,γ .

COROLLARY 5. Let 0 < α < Q.
1) If 1 < p < Q/α, f ∈ Lp,γ (Rn

k,+) and 1/p − 1/q = α/Q, then Iα,γ f ∈
Lq,γ (Rn

k,+) and

‖Iα,γ f ‖q,γ � 2ω(n, k, γ )1−α/Q B1−αp/Q
3 Bαp/Q

4 (p′)p/q ‖f ‖p,γ ,
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2) If f ∈ L1,γ (Rn
k,+) and 1 − 1/q = α/Q, then Iα,γ f ∈ WLq,γ (Rn

k,+) and

‖Iα,γ f ‖WLq,γ � ω(n, k, γ )1−α/Q B1/q
3 ‖f ‖1,γ .

Note that, Corollary 4 was proved in [5] and Corollary 5 in [1, 3, 9] by using other
methods.

By Corollary 4 we obtain necessary and sufficient conditions on the parameters
for the fractional B -maximal operator and B -fractional integral operator with rough
kernels to be bounded from the spaces Lp,γ to Lq,γ , and from the spaces L1,γ to the
weak spaces WLq,γ .

THEOREM 3. Let Ω be homogeneous of degree zero on R
n
k,+ and Ω ∈ LQ/(Q−α),γ

(Sn−1
k,+ ) , 0 < α < Q.

1) If 1 < p < Q/α , then the condition 1/p − 1/q = α/Q is necessary and
sufficient for the boundedness of IΩ,α,γ from Lp,γ (Rn

k,+) to Lq,γ (Rn
k,+) .

2) If p = 1 , then the condition 1− 1/q = α/Q is necessary and sufficient for the
boundedness of IΩ,α,γ from L1,γ (Rn

k,+) to WLq,γ (Rn
k,+) .

Proof. The proof of Theorem 3 is similar to that of Theorem 4 in [6]. �

COROLLARY 6. Let 0 < α < Q, Ω be homogeneous of degree zero on R
n
k,+ and

Ω ∈ LQ/(Q−α),γ (S
n−1
k,+ ) .

1) If 1 < p < Q/α , then the condition 1/p − 1/q = α/Q is necessary and
sufficient for the boundedness of MΩ,α,γ from Lp,γ (Rn

k,+) to Lq,γ (Rn
k,+) .

2) If p = 1 , then the condition 1− 1/q = α/Q is necessary and sufficient for the
boundedness of MΩ,α,γ from L1,γ (Rn

k,+) to WLq,γ (Rn
k,+) .
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