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MEDA INEQUALITY FOR REARRANGEMENTS OF
THE B-CONVOLUTIONS AND SOME APPLICATIONS

V. S. GULIYEV, A. SERBETCI AND Z. V. SAFAROV

(communicated by W. Desmond Evans)

Abstract. In this paper we prove the Meda inequality for rearrangements of the convolution
operator ( B—convolution) associated with the Laplace-Bessel differential operator. By using the
Meda inequality for rearrangements we obtain an O’Neil type inequality for the B —convolution.
As applications of these results, we obtain necessary and sufficient conditions on the parameters
for the boundedness of the fractional B-maximal operator and B —fractional integral operator
with rough kernels, from the spaces Lpy to Lgy and from the spaces L; y to the weak spaces

1. Introduction

Let Ky € WL, j(—)(R"), 0 < a < n,and f € L,(R"), 1 <p <n/a . Then
for the convolution K, *f, S.Meda [10] proved the following pointwise rearrangement
estimate

(Ko< f)7(1) < C (8% (1) + 8% f [,) . 8 >0, (1)

and gave a new proof of the Hardy-Littlewood-Sobolev theorem for K, * f by using
this inequality.

The potential type integral operators associated with the Laplace-Bessel differential
operator

n 82 n '}/l a
Ap = Z 8_3612 + . ;la—XZ
i=1 i=k+1
(see [1]-[6], [8, 9]), are playing an important role in harmonic analysis, theory of
functions and partial differential equations.

In this paper we study the convolution (B -convolution), the fractional maximal
function (fractional B-maximal function) and fractional integral (B -frac-tional inte-
gral) with rough kernels, associated with the Laplace-Bessel differential operator. We
get the Meda inequality given in (1) for rearrangements of the B—convolution. By us-
ing the Meda inequality for rearrangements we obtain an O’Neil type inequality for the
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B—convolution. As applications, we obtain necessary and sufficient conditions on the
parameters for the boundedness of the fractional B-maximal operator and B—fractional
integral operator with rough kernels from the spaces L, to L;, and from the spaces
Ly, to the weak spaces WL, .

Let R}, = {x= (x1,...,x,) ER":x1 >0,..., >0, 1 <k < n},and define

/p
Lyy =Ly (Riy) = {f : Ifll,y = (/ I GO (x de> <oop, I1Sp<oo
where (¥')Y =x]"-...-x}*, ¥y = (11, ..., ¥&) is a multi-index consisting of fixed positive

numbers such that |y| =y + ... + %
If p = 0o, we assume

Locy(Ri 1) = Loo(R ) = {f ¢ [If llee = ess suplf (x)| < oo}

eR .

Denote by 77 the shift operator ( B—shift) acting according to the law

'f (x cky/ /f Yoy ard” —y") dv(a),

where

(7 )

7

*ﬂfk/zll 'y ; xn)’i)ai:\/xizfzxi)’iCOSOCi+y12a 1 <i<k,
7

(x/7y/)06 = ((-xhyl)al?' L) (-xk>yk)(xk) and dV HSlnyI ! O dOC” 1 < k < n.
i=1
We remark that the B-shift is closely related to the Laplace-Bessel differential
operator Ag. The shift operator 7° generates the corresponding convolution (B-
convolution)

(f ®@g)(x / F)Tgx)(y) dy.

Let Q € L;Y(SZ_l) > 1, SZ#I ={xe Ry, :|x| =1}, and Q be homoge-
neous of degree zero on Rk+, ie., Q) = Q(x ) for all 1 >0, x € Ry, , and let
0<oa<Q,Q=n+|y|. We define the fractional B-maximal function with a rough
kernel by

1 ) /
Moaf () = sup = | 10N PO

r>0

and the B—fractional integral with a rough kernel by

Q
loarf 0) = [ =TI O a
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where B(0,r) = {x € R} | : |x| < r}. Itisclear that, when Q = 1, Mg 4y and I ¢y
are the usual fractional B—maximal operator M, ([4]) and the B—Riesz potential I,
([1, 3, 9]), respectively.

The paper is organized as follows. In Section 2, we give some lemmas needed to
facilitate the proofs of our theorems. In Section 3, we show that the Meda inequality
for rearrangements of the B -convolution holds. In Section 4, we prove an O’Neil type
inequality for B-convolutions. In Section 5, we give some applications of the results
above. We show that the conditions on the parameters ensuring the boundedness cannot
be weakened for the fractional B-maximal operator and B —fractional integral operator
with rough kernels from the spaces L, , to L, , and from the spaces L;, to the weak
spaces WL, .

2. Some auxiliary lemmas

In this section we formulate some lemmas that will be needed later. We establish
a relation between shift operator 7°f and y -rearrangement of f .
For the B -shift operator the following two lemmas hold.

LEMMA1l. 1. Let 1 <p< oo, f € LP’Y(RZ’#), then forall y € R} ,
1TF O,y < FIL,, - (2)
2Lt 1<p,r<q<oo, 1/p—1/qg=1/F, (¥ =r/(r—1)), f ELPJ,(RZ&),
g€ LW(RZ,+)- Then f @ g € L,“,(RZJF) and

IF @ellg, <,y el -

LEMMA 2. For any measurable set A = (A’,A”) C Ry . A=A x...x A C

(0,00)%, A" C R"* and forany y € R} | the following equality holds

/ATyg( e )de_cky/ (\/ZITZI W2 +Ez )duzz 3)

where (x,0) = (x,0,...,0), 7 = (Z1,...,2), du(z,7) = 7' dud7, d7 =
——

k—times
Az -dz, 7 =TT (7)€ Ry, x (0,00)f, m; = supA;, i =
1,.. .,k, A= ((—ml,ml) [O,ml) X ... X (—mk,mk) X [0, mk)) x A",
The proof of Lemma 2 is straightforward after applying the following substitutions

" =x",z;=xjcosqy, Zi=x;sinoy, 0< o <,
— o — (7 = o k
l_17"'ak7 Z/—(Z17~-~,Zk), (Zazl)eRZ,er(O?OO) N

Let f : RZ‘ + — R be a measurable function and for any measurable set E,
|El, = [.(x »(x')"dx. We define y -rearrangement of f in decreasing order by

Fr@) =inf {s >0 : f.(s) <t}, Vre[0,00),
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wheref,(¢) denotes the y -distribution function of f given by
o) =[x e B @) > 1)
We note the following properties of y -rearrangement of functions (see [5, 7, 12]):

1)if 0 < p < o0, then

F (P ()Y dx = / T ppar

n
R

2) forany r > 0,

t

sp [ 1l = [ £(s)ds

|Ely=t 0

If (x)g(x)|(x")" dx < /O b ()¢ (1) dr.

RY
t
The function f** on (0, cc) is defined by f**(¢) = L [f*(s)ds, t > 0.
0
If 1 < p < oo the following inequality is valid
1 ey 0.00) < P Il (0.00)

where p' =p/(p—1).
We denote by WLN(RZ’ ) the weak L,, space of all measurable functions f
with finite norm

If lwz,, = suptfo(t)'/P, 1< p < oo.
>0

LEMMA 3. Forany measurable set A C R | andforany y € Ry | the following
equality holds

sup /Ty[f(x)\(x’)ydx:Ck’y/of*(s)ds.

|Aly=t /A

Proof. From Lemma 2 we have

[ rrwieya=c, /( DD, )

where f(z,7) = f (\/Z% +7, /2 —&-Z,%,z”) . For the function f(z,7/) the

analogous equality (2) is also valid (see, for example [7])

k3 /K (2, 7)du(z,7) = /O (7)., (s)ds. (5)
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where (}7); () =inf{r>0: u({(z7) : [fz7)| >1}) <s}.
Note that u ((y,0) +A)) = |A[, and (f): 5) =f*(s).
From (4) and (5) we get
sup /TYV(x)|(x’)de = Ciy sup /( If (z,2)|du(z,7)

[Aly=tJA u(A)=t

|
—~
*
=
&

Thus Lemma 3 is proved. (]

3. Meda inequality for rearrangements of B -convolutions

In this section we prove the Meda inequality for rearrangements of the B-
convolution.

THEOREM 1. Let g € WL, (R}, ), 1 <r <oo, f € Ly(R} ), 1 <p <71,
Then for any & > 0

(8 ®f )™ (1) < L&Y (1) + C2 827 =P |f ||,y (6)
where C1 = Bil|gl[lyL,,. B1 = 2712t = 1)7! and C, = BzHgH%nw B, =

/

/ —1/p
2(2P*u1) for 1<p<r, and B»=1forp=1.

Proof. Suppose Fs = {y € R} , : [g(y)| > 5-9/r} | then

(g@f)00) < ( L+l ) T ()] )] ') dy = Dy(x) + Da(x).

Suppose that Fi5 = |JZ, F5;, where
Fiy={veRi, : 27'87% <g(y)| < 267"}
Then taking into account Lemma 3, we get

! d = ! vV / /
Ty/EDl(X)(X Ydx = E/g( A g T IF (0)|(y )Ydy> ()" dx

< gjw/f / ) (i [rvwiwyas) oy

<53y
>

)y
Fl

J
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<2572 (o) gy, D2 (287)

=1
= C15Q/r/f**(f)7
where C1 = 272"~ — 1) 7" [|gllfyy,, -
Thus

|El|y /Dl( )W) dx < €187 F ().

Let p = 1. Then from the inequality (2) we have

Do) < ITF Oy _sup [ < [1F (187"

k+ VO

Now let 1 < p < r'. By using Holder inequality and the inequality (2) we get

1/p’
ID2(xX)| < (T () llpy (/R . g(y)”/(y’)ydy>

K+ N0
1

) g
< |fllpwy (/R y lg) P (y’)ydy> :
Ko+ VO

Since g € WL,y (R}, ) and R} , \ F5 = |, Bs, where
Bs;={y e Ry, : 27879 < Jg(x)| <277+1679"},

then

/ SO ) dy
Ry \Fs

z /B
i 2y / )" dy

= (veRY : [g(y)| 32750/}

N

2§ gy, 27 (2760
j=1

— or §O-0Q0/r HngL,,y Z =i’ =)
j=1

N

’o /
_ Cg 52 Q/rp7

, 71/[)/ r/p'
where C; = 2 (2” - 1) I8llwi,, -
Hence ,
[D2(x)| < Callf Iy 897,
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Thus
1 / /
EL / (g @) () dx < CL8Y £+ (1) + C8% 2P |f ||,y
v JE

Therefore we get (6) and Theorem 1 is proved. O

COROLLARY 1. Let Q be homogeneous of degree zero on Ry, and 0 < o0 < Q,
Q€ Ly/o—a)y (S,’;l) Then for any & > 0 the following inequality holds
(To.auyf )™ (1) < C38°F (1) + Ca8“CP|If ||y,
where C3 = B3(A/Q), Cy = B4(A/Q)V/P', By = 20/(Q-@)(e/(C=0) _ 1)=1 B, —
2(2p’—Q/(Q—a) — ) 1 forl<p< Q/a and By =1 for p=1.
Proof. If we take g(x) = Q(x)/[x]¢7%, 0 < a@ < Q,and r = Q/(Q — @) in

Theorem 1, then the proof of Corollary 1 is straightforward, where Q is homogeneous
of degree zeroon R} | and Q € LQ/(Q,OCW(S,’(’;I) . In this case

80 = (4/0) 2@, g (1) = (A/Q) /2, and 4 = |QUZL
where
(Q-a)/Q
HQHLQ/(Q—D;W = (/S"l |Q(x/)Q/(Q—a)dx/> .
k,+
Therefore g € WLo/(0—a)y(R; ;) and |Igllwey, o 0, = (A/Q)' /2. O

COROLLARY 2. For the B-Riesz potential

L 0= [ P00 s 0<a<0

k,+

forall 0 <t < oo

(Taugf )™ (1) < Cs8F (1) + Co8* P |[f |y,
where Cs = o(n,k,y)Bs and Cs = w(n,k,y)""'By for 1 <p < Q/a.

Proof. By the same argument in Corollary 1 if we take
g(x) = |x|* QEWLQ/Q ) (Rk+) 0<a<Q,
in Theorem 1, we easily get the proof of the Corollary. In this case
g-(1) = 0(n,ky) D (1) = (0(n,ky) ") T,

and

||g||WLQ/(Q7a),y = w(”’ k7 Y)l_a/Q>
where o(n,k,y) = |B(0,1)],. O
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Note that, the following estimate

Mo o (¥) < Loy (If ) (%) (7)

is valid. Indeed, for all » > 0 we have

oy D) > | 2O 71 o) () ay

(0 1¥127¢

1 ) /
7 [, ROITT )

Taking supremum over all r > 0, we get (7).
From Corollary 1 and inequality (7) we get the following.

COROLLARY 3. Suppose that Q is homogeneous of degree zero on Ry, and
Q € Lig)/io-a)y(Si3"), 0 < a < Q, thenforall §>0

(Ma.onf )™ (1) < C38%F** (1) + Callf |]py 87

4. O’Neil type inequality for the B-convolution

In this section we prove an O’Neil type inequality for the B -convolution (see [11]).
THEOREM 2. [. Let g € WL,y (R} ), 1 <r<oo, f € L,,(R},), L <p</
and 1/p—1/q=1/r". Then f ® g € Lyy(R} ) and

1—p/¥ /
IF @ gll,, <287 By 'Y glwesy If llp.-

2. Letf € Liy(R},), 8 € WLyy (R} ), 1 < g <oo. Thenf®g € WLyy(R} )
and

1
If @ gy, < 28" lgllwey, IIf Il

Proof. Step 1. g € WL,y (R} ), 1 <r <oo,f €L,y(R} ), 1 <p<r and
1/p—1/q=1/r . If we take

in (6), then we get

(f ®8)™ (@)

N

2(Cof () (Cof Ny VP
1—p/r I sk 1—
— 2C T el A

1—p/r v 1— Kok
2BV B \gllwey If pa? e f = (e)a.
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Thus

If ®gllgy < I0F ©8)**IlLy0.00)
281" B lgllwaay I Iy 00 ) g 0,00
= 2B B glwe IF s I 1 )

1—p/r r
2B B (01 \lglway (I -

Step 2. Letp=1,1<g<oo,f €Liy(R],) and g € WL, (R} ).
We take e
- (-0
CZHpr,Y
in (6), then we get

(F )" (1) < 2BV lgllwey, IIFIIVS £ ()" /9.

N

Thus

If ® &)llwey, = supt(f @ )" (1)

>0

/A

1 1 K%
2BY gllwe,, If 11} suoptl/qf (1)

¢ 1/q
1 1/4 %
= 28V lgllwi, 1177 sup ( / f <s>ds)
>0

1 1 1
< 281" gl I I 111 ey
1
= 28" gllwegy I 1
and therefore the proof of Theorem 2 is completed. |

COROLLARY 4.  Let Q be homogeneous of degree zero on Ry, and Q €
Lojo-ayy(S5), 0<a < Q.
DIf1<p<Qla, feLyR,) and 1/p—1/q = a/Q, then Igayf €
L‘]vY(RZ,+) and
Mo loy < 2(4/Q)"/2 By~ /B (/4 |f |-

2)Iff € Liy(Ry,) and 1 —1/q=a/Q, then g ayf € WLy y(R} ) and

— 1
e lwe,, <2(A/Q)' 2By |f |1

COROLLARY 5. Let 0 < a < Q.
DIf1 <p<Qla, f€LlyR;,) and 1/p—1/q = o/Q, then Ioyf €
Lq,Y(RZ,Jr) and

_ 1— [0} [0}
oyf llgy < 200(n, &, y)'=%/Q By /CBIPC (p /4 £ ||,



446 V. S. GULIYEV, A. SERBETCI AND Z. V. SAFAROV
2)Iff € Liy(RE,) and 1 —1/q = o/Q, then loyf € WLyy (R} ,) and

— 1
Masf Iwegy < o(nk,y)'=2BY|IF|,, .

Note that, Corollary 4 was proved in [5] and Corollary 5 in [1, 3, 9] by using other
methods.

By Corollary 4 we obtain necessary and sufficient conditions on the parameters
for the fractional B-maximal operator and B -fractional integral operator with rough
kernels to be bounded from the spaces L,, to L, , and from the spaces L;, to the
weak spaces WL, .

THEOREM 3. Let Q be homogeneous of degree zero on R | and Q € Ly o)y
(Sih, 0<a<Q.
1)If 1 < p < Q/a, then the condition 1/p —1/q = a/Q is necessary and
sufficient for the boundedness of Ig ay from L,y (R} ) to Lyy (R} ).
2)If p =1, then the condition 1 — 1/q = o./Q is necessary and sufficient for the
boundedness of Ioq,y from L1y (R} ) to WLyy(RY ).

Proof. The proof of Theorem 3 is similar to that of Theorem 4 in [6]. O

COROLLARY 6. Let 0 < a < Q, Q be homogeneous of degree zero on R} _ and

Q € Lojo-o#(8i 1)

1)If 1 < p < Q/a, then the condition 1/p — 1/q = o/Q is necessary and
sufficient for the boundedness of M. ¢y from Lyy (R ) to Lyy (R} ).

2)If p = 1, then the condition 1 — 1 /g = a/Q is necessary and sufficient for the
boundedness of Mo q.y from Liy (R} ) 10 WLy, (R} ).
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