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Professor Masahiro Nakamura
in deep sorrow

(communicated by M. Fujii)

Abstract. A capital letter means a bounded linear operator on a Hilbert space H . The celebrated
Lowner-Heinz inequality asserts that A > B > 0 ensures A% > B* for any o € [0,1], but AP >
BP does not always hold for p > 1. From this point of view, we shall prove the following result.

Let A2B >0 with A>0, t €(0,1] and py,pa2,...,pan =1 for natural number n. Then
the following inequality holds for r >t :
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This result is further extension of the following previous one: if A > B > 0 with A > 0,

r - - r 1—t4r

then for t € [0,1] and p>1, AV""7" > {AZ (A2 BPAZ )AL Y005t holds for r >t and s> 1,
r ¢ Lir

in particular, A"*" > (AZB”AY)FL for p>1and r > 0.

1. Introduction

An operator T is said to be positive (denoted by T > 0) if (Tx,x) > 0 for all

x € H, and T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible.
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THEOREM LH. (Lowner-Heinz inequality, denoted by (LH) briefly).
If A= B >0 holds, then A* > B* for any a € [0,1]. (LH)

This was originally proved in [L] and then in [H]. Many nice proofs of (LH) are
known. We mention [P] and [B]. Although (LH) asserts that A > B > 0 ensures A* >
B* for any o € [0,1], unfortunately A* > B* does not always hold for a > 1. The
following result has been obtained from this point of view.

THEOREM A.
If A> B >0, then for each r > 0,

r rol r rol
()  (BIAPB%)i > (BiBPB?)1

and

(i) (ATAPA%)T > (ABBPAY)G

hold for p >0 and g > 1 with (1+r)g=p+r .0 7

(07 _T)

Figure 1

The original proof of Theorem A is shown in [F1], an elementary one-page proof
is in [F2] and alternative ones are in [MF], [K1]. It is shown in [T1] that the conditions
P, q and r in Figure 1 are best possible.

THEOREM B. IfA > B >0 with A> 0, thenfort € [0,1] and p > 1,

1—t+4r

AT S (A5 (AT BrAT PR )T (D

holds for r >t and s > 1.

The original proof of Theorem B is in [F3], and an alternative one is in [MF-K].
An elementary one-page proof of (1.1) is in [F4]. We mention that further extensions
of Theorem B and related results to Theorem A are in [MF-K-N], [F5], [F-W], [F-Y-
Y], [K2] and [Y-G]. It is originally shown in [T2] that the exponent value (pl;’)tir
the right hand of (1.1) is best possible and alternative ones are in [MF-M-N], [Y]. It
is known that the operator inequality (1.1) interpolates Theorem A and an inequality
equivalent to the main result of Ando-Hiai log majorization [A-H] by the parameter
t€[0,1].

2. Definitions of C4 p[2n] and ¢[2n]

Let A>0,B>0,t¢€ [0,1} and DP1,P2;5+++,Pns -+ P2(n—1), P2n—1, P2n > 1 fora
natural number 7.



FURTHER EXTENSION OF AN ORDER PRESERVING OPERATOR INEQUALITY 467

Let Ca p[2n] = C4 p[20; p1, P2, -+s P2(n—1)> P2n—1, P2n] be defined by

Ca[2n] = Ca B[2n;p1, P2, s P2(n—1)s P2n—1, P20

D~

P2n
— A {AT’ A5 [a7 (a5 (4% BriaT Al }”Mﬂm...A%]pZ“AT’} A%

— A7 andA? alternately n times — A7 andA? alternately n times

2.1)

For examples,
CA’B[2] :A% (A%BPIA%’)[)ZA%

and

t —t t —t —t t —t P t
Capld] =A% [AT{Af(ATB’”AT)”ZAQ}”»*AT} AL,

Next we define

q2n] = q[2n;p1,p2, -, Pus s P2(n—1)> P2n—1, P2
={ Ml —Dp2+dps—thpstilps— . —t}pte. @2)

—t and ¢ alternately n times appear

For examples,

ql2]=(p1—t)p2+t and qg[d]=[{(p1—0)p2+1}ps—t]ps+tt.
The following Lemma is easily shown by (2.1) and (2.2).
LEMMA 2.1. For A > 0 and B > 0 and any natural number n
. L =t =\ P2(n+1) 1t
() Capl(n+1)]=A? (A ? (Cap[2n]) 1A ) AS (2.3)
(i) q[2(n+1)] = (g[2n]p2nt1 —1)Pa(ns1) +1. (2.4)

Also we remark that (2.1) and (2.2) easily imply

Caal2n] = A2 holds for any natural number . (2.5)

n terms
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3. Statement of results

THEOREM 3.1. Let A>B >0 with A >0, t € [0,1] and py,p2,....,pam = 1.
Then the following inequality holds,

1

A >{A%{A% [45..[a% {ab (a7 Briazmas }”Mﬂm...A%}ph”A%’}pZ”Aﬂ GRRNERY

— A%r and A% alternately n times — A%t and A% alternately n times
where q[2n] is in (2.2).
COROLLARY 3.2. IfA>B >0 with A>0, t €[0,1] and p1,p2,p3,pa > 1, then
the following inequality holds,
|

A= (Cal4]) o,

that is,

1
A {AS[AT (a3 (A7 BriaT rab AT gt b
THEOREM 3.3. Let A > B >0 with A >0, t € [0,1] and py,p2,...,pan = 1 for
natural number n. Then the following inequality holds for r > t,
A17t+r 2

1—t+r

Q2n;rt]
{A5 [ AT {AS [AT{AS(AT BP AT )PAT YA ]PA AT }pZ”AE}

— A7 ntimesand AT n—1 times by turns — A7 n timesand AT n—1 times by turns
(3.2)
where @[2n;r,t] = q[2n] +r—t.

COROLLARY 3.4. [F6lIfA>B>0with A>0, t€0,1] and p1,pa2,p3,ps > 1,

1—t+r
AT {AE (47 {ar (a7 Braz)rmatyias|"as } e

holds for r > t.

We need the following lemma.

LEMMA A. [F3, Lemma 1] Let X be a positive invertible operator and Y be an
invertible operator. For any real number A,

(YXY*)* =YX (X2y*YX:) - lxiy*,

Proof of Theorem 3.1.
The case n=1. (3.1) for n =1 is shown by putting » =¢ in (1.1) of the Theorem
B, thatis, if A= B >0 with A > 0, then for t € [0,1] and py,p2 > 1

1

{AZ(ATBPAT )P2AS ) TimT <A (3.3)
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holds.
We shall state the following proof of (3.3) because the method of the proof is very
useful to give a proof of the general case for natural number n of (3.1) (see Remark 3.1).
First step. The case 2> py > 1. As pa — 1, m €10,1] and A’ > B by LH

since 7 € [0,1] and taking inverses of both sides, A~ < B™', we have
- {A%(A%’BMA%’)PZA%}W
= {B%L(B%LA*ZB%L)PZ*lg%L}W
by Lemma A
< {BH(BY BB ) BRI —B< A=A, (3.4)

Second step. Repeating (3.4) for A; > By > 0, we have

_ o 1
A 2{A%(A_ZLBP[A_Tt)pzAl%}(pl—t)pzﬂ (35)
holds for p} > 1, 2> p) > 1. Taking p| = (p1 —1)p2+1 > 1 in (3.5) it yields
1
A>{A2ATAY(AT BPAT )R2ATAT |P2AT} Oy

_

1
= {A2(A7 BPAT PPATY 00t ford > paph > 1. (3.6)

A%

Repeating this process from (3.4) to (3.6), we obtain (3.1) for any p, > 1, in the case

n=1.

The general case for some natural number n. Let A > B >0 with A >0, t €
[0,1] and py,p2,...,p2n = 1. Assume (3.1) holds for some natural number n. We
shall show (3.1) for n+ 1, that is, if A > B > 0 with A > 0, then for 7 € [0,1] and

P1,P2, ~-~-7P2mp2n+17p2(n+1) 2 1 by (23) it follows
I
Cap2n-+ DT ={ 45 (A7 (Cypl2n)o147) 20043 T <A (37)
For this, we note that g[2(n+ 1)] > 1 and we have

< [Cag(2n))7P (3.8)

by the assumption of induction, and LH since ¢ € [0,1] and taking inverses of both
sides.

First step. The case 2 = py(, 1) 2 1. Denote v = pa,y1 and w = py(,,, 1) briefly.
We have

1
CA,BB(”"" 1)} q2(n+1)]

1
={at(a¥ (Cul2n)ya?) Al FEET by 23)

w—1 L

:{(CAA,B [2n])? ((CAA,B[z”D%Ait (Cap [2"])‘7’) (Cap[2n))? } ARl
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(by Lemma A)

1

<CA¢B[2nDﬁ"]<CA,B[2nD%)W”<cA¢B[2nD%}W

v

< { (Ca p[2n])? ((CAA,B [2n])>

:((CAB[QH])” (v gy 00— 1>) T

(g[2n]v—1)w—+1

=((Capl2n))” PT7) ]
= (a1 because g[2(n+1)] = (g[2n)y—1)w+ holds by (2.4
e (3.9)

The first inequality follows by LH since w— 1 € [0, 1]. Namely (3.9) ensures that (3.7)
holds under the assumption py,pa,...,pan,v > 1 and 2 > w > 1, that is,

1

1
Cagl2(n-+ 1)]72070 ={ A5 [A% (Cppl2n))'AZ]"AS} TP <A (3.10)
holds forany 2 >w > 1.
Second step. Put A; =A and By ={ A% (A7 (C4 5[2n])’A 7 )" A% ) in (3.10).
D 1 1 AB (3.10)
Since A; > B; > 0 with A; > 0 by (3.10), and (3.3) implies

(A% (A%BilaA%)W/A%}“"1””"’*’ <A 3.11)

forany 7 € [0,1], pj > 1 and w' > 1.
In (3.11), put p} = g[2(n+ 1)] = (g[2n]v —t)w+1 > 1 by (2.4). Then we have

t -1 1 —t —t (o —\W q2n]y—t)ww+1
{A2<A2A2(A2(CA_,B[Zn])VAZ)WAZAZ) AZ}q )

t —t —t\WW 7/
:{Az (AT(CA7B[2n})VA7) Az} R A (3.12)
Since 2> w > 11in(3.10), and any w’ > 1 in (3.11), (3.12) ensures that (3.7) holds for

any pyppy 2 1. O

REMARK 3.1. In fact (3.3) itself can be shown by [MF-K, Theorem 2], here we
state the proof of [§ 3.2.1, F5] for the sake of readers’ convenience.

Proof of Corollary 3.2. We have only to put n =2 in Theorem 3.1. [
Proof of Theorem 3.3. Put A = A and

L
q[2n

= (Cag[2n])4

L =t [ L =t J—— = typy, =t]P4 1P~ P2 1 at2r]
= Az{Az 43[4 (a5 (a7 araTymat)rad ] as] AT A

— A7 andAz alternately n times — A7 andA? alternately n times
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in (3.1) in Theorem 3.1. Then A; > B; by (3.1) holds for ¢ € [0,1] and py,pa,.....p2n >
1, by applying Theorem A,

e 14

n (AR
AT > (AZBYAZ )T holds for s; > 1 and > 0. (3.13)

In (3.13) we have only to put r; =r—1¢ >0 and s; = g[2n] > 1 to obtain (3.2) since
si+r=q2nl+r—t=02n,rt. O

Proof of Corollary 3.4. Put n =2 in Theorem 3.3. [J
REMARK 3.2. Corollary 3.4 yields Theorem B by putting pr = p3 = 1.

Acknowledgement. We would like to express our cordial thanks to the referee for
nice and kind comments to the first version.
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