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Abstract. A capital letter means a bounded linear operator on a Hilbert space H . The celebrated
Löwner-Heinz inequality asserts that A � B � 0 ensures Aα � Bα for any α ∈ [0,1] , but Ap �
Bp does not always hold for p > 1 . From this point of view, we shall prove the following result.

Let A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, . . . , p2n � 1 for natural number n . Then
the following inequality holds for r � t :

A1−t+r �
{

A
r
2

[
A
−t
2 {A t

2 . . .
[
A
−t
2

{
A

t
2 (A

−t
2︸ ︷︷ ︸

← A
−t
2 n times and A

t
2 n−1 times by turns

Bp1 A
−t
2 )p2A

t
2
}p3A

−t
2

]p4A
t
2 . . .A

−t
2︸ ︷︷ ︸

→ A
−t
2 n times and A

t
2 n−1 times by turns

]p2n
A

r
2

} 1−t+r
ϕ[2n;r,t]

where ϕ [2n;r,t] =
{

. . . [{[(p1− t)p2 + t]p3− t}p4 + t]p5− . . .− t
}

p2n + r︸ ︷︷ ︸
−t appears n times and t appears n−1 times by turns

= r +
2n

∏
i=1

pi + (
2n

∏
i=3

pi +
2n

∏
i=5

pi + . . .+
2n

∏
i=7

pi + . . .+ p2n−1p2n︸ ︷︷ ︸
n−1 terms

)t

−(
2n

∏
i=2

pi +
2n

∏
i=4

pi +
2n

∏
i=6

pi + . . .+ p2(n−1)p2n−1p2n + p2n︸ ︷︷ ︸
n terms

)t.

This result is further extension of the following previous one: if A � B � 0 with A > 0 ,

then for t ∈ [0,1] and p � 1 , A1−t+r � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r holds for r � t and s � 1 ,

in particular, A1+r � (A
r
2 BpA

r
2 )

1+r
p+r for p � 1 and r � 0 .

1. Introduction

An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all
x ∈ H , and T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible.
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THEOREM LH. (Löwner-Heinz inequality, denoted by (LH) briefly).

If A � B � 0 holds, then Aα � Bα for any α ∈ [0,1] . (LH)

This was originally proved in [L] and then in [H]. Many nice proofs of (LH) are
known. We mention [P] and [B]. Although (LH) asserts that A � B � 0 ensures Aα �
Bα for any α ∈ [0,1] , unfortunately Aα � Bα does not always hold for α > 1 . The
following result has been obtained from this point of view.

THEOREM A.
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hold for p � 0 and q � 1 with (1+ r)q � p+ r.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure 1

The original proof of Theorem A is shown in [F1], an elementary one-page proof
is in [F2] and alternative ones are in [MF], [K1]. It is shown in [T1] that the conditions
p , q and r in Figure 1 are best possible.

THEOREM B. If A � B � 0 with A > 0 , then for t ∈ [0,1] and p � 1 ,

A1−t+r � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (1.1)

holds for r � t and s � 1 .

The original proof of Theorem B is in [F3], and an alternative one is in [MF-K].
An elementary one-page proof of (1.1) is in [F4]. We mention that further extensions
of Theorem B and related results to Theorem A are in [MF-K-N], [F5], [F-W], [F-Y-
Y], [K2] and [Y-G]. It is originally shown in [T2] that the exponent value 1−t+r

(p−t)s+r of
the right hand of (1.1) is best possible and alternative ones are in [MF-M-N], [Y]. It
is known that the operator inequality (1.1) interpolates Theorem A and an inequality
equivalent to the main result of Ando-Hiai log majorization [A-H] by the parameter
t ∈ [0,1].

2. Definitions of CA,B[2n] and q[2n]

Let A > 0, B � 0 , t ∈ [0,1] and p1, p2, ..., pn, ..., p2(n−1), p2n−1, p2n � 1 for a
natural number n .
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Let CA,B[2n] = CA,B[2n; p1, p2, ..., p2(n−1), p2n−1, p2n] be defined by
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For examples,
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Next we define

q[2n] = q[2n; p1, p2, ..., pn, ..., p2(n−1), p2n−1, p2n]

=
{
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}
p2n + t︸ ︷︷ ︸
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For examples,

q[2] = (p1− t)p2 + t and q[4] =
[{(p1− t)p2 + t}p3− t

]
p4 + t.

The following Lemma is easily shown by (2.1) and (2.2).

LEMMA 2.1. For A > 0 and B � 0 and any natural number n
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(ii) q[2(n+1)] = (q[2n]p2n+1− t)p2(n+1) + t. (2.4)

Also we remark that (2.1) and (2.2) easily imply
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3. Statement of results

THEOREM 3.1. Let A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, ...., p2n � 1 .
Then the following inequality holds,

A �
[

A
t
2

{
A
−t
2

[
A

t
2 ...

[
A
−t
2
{
A

t
2 (A

−t
2︸ ︷︷ ︸

← A
−t
2 and A

t
2 alternately n times

Bp1 A
−t
2 )p2A

t
2
}p3A

−t
2

]p4
...A

t
2

]p2n−1
A
−t
2

}p2n
A

t
2︸ ︷︷ ︸

→ A
−t
2 and A

t
2 alternately n times

] 1
q[2n]

(3.1)

where q[2n] is in (2.2).

COROLLARY 3.2. If A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, p3, p4 � 1 , then
the following inequality holds,
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1
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THEOREM 3.3. Let A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, ..., p2n � 1 for
natural number n. Then the following inequality holds for r � t ,
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where ϕ [2n;r, t] = q[2n]+ r− t.

COROLLARY 3.4. [F6] If A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, p3, p4 � 1 ,
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We need the following lemma.

LEMMA A. [F3, Lemma 1] Let X be a positive invertible operator and Y be an
invertible operator. For any real number λ ,

(YXY ∗)λ = YX
1
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1
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Proof of Theorem 3.1.
The case n = 1 . (3.1) for n = 1 is shown by putting r = t in (1.1) of the Theorem

B, that is, if A � B � 0 with A > 0 , then for t ∈ [0,1] and p1, p2 � 1
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holds.
We shall state the following proof of (3.3) because the method of the proof is very

useful to give a proof of the general case for natural number n of (3.1) (see Remark 3.1).
First step. The case 2 � p2 � 1 . As p2−1, 1

(p1−t)p2+t ∈ [0,1] and At � Bt by LH

since t ∈ [0,1] and taking inverses of both sides, A−t � B−t , we have
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Second step. Repeating (3.4) for A1 � B1 > 0, we have
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holds for p′1 � 1, 2 � p′2 � 1. Taking p′1 = (p1− t)p2 + t � 1 in (3.5) it yields
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Repeating this process from (3.4) to (3.6), we obtain (3.1) for any p2 � 1, in the case
n = 1.

The general case for some natural number n. Let A � B � 0 with A > 0, t ∈
[0,1] and p1, p2, ..., p2n � 1. Assume (3.1) holds for some natural number n . We
shall show (3.1) for n + 1, that is, if A � B � 0 with A > 0, then for t ∈ [0,1] and
p1, p2, ...., p2n, p2n+1, p2(n+1) � 1 by (2.3) it follows
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For this, we note that q[2(n+1)] � 1 and we have
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by the assumption of induction, and LH since t ∈ [0,1] and taking inverses of both
sides.

First step. The case 2 � p2(n+1) � 1. Denote v = p2n+1 and w = p2(n+1) briefly.
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(by Lemma A)

�
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� A by (3.1) (3.9)

The first inequality follows by LH since w−1 ∈ [0,1] . Namely (3.9) ensures that (3.7)
holds under the assumption p1, p2, ..., p2n,v � 1 and 2 � w � 1, that is,

CA,B[2(n+1)]
1

q[2(n+1)] =
{

A
t
2
[
A
−t
2 (CA,B[2n])vA

−t
2
]w

A
t
2

} 1
q[2(n+1)] � A (3.10)

holds for any 2 � w � 1.
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In (3.11), put p′1 = q[2(n+1)] = (q[2n]v− t)w+ t � 1 by (2.4). Then we have
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Since 2 � w � 1 in (3.10), and any w′ � 1 in (3.11), (3.12) ensures that (3.7) holds for
any p2(n+1) � 1. �

REMARK 3.1. In fact (3.3) itself can be shown by [MF-K, Theorem 2], here we
state the proof of [§ 3.2.1, F5] for the sake of readers’ convenience.

Proof of Corollary 3.2. We have only to put n = 2 in Theorem 3.1. �
Proof of Theorem 3.3. Put A1 = A and
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in (3.1) in Theorem 3.1. Then A1 � B1 by (3.1) holds for t ∈ [0,1] and p1, p2, .....p2n �
1, by applying Theorem A,

A1+r1
1 � (A

r1
2

1 Bs1
1 A

r1
2

1 )
1+r1
s1+r1 holds for s1 � 1 and r1 � 0. (3.13)

In (3.13) we have only to put r1 = r− t � 0 and s1 = q[2n] � 1 to obtain (3.2) since
s1 + r1 = q[2n]+ r− t = ϕ [2n,r,t]. �

Proof of Corollary 3.4. Put n = 2 in Theorem 3.3. �
REMARK 3.2. Corollary 3.4 yields Theorem B by putting p2 = p3 = 1.
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