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A REFINEMENT OF THE INEQUALITY BETWEEN

ARITHMETIC AND GEOMETRIC MEANS

J. M. ALDAZ

(communicated by T. Erdélyi)

Abstract. In this note we present a refinement of the AM-GM inequality, and then we estimate
in a special case the typical size of the improvement.

THEOREM 1. For i = 1, . . . ,n, let xi � 0 , suppose that some xi > 0 , and let αi > 0
satisfy ∑n

i=1αi = 1 . Then
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The hypotheses n � 2, xi � 0 for i = 1, . . . ,n and αi > 0, ∑n
i=1αi = 1 will be

maintained throughout this note without further mention.

Proof. The following refinement of a standard consequence of Hölder’s inequality
on a probability space appears in [Al, Theorem 3.1]: Let 0 < r < s/2 < ∞ , and let
0 � f ∈ Ls satisfy ‖ f‖s > 0. Then
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From this, a well known argument yields the refinement of the AM-GM indicated
in the theorem. Let f : [0,∞)→ [0,∞) be the identity f (x) = x , and let μ :=∑n

i=1αiδxi ,
where δxi denotes the Dirac measure supported on {xi} . Writing
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Taking the limit as r ↓ 0, it follows (for instance, by L’Hôpital’s rule) that

n

∏
i=1

xαi
i �

(
n

∑
i=1

αixi

)
e−2c. �

Regarding the meaning of (2), it essentially says that, for fixed r and s , if the
variance of f s/2/‖ f s/2‖2 is large, then ‖ f‖r � ‖ f‖s . For simplicity, set s = 1, which
is the case we used. To see that 1− ∫ f 1/2/(

∫
f )1/2 is a measure of the dispersion of

f 1/2 about its mean value, and in fact, comparable to the variance Var
(
f 1/2/‖ f 1/2‖2

)
of its normalization in L2 , observe first that

∫
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Now, for all t ∈ [0,1]

2−1(1− t2) = 2−1(1+ t)(1− t) � 1− t � 1− t2, (4)

so, setting t = ‖ f 1/2‖1/‖ f 1/2‖2 , we obtain
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Using (5), we see that (1) entails the following inequality:
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Thus, (6) gives a quantitative bound of the deviation from equality, in terms of the
variance of x1/2/‖x1/2‖2 ; if the variance is large, so is the difference between the AM
and the GM.

Next we ask ourselves how “efficient” the refinement in (1) is. We study its average
performance in the classical equal weights case, modified by the change of variables
xi = y2

i . The AM-GM inequality bounds the GM-AM ratio by 1, always, while for
n � 1 and after the said change of variables, inequality (1) gives a “typical” upper
bound smaller than 0.82 (with probability at least 1−1/n ). We prove this next.

Let αi = 1/n for i = 1, . . . ,n , write xi = y2
i , and set y = (y1, . . . ,yn) , where yi is

now allowed to take negative values. In terms of the GM-AM ratio (1) becomes
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The �n
1 and �n

2 norms of the vector y ∈ R
n are given by ‖y‖1 := ∑n

i=1 |yi| and ‖y‖2 :=
∑n

i=1 y2
i respectively. Since both sides of (7) are positive homogeneous functions of

degree zero (so replacing y by y/‖y‖2 does not change anything) we may assume that
‖y‖2 = 1. Probability statements then mean that y is chosen at random (i.e., uniformly)
from the euclidean unit sphere. Setting ‖y‖2 = 1, inequality (7) becomes

√
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Denote by Pn−1 the normalized area, or Haar measure, on the euclidean unit
sphere S

n−1
2 = {‖y‖2 = 1} ⊂ R

n .

THEOREM 2. For all n sufficiently high and with probability at least 1−1/n on
S

n−1
2 , we have

exp
(
n−1/2‖y‖1−1

)
< 0.82. (9)

The proof consists in computing the expectation of n−1/2‖y‖1 over S
n−1
2 (a stan-

dard calculation) and then using the known fact that typically n−1/2‖y‖1 is very close
to its mean, provided n is large enough. Details follow.

Recall that the area of S
n−1
2 is |Sn−1

2 | = 2πn/2/Γ(n/2) , and that ‖y‖2 � ‖y‖1 �√
n‖y‖2 . It turns out that the average of ‖ · ‖1 over S
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2 is closer to

√
n than to 1.

LEMMA 3. The expectation of ‖ · ‖1 over S
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2 is given by
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Thus, √
2
π

� E

(‖y‖1√
n

)
�
(

n
n−1

)1/2
√

2
π

. (11)

Proof. We integrate the left hand side of (12) below in two ways, first in polar
coordinates and then as a product, via Fubini’s Theorem. Using |Sn−1

2 |= 2πn/2/Γ(n/2)
and the fact that ‖ · ‖1 is a positive homogeneous function of degree one, we get

∫
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Given y = (y1, . . . ,yn) ∈ R
n , we denote by ŷi ∈ R

n−1 the vector obtained from y by
deleting the i-th coordinate: ŷi = (y1, . . . ,yi−1,yi+1, . . . ,yn) . Now the first two integrals
in (12) can either be computed or expressed in terms of the Gamma function:
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Putting together (12), (13) and (14), and solving for the expectation, we get

E (‖y‖1) =
nΓ
(

n
2

)
π1/2Γ

(
n+1
2

) . (15)

Now (11) follows from (15) by using the following known and elementary estimate
(cf. Exercise 5, pg. 216 of [Web]; the result is an immediate consequence of the log-
convexity of the Γ function):√
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An expression similar to (11) can also be obtained from (15) by using the very
well known asymptotic expansion

Γ(z) = e−zzz−1/2
√

2π
(

1+
1

12z
+O(z−2)

)
.

Given a real valued random variable f on a probability space (X ,μ) , a median
Mf of f is a constant such that μ{ f � Mf } � 1/2 and μ{ f � Mf } � 1/2. It is a
well known fact that “reasonable functions” on S

n−1
2 , when observed at the right scale,

exhibit the concentration of measure phenomenon. That is, they are almost constant
over large portions of the sphere, taking values very close to their medians. In the
particular case of ‖ ·‖1 , the right scale means dividing by

√
n , which is precisely what

we have in the right hand side of (8). We use the following facts (they can be found in
[MiSch], within the proof of the Lemma in pg. 19):
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Proof of Theorem 2. Let t =
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1+O(n−1) , again for all n sufficiently high and with probability at least 1− 1/n we
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In some unlikely cases (that is, with low Pn−1 -probability) the refined AM-GM
inequality (1) performs badly. Suppose n � 1, and let 0 < y1 = . . . = yn . Then both
sides of (7) equal 1. Letting y1 ↓ 0, the left hand side drops to zero, while the right hand
side remains essentially unchanged.

Finally, given any correction factor in a refinement of the AM-GM inequality, how
far down could it go on some large set? Not lower than 1/2. Actually, it is possible to be
more precise: In [GluMi] E. Gluskin and V. Milman show that 0.394< n1/2∏n

i=1 |yi|1/n

asymptotically in n , with probability approaching 1, and their method can be used to
prove that n1/2∏n

i=1 |yi|1/n concentrates around the value
√

2exp [Γ′(1/2)/(2Γ(1/2))]≈
0.529 (cf. [Al2, Theorem 2.8]).
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