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GENERAL DUAL EULER–SIMPSON FORMULAE

J. PEČARIĆ AND A. VUKELIĆ

(communicated by N. Ujević)

Abstract. We consider a general dual Simpson formulae, using some Euler-type identities. A
number of inequalities, for functions whose derivatives are either functions of bounded variation
or Lipschitzian functions or R -integrable functions, are proved.

1. Introduction

In the recent paper [3] the following two identities, named the extended Euler
formulae, have been proved. For n � 1 and every x ∈ [0,1]

f (x) =
∫ 1

0
f (t)dt +Tn(x)+R1

n(x) (1.1)

and

f (x) =
∫ 1

0
f (t)dt +Tn−1(x)+R2

n(x), (1.2)

where T0(x) = 0 and

Tm(x) =
m

∑
k=1

Bk (x)
k!

[
f (k−1)(1)− f (k−1)(0)

]
, (1.3)

for 1 � m � n , while

R1
n(x) = − 1

n!

∫ 1

0
B∗

n (x− t)d f (n−1)(t),

R2
n(x) = − 1

n!

∫ 1

0
[B∗

n (x− t)−Bn (x)]d f (n−1)(t).

Here, as in the rest of the paper, we write
∫ 1
0 g(t) d ϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [0,1] → R of bounded variation, and
∫ 1
0 g(t) d t

for the Riemann integral. The identities (1.1) and (1.2) extend the well known formula
for the expansion of a function in Bernoulli polynomials [10, p. 17]. They hold for
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every function f : [0,1] → R such that f (n−1) is a continuous function of bounded
variation on [0,1] . The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are
the Bernoulli numbers, and B∗

k(t), k � 0, are periodic functions of period 1, related to
the Bernoulli polynomials as

B∗
k(t) = Bk(t), 0 � t < 1 and B∗

k(t +1) = B∗
k(t), t ∈ R.

The Bernoulli polynomials Bk(t), k � 0 are uniquely determined by the following
identities

B′
k(t) = kBk−1(t), k � 1; B0(t) = 1, Bk(t +1)−Bk(t) = ktk−1, k � 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that B∗

0(t) = 1 and B∗
1(t) is a discontinuous function

with a jump of −1 at each integer. It follows that Bk(1) = Bk(0) = Bk for k � 2, so
that B∗

k(t) are continuous functions for k � 2. We get

B∗′
k (t) = kB∗

k−1(t), k � 1 (1.4)

for every t ∈ R when k � 3, and for every t ∈ R\Z when k = 1,2.
In the recent, many mathematicians are studying in the area which are related to

Euler-Simpson’s type formula, Euler summation formula etc. (see for example [6], [7],
[8] and [9]).

In this paper we study, the general dual Simpson quadrature formula

∫ 1

0
f (t)dt =

1
2u− v

[
u f

(
1
4

)
− v f

(
1
2

)
+u f

(
3
4

)]
+E( f ;u,v) (1.5)

with E( f ;u,v) being the remainder, u,v∈Z+, v < 2u and the greatest common divisor
of u and v is 1 . The aim of this paper is to establish general dual Simpson formula
(1.5) using identities (1.1) and (1.2) and give various error estimates for the quadrature
rules based on such generalizations. In Section 2 we use the extended Euler formulae
to obtain two new integral identities. We call them the general dual Euler-Simpson
formulae. In Section 3, we prove a number of inequalities which give error estimates
for the general dual Euler-Simpson formulae for functions whose derivatives are from
the Lp -spaces.

2. General dual Euler-Simpson formulae

For k � 1 define the functions Gk(t) and Fk(t) as

Gk(t) = uB∗
k

(
1
4
− t

)
− vB∗

k

(
1
2
− t

)
+uB∗

k

(
3
4
− t

)
, t ∈ R

and
Fk(t) = Gk(t)− B̃k, t ∈ R, k � 1,
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where

B̃k = uBk

(
1
4

)
− vBk

(
1
2

)
+uBk

(
3
4

)
, k � 1.

Especially, using B1(t) = t−1/2 we get B̃1 = 0. Also, for k � 2 we have B̃k = Gk(0) ,
that is

Fk(t) = Gk(t)−Gk(0), k � 2, and F1(t) = G1(t), t ∈ R.

Obviously, Gk(t) and Fk(t) are periodic functions of period 1 and continuous for k �
2.

Let f : [0,1]→R be such that f (n−1) exists on [0,1] for some n � 1. We introduce
the following notation

D(u,v) =
1

2u− v

[
u f

(
1
4

)
− v f

(
1
2

)
+u f

(
3
4

)]
.

Further, we define T̃0(u,v) = 0 and, for 1 � m � n,

T̃m(u,v) =
1

2u− v

[
uTm

(
1
4

)
− vTm

(
1
2

)
+uTm

(
3
4

)]
,

where Tm(x) is given by (1.3). For m � 1

T̃m(u,v) =
1

2u− v

m

∑
k=1

B̃k

k!

[
f (k−1)(1)− f (k−1)(0)

]
. (2.1)

In the next theorem we establish two formulae which play the key role in this
paper. We call them the general dual Euler-Simpson formulae.

THEOREM 1. Let f : [0,1] → R be such that f (n−1) is a continuous function of
bounded variation on [0,1], for some n � 1. Then

∫ 1

0
f (t)dt = D(u,v)− T̃n(u,v)+ R̃1

n( f ), (2.2)

and ∫ 1

0
f (t)dt = D(u,v)− T̃n−1(u,v)+ R̃2

n( f ), (2.3)

where

R̃1
n( f ) =

1
(2u− v)(n!)

∫ 1

0
Gn (t)d f (n−1)(t),

and

R̃2
n( f ) =

1
(2u− v)(n!)

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. Put x = 1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then
multiply these new formulae by u, − v, u respectively, and add. The result is formula
(2.2). Formula (2.3) is obtained from (1.2) by the same procedure.
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REMARK 1. If in Theorem 1 we chose u = 2 and v = 1 we get dual Euler Simp-
son formulae [4] and for u = 8 and v = 1 we get corrected dual Euler Simpson formulae
[5].

By direct calculations we get

F1(t) = G1(t) =

⎧⎪⎪⎨
⎪⎪⎩

(v−2u)t, 0 � t � 1/4
(v−2u)t +u, 1/4 < t � 1/2
(v−2u)t +u− v, 1/2 < t � 3/4
(v−2u)t +2u− v, 3/4 < t � 1

, (2.4)

G2(t) =

⎧⎪⎪⎨
⎪⎪⎩

(2u− v)t2 +(2v−u)/24, 0 � t � 1/4
(2u− v)t2−2ut +(11u+2v)/24, 1/4 < t � 1/2
(2u− v)t2 +(2v−2u)t+(11u−22v)/24, 1/2 < t � 3/4
(2u− v)t2 +(2v−4u)t+(47u−22v)/24, 3/4 < t � 1

, (2.5)

F2(t) =

⎧⎪⎪⎨
⎪⎪⎩

(2u− v)t2, 0 � t � 1/4
(2u− v)t2−2ut +u/2, 1/4 < t � 1/2
(2u− v)t2 +(2v−2u)t +(u−2v)/2, 1/2 < t � 3/4
(2u− v)t2 +(2v−4u)t +2u− v, 3/4 < t � 1

, (2.6)

F3(t) = G3(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(v−2u)t3 +(u−2v)t/8, 0 � t � 1/4
(v−2u)t3 +3ut2− (11u+2v)t/8+3u/16, 1/4 < t � 1/2
(v−2u)t3 +(3u−3v)t2

+(22v−11u)t/8+(3u−12v)/16, 1/2 < t � 3/4
(v−2u)t3 +(6u−3v)t2

+(22v−47u)t/8+(15u−6v)/8, 3/4 < t � 1

. (2.7)

Now, we will prove some properties of the functions Gk(t) and Fk(t) defined above.
The Bernoulli polynomials are symmetric with respect to 1/2, that is [1, 23.1.8]

Bk(1− t) = (−1)kBk(t), ∀t ∈ R, k � 1. (2.8)

Also, we have

Bk(1) = Bk(0) = Bk, k � 2, B1(1) = −B1(0) =
1
2

and
B2 j−1 = 0, j � 2.

Therefore, using [1, 23.1.21, 23.1.22]

B2 j

(
1
2

)
= −(

1−21−2 j)B2 j, B2 j

(
1
4

)
= −2−2 j (1−21−2 j)B2 j j � 1,

we get
B̃2 j−1 = 0, j � 1 (2.9)
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and for j � 1

B̃2 j = uB2 j

(
1
4

)
− vB2 j

(
1
2

)
+uB2 j

(
3
4

)
= (v−u ·21−2 j)(1−21−2 j)B2 j. (2.10)

Now, by (2.9) we have
F2 j−1(t) = G2 j−1(t), j � 1, (2.11)

and, by (2.10),

F2 j(t) = G2 j(t)− B̃2 j = G2 j(t)− (v−u ·21−2 j)(1−21−2 j)B2 j, j � 1. (2.12)

Further, the points 0 and 1 are the zeros of Fk(t) = Gk(t)−Gk(0), k � 2, that is

Fk(0) = Fk(1) = 0, k � 2.

As we shall see below, for j � 1, 0 and 1 are the only zeros of F2 j(t) for u/2 � v < 2u .
Next, setting t = 1/2 in (2.8) we get

Bk

(
1
2

)
= (−1)kBk

(
1
2

)
, k � 1.

which implies that

B2 j−1

(
1
2

)
= 0, j � 1.

Using the above formulae, we get

F2 j−1

(
1
2

)
= G2 j−1

(
1
2

)
= 0, j � 1.

We shall see that for j � 2, 0, 1/2 and 1 are the only zeros of F2 j−1(t) = G2 j−1(t)
for u/2 � v < 2u . Also, note that

G2 j

(
1
2

)
= uB2 j

(
3
4

)
− vB2 j +uB2 j

(
1
4

)
=

[−v−u ·21−2 j(1−21−2 j)
]
B2 j, j � 1,

F2 j

(
1
2

)
= G2 j

(
1
2

)
− B̃2 j = −2v(1−2−2 j)B2 j, j � 1. (2.13)

LEMMA 1. For k � 2 we have

Gk(1− t) = (−1)kGk(t), 0 � t � 1,

and
Fk(1− t) = (−1)kFk(t), 0 � t � 1.
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Proof. As we noted in introduction, the functions B∗
k(t) are periodic with period

1 and continuous for k � 2. Therefore, for k � 2 and 0 � t � 1 we have

Gk(1− t) = uB∗
k

(
−3

4
+ t

)
− vB∗

k

(
−1

2
+ t

)
+uB∗

k

(
−1

4
+ t

)

=

⎧⎪⎪⎨
⎪⎪⎩

uB∗
k

(
1
4 + t

)− vB∗
k

(
1
2 + t

)
+uB∗

k

(
3
4 + t

)
, 0 � t � 1/4,

uB∗
k

( 1
4 + t

)− vB∗
k

( 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 1/4 < t � 1/2,

uB∗
k

(
1
4 + t

)− vB∗
k

(− 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 1/2 < t � 3/4,

uB∗
k

(− 3
4 + t

)− vB∗
k

(− 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 3/4 < t � 1,

= (−1)k ×

⎧⎪⎪⎨
⎪⎪⎩

uB∗
k

(
3
4 − t

)− vB∗
k

(
1
2 − t

)
+uB∗

k

(
1
4 − t

)
, 0 � t � 1/4,

uB∗
k

( 3
4 − t

)− vB∗
k

( 1
2 − t

)
+uB∗

k

( 5
4 − t

)
, 1/4 < t � 1/2,

uB∗
k

(
3
4 − t

)− vB∗
k

(
3
2 − t

)
+uB∗

k

(
5
4 − t

)
, 1/2 < t � 3/4,

uB∗
k

( 7
4 − t

)− vB∗
k

( 3
2 − t

)
+uB∗

k

( 5
4 − t

)
, 3/4 < t � 1,

= (−1)kGk(t),

which proves the first identity. Further, we have Fk(t)= Gk(t)−Gk(0) and (−1)kGk(0)=
Gk(0), since G2 j+1(0) = 0, so that we have

Fk (1− t) = Gk (1− t)−Gk(0) = (−1)k [Gk(t)−Gk(0)] = (−1)kFk (t) ,

which proves the second identity.
Note that the identities established in Lemma 1 are valid for k = 1, too, except at

the points 1/4, 1/2 and 3/4 of discontinuity of F1(t) = G1(t) .

LEMMA 2. For k � 2 and u/2 � v < 2u the function G2k−1(t) has no zeros in
the interval (0,1/2) . The sign of this function is determined by

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2
.

Proof. For k = 2, G3(t) is given by (2.7) and it is easy to see that for u/2� v < 2u

−G3(t) > 0, 0 < t <
1
2
,

Thus, our assertion is true for k = 2. Now, assume that k � 3. Then 2k− 1 � 5 and
G2k−1(t) is continuous and at least twice differentiable function. Using (1.4) we get

G′
2k−1(t) = −(2k−1)G2k−2(t)

and
G′′

2k−1(t) = (2k−1)(2k−2)G2k−3(t).

Let us suppose that G2k−3 has no zeros in the interval (0,1/2) . We know that 0 and
1/2 are the zeros of G2k−1(t) . Let us suppose that some α, 0 < α < 1/2, is also a
zero of G2k−1(t) . Then inside each of the intervals (0,α) and (α,1/2) the derivative
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G′
2k−1(t) must have at least one zero, say β1, 0 < β1 < α and β2, α < β2 < 1/2.

Therefore, the second derivative G′′
2k−1(t) must have at least one zero inside the inter-

val (β1,β2) . Thus, from the assumption that G2k−1(t) has a zero inside the interval
(0,1/2) , it follows that (2k− 1)(2k− 2)G2k−3(t) also has a zero inside this interval.
Thus, G2k−1(t) can not have a zero inside the interval (0,1/2) . To determine the sign
of G2k−1(t), note that

G2k−1

(
1
4

)
= −vB2k−1

(
1
4

)
.

We have [1, 23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies

(−1)k−1G2k−1

(
1
4

)
= (−1)kvB2k−1

(
1
4

)
> 0.

So, we proved our assertions.

COROLLARY 1. For k � 2 and u/2 � v < 2u the functions (−1)kF2k(t) and
(−1)kG2k(t) are strictly increasing on the interval (0,1/2), and strictly decreasing
on the interval (1/2,1). Further, for k � 2 and u/2 � v < 2u we have

max
t∈[0,1]

|F2k(t)| = 2v
(
1−2−2k

)
|B2k| ,

and
max
t∈[0,1]

|G2k(t)| =
[
v+u ·21−2k(1−21−2k)

]
|B2k|.

Proof. Using (1.4) we get[
(−1)kF2k(t)

]′
=

[
(−1)kG2k(t)

]′
= 2k(−1)k−1G2k−1(t)

and (−1)k−1G2k−1(t) > 0 for 0 < t < 1/2, by Lemma 2. Thus, (−1)kF2k(t) and
(−1)kG2k(t) are strictly increasing on the interval (0,1/2). Also, by Lemma 1, we
have F2k(1− t) = F2k(t), 0 � t � 1 and G2k(1− t) = G2k(t), 0 � t � 1, which implies
that (−1)kF2k(t) and (−1)kG2k(t) are strictly decreasing on the interval (1/2,1). Fur-
ther, F2k(0) = F2k(1) = 0, which implies that |F2k(t)| achieves its maximum at t = 1/2,
that is

max
t∈[0,1]

|F2k(t)| =
∣∣∣∣F2k

(
1
2

)∣∣∣∣ = 2v
(
1−2−2k

)
|B2k| .

Also

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
2

)∣∣∣∣
}

=
[
v+u ·21−2k(1−21−2k)

]
|B2k|,

which completes the proof.
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COROLLARY 2. For k � 2 and u/2 � v < 2u we have

∫ 1

0
|F2k−1(t)|dt =

∫ 1

0
|G2k−1(t)|dt =

2v
k

(1−2−2k) |B2k| .

Also, we have

∫ 1

0
|F2k(t)|dt =

∣∣B̃2k
∣∣ = (v−u ·21−2 j)(1−21−2 j) |B2k|

and ∫ 1

0
|G2k(t)|dt � 2

∣∣B̃2k

∣∣ = 2(v−u ·21−2 j)(1−21−2 j) |B2k| .

Proof. Using (1.4) it is easy to see that

G′
m(t) = −mGm−1(t), m � 3. (2.14)

Now, using Lemma 1, Lemma 2 and (2.14) we get

∫ 1

0
|G2k−1(t)|dt = 2

∣∣∣∣
∫ 1/2

0
G2k−1(t)dt

∣∣∣∣ = 2

∣∣∣∣− 1
2k

G2k(t)|1/2
0

∣∣∣∣
=

1
k

∣∣∣∣G2k

(
1
2

)
−G2k (0)

∣∣∣∣ =
2v
k

(1−2−2k) |B2k| ,

which proves the first assertion. By Corollary 1 and because F2k(0) = F2k(1) = 0,
F2k(t) does not change its sign on the interval (0,1) . Therefore, using (2.12) and
(2.14), we get

∫ 1

0
|F2k(t)|dt =

∣∣∣∣
∫ 1

0
F2k(t)dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0

[
G2k(t)− B̃2k

]
dt

∣∣∣∣
=

∣∣∣∣− 1
2k+1

G2k+1(t)|10 − B̃2k

∣∣∣∣ =
∣∣B̃2k

∣∣ ,
which proves the second assertion. Finally, we use (2.12) again and the triangle in-
equality to obtain

∫ 1

0
|G2k(t)|dt =

∫ 1

0

∣∣F2k(t)+ B̃2k

∣∣dt �
∫ 1

0
|F2k(t)|dt +

∣∣B̃2k

∣∣ = 2
∣∣B̃2k

∣∣ ,
which proves the third assertion.

3. Inequalities related to the general dual Euler-Simpson formulae

In this section we use formulae established in Theorem 1 to prove a number of
inequalities using Lp norms for 1 � p � ∞ . These inequalities are generally sharp (in
case p = 1 the best possible).
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THEOREM 2. Assume (p,q) is a pair of conjugate exponents, 1 � p,q � ∞ . Let∣∣∣ f (n)
∣∣∣p

: [0,1]→ R is R-integrable function for some n � 1. Then, we have

∣∣∣∣
∫ 1

0
f (t)dt−D(u,v)+ T̃n−1(u,v)

∣∣∣∣ � K(n, p;u,v) · ‖ f (n)‖p, (3.1)

and ∣∣∣∣
∫ 1

0
f (t)dt −D(u,v)+ T̃n(u,v)

∣∣∣∣ � K∗(n, p;u,v) · ‖ f (n)‖p, (3.2)

where

K(n, p;u,v) =
1

(2u− v)(n!)

[∫ 1

0
|Fn(t)|q dt

]1/q

and

K∗(n, p;u,v) =
1

(2u− v)(n!)

[∫ 1

0
|Gn(t)|q dt

]1/q

.

The constants K(n, p;u,v) and K∗(n, p;u,v) are sharp for 1 < p � ∞ and the best
possible for p = 1 .

Proof. Applying the Hölder inequality we have∣∣∣∣ 1
(2u− v)(n!)

∫ 1

0
Fn (t) f (n)(t)dt

∣∣∣∣ � 1
(2u− v)(n!)

[∫ 1

0
|Fn (t)|q dt

]1/q

·
∥∥∥ f (n)

∥∥∥
p

= K(n, p;u,v) · ‖ f (n)‖p.

Using the above inequality from (2.3) we get estimate (3.1). In the same manner, from
(2.2) we get estimate (3.2). Now, we consider the optimality of K(n, p;u,v) . We shall
find a function f such that∣∣∣∣

∫ 1

0
Fn(t) f (n)dt

∣∣∣∣ =
(∫ 1

0
|Fn(t)|qdt

)1/q (∫ 1

0
| f (n)(t)|pdt

)1/p

.

For 1 < p < ∞ take f to be such that

f (n)(t) = sgnFn(t) · |Fn(t)|
1

p−1 (3.3)

where for p = ∞ we put f (n)(t) = sgnFn(t) . For constant K∗(n, p;u,v) the proof of
sharpness is analogous. For p = 1 we shall prove that∣∣∣∣

∫ 1

0
Fn(t) f (n)(t)dt

∣∣∣∣ � max
t∈[0,1]

|Fn(t)|
∫ 1

0
| f (n)(t)|dt (3.4)

is the best possible inequality. Suppose that |Fn(t)| attains its maximum at t0 ∈ (0,1) .
First, we assume that Fn(t0) > 0. For ε small enough define f (n−1)

ε (t) by

f (n−1)
ε (t) =

⎧⎨
⎩

0, t � t0
1
ε (t − t0), t ∈ [t0,t0 + ε]
1, t � t0 + ε

.
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Then, for ε small enough∣∣∣∣
∫ 1

0
Fn(t) f (n)

ε (t)dt

∣∣∣∣ =
∣∣∣∣
∫ t0+ε

t0
Fn(t)

1
ε
dt

∣∣∣∣ =
1
ε

∫ t0+ε

t0
Fn(t)dt.

Now, from inequality (3.4) we have

1
ε

∫ t0+ε

t0
Fn(t)dt � Fn(t0)

∫ t0+ε

t0

1
ε
dt = Fn(t0).

Since,

lim
ε→0

1
ε

∫ t0+ε

t0
Fn(t)dt = Fn(t0)

the statement follows. If Fn(t0) < 0, then we take

f (n−1)
ε (t) =

⎧⎨
⎩

1, t � t0
− 1

ε (t− t0− ε), t ∈ [t0, t0 + ε]
0, t � t0 + ε

and the rest of proof is the same as above. Proof of the best possibility of the second
inequality is similar.

COROLLARY 3. Let f : [0,1] → R be given function.
If f is L -Lipschitzian on [0,1], then∣∣∣∣

∫ 1

0
f (t)dt −D(u,v)

∣∣∣∣ � 2u+ v
8(2u− v)

·L.

If f ′ is L -Lipschitzian on [0,1], then

∣∣∣∣
∫ 1

0
f (t)dt−D(u,v)

∣∣∣∣ � 2u2(3v+
√

2uv)+uv(5v−√
2uv)+2v2(v+3

√
2uv)

48(2u− v)(v+
√

2uv)(2u+ v+2
√

2uv)
·L.

Proof. Using (2.4) and (2.5) we get

∫ 1

0
|F1(t)|dt =

2u+ v
8

and

∫ 1

0
|F2(t)|dt =

2u2(3v+
√

2uv)+uv(5v−√
2uv)+2v2(v+3

√
2uv)

24(v+
√

2uv)(2u+ v+2
√

2uv)
.

Therefore, applying (3.1) with n = 1,2 and p = ∞ we get the above inequalities.

REMARK 2. The first inequality in Corollary 3 achieves an infimum of 1/24 and
the second inequality an infimum of 0 for u → ∞ and v = 1.
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REMARK 3. Let f : [0,1] → R is such that f (n−1) is an L -Lipschitzian function
on [0,1] for some n � 3. Then from Corollary 2 for u/2 � v < 2u we get

K(2k−1,∞;u,v) =
2v

(2u− v) [(2k)!]
(1−2−2k) |B2k| ,

K∗(2k,∞;u,v) =
1

(2u− v) [(2k)!]
(v−u ·21−2k)(1−21−2k) |B2k|

and

K(2k,∞;u,v) =
2

(2u− v) [(2k)!]
(v−u ·21−2k)(1−21−2k) |B2k| .

COROLLARY 4. Let f : [0,1] → R be given function.
If f is a continuous function of bounded variation on [0,1], then∣∣∣∣

∫ 1

0
f (t)dt−D(u,v)

∣∣∣∣ � 2u+ v
4(2u− v)

·V 1
0 ( f ).

If f ′ is a continuous function of bounded variation on [0,1], then∣∣∣∣
∫ 1

0
f (t)dt−D(u,v)

∣∣∣∣ � 1
64(2u− v)

[2u+3v+ |2u−5v|] ·V1
0 ( f ′).

Proof. ¿From explicit expressions (2.4) and (2.5), we get

max
t∈[0,1]

|F1(t)| = max

{
2u− v

4
,
2u+ v

4

}
=

2u+ v
4

and

max
t∈[0,1]

|F2(t)| = max

{
2u− v

16
,
v
4

}
=

1
32

[2u+3v+ |2u−5v|].

Therefore, applying (3.1) with n = 1,2 and p = 1 we get the above inequalities.

REMARK 4. The first inequality in Corollary 4 achieves an infimum of 1/4 and
the second inequality an infimum of 0 for u =→ ∞ and v = 1.

REMARK 5. Let f : [0,1] → R be such that f (n−1) is a continuous function of
bounded variation on [0,1] for some n � 3. Then from Corollary 1 for u/2 � v < 2u
we get

K(2k−1,1;u,v) =
1

(2u− v) [(2k−1)!]
max
t∈[0,1]

|F2k−1(t)| ,

K∗(2k,1;u,v) =
2v

(2u− v) [(2k)!]
(1−2−2k) |B2k|

and

K(2k,1;u,v) =
1

(2u− v) [(2k)!]

[
v+u ·21−2k(1−21−2k)

]
|B2k|
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Now, we calculate the optimal constant for p = 2.

COROLLARY 5. Let
∣∣∣ f (n)

∣∣∣2 : [0,1]→ R be a R-integrable function for some n �
1. Then, we have∣∣∣∣

∫ 1

0
f (t)dt−D(u,v)+ T̃n−1(u,v)

∣∣∣∣
� 1

(2u− v)

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

+
B̃2

n

(n!)2

]1/2

‖ f (n)‖2,

and ∣∣∣∣
∫ 1

0
f (t)dt −D(u,v)+ T̃n(u,v)

∣∣∣∣
� 1

(2u− v)

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

]1/2

‖ f (n)‖2.

Proof. Using integration by part and also using Lemma 1 from [3] we have∫ 1

0
G2

n(t)dt = (−1)n−1 n(n−1) . . .2
(n+1)(n+2) . . .(2n−1)

×

×
[
− 1

2n
G2n(t)G1(t)|10 +

1
2n

∫ 1

0
G2n(t)dG1(t)

]

= (−1)n−1 (n!)2

(2n)!

[
(v−2u)

∫ 1

0
G2n(t)dt +2uG2n

(
1
4

)
− vG2n

(
1
2

)]

= (−1)n−1 (n!)2

(2n)!

[
−4uvB2n

(
1
4

)
+2u2B2n

(
1
2

)
+(2u2 + v2)B2n

]

= (−1)n−1 (n!)2

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n.

Now,∫ 1

0
F2

n (t)dt =
∫ 1

0

[
Gn(t)− B̃n

]2
dt

=
∫ 1

0

[
G2

n(t)−2Gn(t)B̃n + B̃2
n

]
dt =

∫ 1

0
G2

n(t)dt + B̃2
n

= (−1)n−1 (n!)2

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n + B̃2

n.

Finally, we give the values of optimal constant for n = 1 and arbitrary p from
Theorem 2.
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REMARK 6. Note that K∗(1, p;u,v) = K(1, p;u,v), for 1 < p �∞, since G1(t) =
F1(t). Also, for 1 < p � ∞ we can easily calculate K(1, p;u,v). We get

K(1, p;u,v) =
1

(2u− v)

[
(2u− v)q+1 +(2u+ v)q+1−2q+1vq+1

(2u− v)(q+1)22q+1

] 1
q

, 1 < p � ∞.

Now we use the formula (2.2) and one technical result from [11] to obtain Grüss
type inequality related to that general dual Euler-Simpson formula:

THEOREM 3. Suppose that f : [0,1]→R is such that f (n) exists and is integrable
on [0,1] , for some n � 1 . Assume that

mn � f (n)(t) � Mn, 0 � t � 1,

for some constants mn and Mn. Then∣∣∣∣
∫ 1

0
f (t)dt −D(u,v)+ T̃n(u,v)

∣∣∣∣ � Cn(Mn −mn), (3.5)

where Cn = 1
(2u−v)(n!)

∫ 1
0 |Gn(t)|dt .

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

THEOREM 4. If f : [0,1]→R is such that f (2k) is a continuous function on [0,1] ,
for some k � 2 , then for u/2 � v < 2u there exists a point η ∈ [0,1] such that

R̃2
2k( f ) = − (v−u ·21−2k)(1−21−2k)B2k

(2u− v)[(2k)!]
f (2k)(η). (3.6)

Proof. We can rewrite R̃2
2k( f ) as R̃2

2k( f ) = (−1)k Jk
2[(2k)!] , where Jk =∫ 1

0 (−1)kFx
2k(s) f (2k)(s)ds. From Corollary 1 follows that (−1)kFx

2k(s) � 0, 0 � s � 1
and the claim follows from the mean value theorem for integrals and Corollary 2.

REMARK 7. For k = 2 formula (3.6) reduces to

R̃2
4( f ) =

7(8v−u)
46080(2u− v)

f (4)(η).

4. General dual Euler-Simpson formulae with nonsymmetric coefficients

In this section we study, the general Simpson quadrature formula∫ 1

0
f (t)dt =

1
u+−v+w

[
u f

(
1
4

)
− v f

(
1
2

)
+wf

(
3
4

)]
+E( f ;u,v,w) (4.1)

with E( f ;u,v,w) being the remainder, u,v,w ∈ Z+ and u+w > v . We are using iden-
tities (1.1) and (1.2) to get two new identities of Euler type.
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THEOREM 5. Let f : [0,1] → R be such that f (n−1) is a continuous function of
bounded variation on [0,1], for some n � 1. Then

∫ 1

0
f (t)dt = D(u,v,w)− T̄n(u,v,w)+ R̄1

n( f ), (4.2)

and ∫ 1

0
f (t)dt = D(u,v,w)− T̄n−1(u,v,w)+ R̄2

n( f ), (4.3)

where

D(u,v,w) =
1

u− v+w

[
u f

(
1
4

)
− v f

(
1
2

)
+wf

(
3
4

)]
,

R̄1
n( f ) =

1
(u− v+w)(n!)

∫ 1

0
Ḡn (t)d f (n−1)(t),

R̄2
n( f ) =

1
(u− v+w)(n!)

∫ 1

0
F̄n (t)d f (n−1)(t),

Ḡk(t) = uB∗
k

(
1
4
− t

)
− vB∗

k

(
1
2
− t

)
+wB∗

k

(
3
4
− t

)
, t ∈ R,

F̄k(t) = Ḡk(t)− B̄k, t ∈ R, k � 1,

B̄k = uBk

(
1
4

)
− vBk

(
1
2

)
+wBk

(
3
4

)
, k � 1

and

T̄m(u,v,w) =
1

u− v+w

[
uTm

(
1
4

)
− vTm

(
1
2

)
+wTm

(
3
4

)]
.

Proof. Put x = 1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then
multiply these new formulae by u, − v, w respectively, and add. The result is formula
(4.2). Formula (4.3) is obtained from (1.2) by the same procedure.

THEOREM 6. Assume (p1,q1) and (p2,q2) are two pairs of conjugate exponents,
1 � p1,q1, p2,q2 �∞ . Let | f (n)|p1 : [0,x]→R and | f (n)|p2 : [x,1]→R are R-integrable
functions for some n � 1 . Then, we have∣∣∣∣

∫ 1

0
f (t)dt −D(u,v,w)+ T̄n−1(u,v,w)

∣∣∣∣ (4.4)

� K(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +K(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],

and ∣∣∣∣
∫ 1

0
f (t)dt −D(u,v,w)+ T̄n(u,v,w)

∣∣∣∣ (4.5)

� K∗(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +K∗(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],
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where

K(n, p1;u,v,w,x) =
1

(u− v+w)(n!)

[∫ x

0
|F̄n(t)|q1 dt

]1/q1

,

K(n, p2;u,v,w,x) =
1

(u− v+w)(n!)

[∫ 1

x
|F̄n(t)|q2 dt

]1/q2

,

K∗(n, p1;u,v,w,x) =
1

(u− v+w)(n!)

[∫ x

0

∣∣Ḡn(t)
∣∣q1 dt

]1/q1

and

K∗(n, p2;u,v,w,x) =
1

(u− v+w)(n!)

[∫ 1

x

∣∣Ḡn(t)
∣∣q2 dt

]1/q2

.

The constants K(n, p1;u,v,w,x), K(n, p2;u,v,w,x), K∗(n, p1;u,v,w,x) and
K∗(n, p2;u,v,w,x) are sharp for 1 < p1, p2 � ∞ and the best possible for p1 = 1 or
p2 = 1 .

Proof. Applying the Hölder inequality we have∣∣∣∣ 1
(u− v+w)(n!)

∫ 1

0
F̄n(t) f (n)(t)dt

∣∣∣∣
=

∣∣∣∣ 1
(u− v+w)(n!)

∫ x

0
F̄n(t) f (n)(t)dt +

1
(u− v+w)(n!)

∫ 1

x
F̄n(t) f (n)(t)dt

∣∣∣∣
� 1

(u− v+w)(n!)

{[∫ x

0
|F̄n(t)|q1dt

]1/q1

‖ f (n)‖Lp1 [0,x]

+
[∫ 1

x
|F̄n(t)|q2dt

]1/q2

‖ f (n)‖Lp2 [x,1]

}

= K(n, p1;u,v,w,x)‖ f (n)‖Lp1 [0,x] +K(n, p2;u,v,w,x)‖ f (n)‖Lp2 [x,1].

Using the above inequality from (2.3) we get estimate (4.4). In the same manner, from
(2.2) we get estimate (4.5). The proof of sharpness and best possibility is similar as in
the proof of Theorem 2.

REMARK 8. For n = 1, 1
4 � u � w � 1

2 and u− v+w = 1 in inequality (4.4) we
get inequality∣∣∣∣

∫ 1

0
f (t)dt −D(u,v,w)

∣∣∣∣
�

[
(w−u)q1+1 +(u−w+1)q1+1 +(3u+w−1)q1+1 +(2−3u−w)q1+1

4q1+1(q1 +1)

]1/q1

× ‖ f ′‖Lp1 [0,1/2]

+

[
−(w−u)q2+1 +(w−u+1)q2+1 +(3w+u−1)q2+1 +(2−u−3w)q2+1

4q2+1(q2 +1)

]1/q2

× ‖ f ′‖Lp2 [1/2,1].
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