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GENERAL DUAL EULER-SIMPSON FORMULAE
J. PECARIC AND A. VUKELIC

(communicated by N. Ujevic)

Abstract. We consider a general dual Simpson formulae, using some Euler-type identities. A
number of inequalities, for functions whose derivatives are either functions of bounded variation
or Lipschitzian functions or R-integrable functions, are proved.

1. Introduction

In the recent paper [3] the following two identities, named the extended Euler
formulae, have been proved. For n > 1 and every x € [0, 1]

1
10 = [ 10a+ )+ R) (L1)
and N
f(x):./o FOd+ T () + R2(5), (1.2)
where Tp(x) =0 and
T = 3 B [y g0 )], (13)
k=1 :

for 1 <m < n, while

R =& [ B a0,

RW = [ B0 - BWar )

n!
Here, as in the rest of the paper, we write [y g(r) d ¢(t) to denote the Riemann-Stieltjes
integral with respect to a function ¢ : [0,1] — R of bounded variation, and fol g(t)dt

for the Riemann integral. The identities (1.1) and (1.2) extend the well known formula
for the expansion of a function in Bernoulli polynomials [10, p. 17]. They hold for
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every function f:[0,1] — R such that £*~1) is a continuous function of bounded
variation on [0, 1]. The functions By(¢) are the Bernoulli polynomials, By = B (0) are
the Bernoulli numbers, and B} (1), k =0, are periodic functions of period 1, related to
the Bernoulli polynomials as

Bi(t)=By(t),0<t<1 and Bi(r+1)=B;(t),r€R.

The Bernoulli polynomials By (), k > 0 are uniquely determined by the following
identities

Bi(t) =kB_1(t), k> 1; Bo(t) = 1, By(t+ 1) — Bi(t) =kt k> 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that Bjj(r) = 1 and Bj(¢) is a discontinuous function
with a jump of —1 at each integer. It follows that Bi(1) = B(0) = By for k > 2, so
that By () are continuous functions for k > 2. We get

Bi'(t) =kBj_,(t), k> 1 (1.4)

for every r € R when k > 3, and for every r € R\ Z when k= 1,2.

In the recent, many mathematicians are studying in the area which are related to
Euler-Simpson’s type formula, Euler summation formula etc. (see for example [6], [7],
[8] and [9]).

In this paper we study, the general dual Simpson quadrature formula

./0~1f(t)dt = zul—v {uf (%) —vf(%) —Hu‘(%ﬂ +E(f;u,v) (1.5)

with E(f;u,v) being the remainder, u,v € Z*, v < 2u and the greatest common divisor
of u and v is 1. The aim of this paper is to establish general dual Simpson formula
(1.5) using identities (1.1) and (1.2) and give various error estimates for the quadrature
rules based on such generalizations. In Section 2 we use the extended Euler formulae
to obtain two new integral identities. We call them the general dual Euler-Simpson
formulae. In Section 3, we prove a number of inequalities which give error estimates
for the general dual Euler-Simpson formulae for functions whose derivatives are from
the L, -spaces.

2. General dual Euler-Simpson formulae

For k > 1 define the functions G (¢) and Fi(z) as

1 1 3
Gy (t) = uBj, (Z_t) —VvB; <§—t> +uBj, (Z—t> ,teR

Fk(t) :Gk(t)ig/m t €R7k> 1a

and
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_ 1 1 3
Bk:stk <Z) —VBk (5) +MBk <Z> y k> 1.

Especially, using By (1) =t —1/2 we get By =0. Also, for k > 2 we have By = G¢(0),
that is

where

Fk(t) :Gk(t)ka(O), k>2, and Fl(t) :Gl(t), teR.

Obviously, G (¢) and Fi(r) are periodic functions of period 1 and continuous for k >
2.

Let £:[0,1] — R be such that £"~1) exists on [0, 1] for some n > 1. We introduce
the following notation

- o () o () ()]

Further, we define Ty(u,v) = 0 and, for 1 < m < n,

At = 52 i (2) o1 (2 s (2)]

where T, (x) is given by (1.3). For m > 1

i 1
Tn(u,v)

:2u7v

3 B [40-0(1) = s1(0). @
k=1""

In the next theorem we establish two formulae which play the key role in this
paper. We call them the general dual Euler-Simpson formulae.

THEOREM 1. Let f:[0,1] — R be such that f"~Y) is a continuous function of
bounded variation on [0,1], for some n > 1. Then

[ 700 = D)~ Tifa) + RS, e2)
0
and |

| 0d = D) = T+ B, 23
where | |

pl _ (n—1)
and

T fv)(n!) ./0'an O df0 ().

Proof. Put x=1/4,1/2, 3/4 in formula (1.1) to get three new formulae. Then
multiply these new formulae by u, — v, u respectively, and add. The result is formula
(2.2). Formula (2.3) is obtained from (1.2) by the same procedure.

Ry(f) =
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REMARK 1. If in Theorem 1 we chose u =2 and v =1 we get dual Euler Simp-
son formulae [4] and for # =8 and v =1 we get corrected dual Euler Simpson formulae

[5].

By direct calculations we get

(v—"2u)t, 0<r<1/4
_ ) (v=2u)t+u, 1/4<t<1/2
RO =610=9 (,_ 2 +u—v, 1/2<1<3/4" @4
(v=2u)t+2u—v,3/4<t<1
(Qu—v)t> + (2v—u) /24, 0<r<1/4
Galt) = (2u — )2 —2ut + (11u+2v) /24, 1/4<1<1/)2 2.5)
2T Qu—v)2 4 (2v—2u)t+ (11u—22v)/24,1/2 <t < 3/4"° '
(Qu—v)t?+ (2v —du)t+ (4Tu—22v) /24,3 /4 <t < 1
(2u—v)1?, 0<r<1/4
) Qu—v)?—2ut+u/2, 1/4<t<1/2
B = Qu—v)?+ (2v—2u)t+ (u—2v)/2,1/2 <1 <3/4" 2.6)
Qu—v)?+ (2v—du)t+2u—v,  3/4<t<1
(v—2u)t> + (u—2v)t/8, 0<r<1/4
( —2u)t3+3ut2—(11u+2v)t/8+3u/16,1/4<t<1/2
B ) (v=2u)P 4 (Bu—3v)?
B(0)=Gs() =Y Y (220 = 11wyt /8 + (3u— 12v) /16, 1/2<1<3/4° @D
(v —2u)3 + (6u — 3v)t?
+(22v — 47u)t /8 + (151 — 6v) /8, 3/4<1<1

Now, we will prove some properties of the functions Gy (r) and Fy(¢) defined above.
The Bernoulli polynomials are symmetric with respect to 1/2, thatis [1,23.1.8]

By(1—1)=(—=1)*By(t), Vt €R, k> 1. (2.8)
Also, we have
Bi(1) = Bi(0) =By, k=2, Bi(1)=—B,(0) ==

and
Byj1=0, j=>2.

Therefore, using [1, 23.1.21, 23.1.22]

BZ,G) =—(1-2"%)By,, BZ,G) =-2%(1-2")By; j>1,

we get
Byj 1=0,j>1 (2.9)
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and for j > 1

- 1 1 3 j j

Now, by (2.9) we have
Fj1(t) =Goj1(1), j 2 1, (2.1D

and, by (2.10),
Fyj(1) = Goj(t) = Boj = Goj(t) = (v—u-2"") (1 =2""2)Byj, j> 1. (2.12)
Further, the points 0 and 1 are the zeros of Fi(t) = Gi(r) — Gx(0), k > 2, thatis
F(0)=F(1) =0, k> 2.

As we shall see below, for j > 1, 0 and 1 are the only zeros of F>;(t) for u/2 <v < 2u.
Next, setting t = 1/2 in (2.8) we get

BkG) :(—l)kBk<%),k>l.

which implies that

Using the above formulae, we get

1 1 .
Fjq <§) =Gyj1 (§> =0,j=1

We shall see that for j >2, 0, 1/2 and 1 are the only zeros of Fj_(1) = G2j—1(1)
for u/2 < v < 2u. Also, note that

1 3 1 . .
Gaj (§> = uB, (Z) —VBaj+ uBy, (Z) = [v—u 212 By, j > 1,

1 1\ Y ,
B (§> = Gy; (5) —Byj=-2v(1-2"%)By;, j> 1. (2.13)

LEMMA 1. For k > 2 we have

Gi(1—1)=(=DfGi(r), 0<1 < 1,

and
F(1—1)=(=1)*F(), 0<r < 1.
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Proof. As we noted in introduction, the functions Bj(¢) are periodic with period
1 and continuous for k£ > 2. Therefore, for £k > 2 and 0 <7 <1 we have

3 1 1
Gk(l*[) :uBk <Z +[> 7VBZ (E +[> +MBZ <Z +t>

uB,}:(%+t)va,}:(%+I)+MB:(ZTI), 0<r<1/4,

_ uB,;(§+t)va*(§+t)+uB (*—41+t), 1/4<t 1/2,
“Bk(zﬂ)*VBk(*ith)JruB (—L140), 1/2<1<3/4,
uBj (—3+1) —vBi (=5 +1) +uBj (=3 +1), 3/4<t<1,

B (3 1) B} (4 0) B (1) 0 < s <1/

(1) d B (5 1) =B (3 =) +uBi (5 —1), NN

B (3 1) —vBL (3 1) +uBj (1 -1), 1/2 <1 <3/4,
uBg (7 —1)—vBi (5 —t)+uBj (3 —1),3/4 <1 <1,
= (71)ka(t)7

which proves the first identity. Further, we have Fi(t) = Gy(t) — Gx(0) and (—1)*¥G(0) =
Gr(0), since G2j4+1(0) =0, so that we have

F(1=1) = Ge (1 —1) = Gr(0) = (=1)* [G(r) = G(0)] = (= 1)*F (1),

which proves the second identity.
Note that the identities established in Lemma 1 are valid for k£ = 1, too, except at
the points 1/4, 1/2 and 3/4 of discontinuity of Fy(¢) = G,(z).

LEMMA 2. For k > 2 and u/2 < v < 2u the function Gy—_;(¢) has no zeros in
the interval (0,1/2). The sign of this function is determined by

1
(- Gy (1) >0,0<1 < 5

Proof. For k=2, G3(t) is given by (2.7) and it is easy to see that for /2 < v < 2u
1
—-G3(1) >0,0<r< 3

Thus, our assertion is true for k = 2. Now, assume that k > 3. Then 2k—1 > 5 and
Go—1 () is continuous and at least twice differentiable function. Using (1.4) we get

Ghy_1 (1) = —(2k—1)Gy (1)

and
Gy (t) = (2k — 1)(2k — 2)Goy—5(1).

Let us suppose that Gy;_3 has no zeros in the interval (0,1/2). We know that 0 and
1/2 are the zeros of Goy;—;(¢). Let us suppose that some o, 0 < o < 1/2, is also a
zero of Gy,—1(7). Then inside each of the intervals (0,0) and (c,1/2) the derivative
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G’;_,(t) must have at least one zero, say B, 0 < By < o and B, o < B, < 1/2.
Therefore, the second derivative G}, , (¢) must have at least one zero inside the inter-
val (B1,B:). Thus, from the assumption that Gy;_1(7) has a zero inside the interval
(0,1/2), it follows that (2k — 1)(2k —2)Go—3(¢) also has a zero inside this interval.
Thus, Gag—(¢) can not have a zero inside the interval (0,1/2). To determine the sign

of Goi—1(2), note that
1 1
Gy_1| =) =—vBuy_1| - )-
2k1<4) V2k1<4)

1
(—=1)*By1(1) > 0,0 <1 < 3

(=) Gy G) = (—=1)"By_, (%) > 0.

So, we proved our assertions.

We have [1, 23.1.14]

which implies

COROLLARY 1. For k > 2 and u/2 < v < 2u the functions (—1)*Fy(¢) and
(—1)¥Gy(t) are strictly increasing on the interval (0,1/2), and strictly decreasing
on the interval (1/2,1). Further, for k > 2 and u/2 < v < 2u we have

ma [F(1)] = 2v (1-272) B,
tel0,1

and

max [Gay(r)| = [v-+u-2'72(1 =217 By .
t€[0,1]

Proof. Using (1.4) we get
k ! k ! k-1
[(—1) sz(f)} = [(—1) sz(l)} =2k(=1)"" Go-1(1)
and (—1)¥1Gy_1(t) > 0 for 0 <t < 1/2, by Lemma 2. Thus, (—1)*Fy(t) and

(—1)kGo(¢) are strictly increasing on the interval (0,1/2). Also, by Lemma 1, we
have Fyi (1 —1) = For(r), 0<tr <1 and Gy (1 —1) = Gy (), 0 <t < 1, which implies

that (— 1) Fy () and (—1)*Ga(¢) are strictly decreasing on the 1nterval (1/2,1). Fur-
ther, F31(0) = Fot(1) =0, which implies that |Fo(f)| achieves its maximumat # = 1/2,
that is
1
max [Fau(r)] = |Far 5 ) | =2 (1-27%) B
ze[o)f |Fok(1)] 2k <2)‘ v | B2
Also

max |Gac(1)] = maX{sz(O)L
t€(0,1]

1 _ _
G2k (E)‘} = |:v+u~21 2k(1 —21 2k):| ‘B2k|7

which completes the proof.
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COROLLARY 2. For k> 2 and u/2 < v < 2u we have

1 1 2v _
| Icold= [ 1Gaiwlar= (1272 1B,
Also, we have
! 5 1-2j 1-2j
[ 1Fse(e)1d = |Bo| = (v 212 (1 21729) 1By
and

1 . .
[ 1Ga(0)1dr < 2B =20 —w-21720) (1 = 217%) By
0

Proof. Using (1.4) it is easy to see that
G, (t)=—mGy_(t), m>3. (2.14)
Now, using Lemma 1, Lemma 2 and (2.14) we get

_ 1 1/2
= 2’ T G (1)l

1 1/2
[ 1600 = 2] [ st

1 1 v ok
~1fox (3) ~ou ] = Fa-2 28

which proves the first assertion. By Corollary 1 and because Fa(0) = Fy(1) =0,
Fo(t) does not change its sign on the interval (0,1). Therefore, using (2.12) and
(2.14), we get

/01 | Foy(t) | dt = ‘/OIFZk(t)dt

1 ~
:‘/0 [Gox (1) — By dr
ot
T 2k+1

G2k+1(f)\(1)—1§2k

= |E2k|>

which proves the second assertion. Finally, we use (2.12) again and the triangle in-
equality to obtain

)

1 1 . 1 . .
/0 \sz(f)|df=/0 ‘sz(l)‘Fsz\dlé/o | Fot ()] dt + | B | = 2| Ba
which proves the third assertion.

3. Inequalities related to the general dual Euler-Simpson formulae

In this section we use formulae established in Theorem 1 to prove a number of
inequalities using L, norms for 1 < p < 0. These inequalities are generally sharp (in
case p = 1 the best possible).
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THEOREM 2. Assume (p,q) is a pair of conjugate exponents, 1 < p,q < . Let

‘ ]’

:[0,1] — R is R-integrable function for some n > 1. Then, we have

S|
[ £0@ =) + T s ()| < Kl psu)- £ G
and |
’/o £ = Dlu,v) + Taw,)| < K (npiae) - £, (32)
where
1 1 . 1/q
K(n,p,u,v) = m |:/0 ‘Fn(t)| dt:| and

K*(n, piu,v) = m [/01 |Gn(,)th} v

The constants K(n,p;u,v) and K*(n,p;u,v) are sharp for 1 < p < e and the best
possible for p =1.

Proof. Applying the Holder inequality we have
1 1 ; 1/q )
R R e

= K(n,p;u,v) ’ ”f(n)HI’

Using the above inequality from (2.3) we get estimate (3.1). In the same manner, from
(2.2) we get estimate (3.2). Now, we consider the optimality of K(n, p;u,v). We shall

find a function f such that
1 1/q 1 1/p
= ([ moear) ([ yowra)
0 0

For 1 < p < oo take f to be such that

‘ 1
p

Gy 0o

‘/ an(f)f(”)dt
0

1

FU(1) = sgnFy(r) - |Fu(t)| 77 (3.3)

where for p = e we put f")(r) = sgnF,(r). For constant K*(n,p;u,v) the proof of
sharpness is analogous. For p = 1 we shall prove that

1
/0 Fo(0)f™ (t)dr

1
< max |Fy(1)] / ) (1) (3.4)
] Jo

tel0

is the best possible inequality. Suppose that |F;,(¢)]| attains its maximum at #y € (0,1).
First, we assume that F,(#p) > 0. For &€ small enough define fg("*”(t) by

0, 1<t
fénfl)(t) _ %([7t0)7 IS [t07f0+£] .
1 121+¢€
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Then, for € small enough

1
| Boswa

to+€ 1 1 to+€
/ Fn(t)—dt’ = —/ Fy(t)dt.
0] € € Jn

Now, from inequality (3.4) we have

1 [fote to+€ |
- / Fo(t)dt < Fa(to) / —dt = Fyo).

€ Jig fo

Since,
1 10+E€
lim = F,(t)dt = F,(to)

e—0 € to

the statement follows. If F;, (7o) < 0, then we take

1 1, 1<t
fg(nf )(t) — _%(t_[o—s), te [t0>l0+5]
07 [>l0+5

and the rest of proof is the same as above. Proof of the best possibility of the second
inequality is similar.

COROLLARY 3. Let f:[0,1] — R be given function.
If f is L-Lipschitzian on [0, 1], then

o utv

1
/O 10 =Dlwy)| < g

If ' is L-Lipschitzian on [0, 1], then

2u? (3v + v 2uv) + uv(5v — v 2uv) + 2v* (v + 31/ 2uv)

< L

48(2u —v) (v +2uv) (2u + v+ 2+/2uv)

/ " F()dt — D(u.v)
0

Proof. Using (2.4) and (2.5) we get

[ @l =
0

2u?(3v +2uv) + uv(5v — 2uv) + 20 (v + 3v/2uv)
24(v+2uv) (2u +v + 2/ 2uv)

Therefore, applying (3.1) with n = 1,2 and p = o we get the above inequalities.

2
Uty and

[ 1m0 =
0

REMARK 2. The first inequality in Corollary 3 achieves an infimum of 1/24 and
the second inequality an infimum of O for u — o and v =1.
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REMARK 3. Let f:[0,1] — R is such that £"~1) is an L-Lipschitzian function
on [0,1] for some n > 3. Then from Corollary 2 for u/2 < v < 2u we get

2v

K(2k—1,00u,v) = m(l—zfﬁ) |Bok |,
. N 1 - -
K (Zk,w,u,v)—m(vfull 26y (1 — 21725 | By
and )
K(2k,o0;u,v) = m(wu-zlﬂk)(l — 2172 |By .

COROLLARY 4. Let f:[0,1] — R be given function.
If f is a continuous function of bounded variation on [0, 1], then

2u+v 1

< 75— Yo ()

’. /0 ' F(0)dr — D(uv) Flep

If f is a continuous function of bounded variation on [0, 1], then

1

< _
= 64(2u—v)

’i/o.lf(t)dt—D(u,v) [2u+3v+ [2u —5v|] - Vo (f').

Proof. ;From explicit expressions (2.4) and (2.5), we get

{2u—v 2u—|—v} ~ 2u+v

max |Fj(7)| = max and

t€[0,1] 4 7 4 4

2u—v v 1
B(t)| = — =t = —=[2u+3v+|2u—5v].
11611[(2)17>1c]| 2(1)] max{ 6 } 3 [2u+3v+|2u— 5v|]

Therefore, applying (3.1) with n = 1,2 and p =1 we get the above inequalities.

REMARK 4. The first inequality in Corollary 4 achieves an infimum of 1/4 and
the second inequality an infimum of O for y =—cc and v=1.

REMARK 5. Let f:[0,1] — R be such that f"~1) is a continuous function of
bounded variation on [0, 1] for some n > 3. Then from Corollary 1 for u/2 < v < 2u
we get

1
K@k=1, L) = o a1y ma e 01
" 2v _
K*(2k, 1;u,v) = m(172 2 | By
and
K(k L) = o= s [v+u-21*2k(1 —2122] By
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Now, we calculate the optimal constant for p =2.

2
COROLLARY 5. Let ’f<”> :[0,1] — R be a R-integrable function for some n >

1. Then, we have

’/01 f(t)dt —D(u,v) +T,—1(u,v)

1 (71)1171
S Qu—v) { (2n)!
n2

1/2
Bn n
+ 2] 1,

[2u? + V2 — (2u* —uv- 2272 (1 217" By,

and
/O " F()de — Do) + o)

1 (1!
S u—v) [ 2n)!

1/2
Pf+ﬂ@fwa2%uf2mB4 1

Proof. Using integration by part and also using Lemma 1 from [3] we have

1 e nn—1)...2
/0 G0dr = (0" ) T

- 560G+ 5 [ GG

= (—1)"! ('212)2' |:(V—2u) ./().1G2,1(t)dt+2uG2n (411) —vGay (%)]

X

(

n 2
= (-1)"! ((2’;))! {4uv32n <%> +2u’By, <%) + (2u® +v2)82n}
= (—1)"! E;’;; [2u? +v* — (2u* —uv - 222" (1 =21 72")] By,

1)2 -
= (—1)"! % [2u? +v* = (2u* —uv - 222" (1 = 2'2")] By, + By

Finally, we give the values of optimal constant for n = 1 and arbitrary p from
Theorem 2.
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REMARK 6. Note that K*(1, p;u,v) =K (1, p;u,v), for 1 < p <ee, since G;(t) =
Fi(t). Also, for 1 < p < e we can easily calculate K(1, p;u,v). We get

K(1 ) 1 (2u— )T + (2u+v)att —2atlyatl
su,v) =
PRy (Qu—v) (Qu—v)(g+1)22a+1

Now we use the formula (2.2) and one technical result from [11] to obtain Griiss
type inequality related to that general dual Euler-Simpson formula:

; I<p<ee

THEOREM 3. Suppose that f :[0,1] — R is such that ) exists and is integrable
on [0,1], for some n > 1. Assume that

my < f (1) <My, 0<

~

<1,

for some constants my, and M,. Then
1 ~
‘/O f(t)dth(l,t?V)JrTn(uN) gCn(Mn*mn)a (3.5)

where Cn = WJOI |Gn(l)‘d[

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

THEOREM 4. If f:[0,1] — R is such that f®) is a continuous function on [0,1],
Sfor some k =2, then for u/2 < v < 2u there exists a point 1 € [0,1] such that

(v—u-2172)(1 - 21-%)By,

BN =—— o . (3.6)

Proof. We can rewrite R3,(f) as R, (f) = (fl)kz[ék) 7, Where J; =
Jo (=1*E5 (s) £@¥) (s)ds. From Corollary 1 follows that (—1)¥F}(s) >0, 0 <s< 1
and the claim follows from the mean value theorem for integrals and Corollary 2.
REMARK 7. For k =2 formula (3.6) reduces to

szx(f)z %ﬂ‘”(n)-

4. General dual Euler-Simpson formulae with nonsymmetric coefficients

In this section we study, the general Simpson quadrature formula

/ f@) = V+W[uf(%)—vf(%)—kwf(%)}+E(f;u,v,w) (4.1)

with E(f;u,v,w) being the remainder, u,v,w € Z" and u+w > v. We are using iden-
tities (1.1) and (1.2) to get two new identities of Euler type.
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THEOREM 5. Let f:[0,1] — R be such that f"~Y) is a continuous function of
bounded variation on [0,1], for some n > 1. Then

/f D(u,v,w) — T(u, v, w) + R (f), 4.2)
and
[} 0= D)~ Ty s) + R, (43)
where 3
D<“’V’W>=uv+w[ (3) = (5) (3]
§i<f>=(ufv+w [ Guar),
E%(f): (u—v+w)(n!) / F(0af i),
- 1 1 3
Gy(t) = uBj <Zt>vB;§ (EI)+WB;§ (Zt), teR,
F}C(I):G_k(t)_B_b t€R7 k>1>
Ek:uBk<%)—ka(%>+ka<%), k> 1
and

Ty (1, v, w) = m [uTm (%) —VT,, (%) +wTy, (%)} .

Proof. Put x =1/4,1/2, 3/4 in formula (1.1) to get three new formulae. Then
multiply these new formulae by u, — v, w respectively, and add. The result is formula
(4.2). Formula (4.3) is obtained from (1.2) by the same procedure.

THEOREM 6. Assume (pl,ql) and (p2,q2) are two pairs of conjugate exponents,
1< p1,q1,p2,q2 <oo. Let |[f™|P1:[0,x] — R and | f"|P2 : [x,1] — R are R-integrable
functions for some n > 1. Then, we have

1 —
/ f(@)dr — D(u,v,w) —&—Tnl(u,v,w)‘ (4.4)
0
< K(n7pl;u7va W,X) ' Hf(n) HL”I [0,x] +K(nﬂp2;uav7 W,X) ’ ||f<n>HLp2 [x1]»
and
1 —
‘/ f(t)dtD(u,v,w)+7}1(u,v,w)‘ 4.5)
0

< K (n, p1su,v,wyx) - Hf(n)HLp1 0, + K" (n, pasu,v,w,x) - Hf(n)||L,,2[x,1]7
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where
1/q1
|‘11 dr
(u—v+w)(n!)

|: |(i2 dz

K(”?pl;l/t?v’ W7x)

K(”>p2§M7V>W7x) ( V+W

} 1/
l qz

K*(n>pl§”>V7W>x) = m |:/O |Gn(l |q1 dl:| and

. 1 N /g
K (n>p2§u7V>W7x):m |:/x ‘Gn(t)‘ dt:| .

The constants K (n, py;u,v,w,x), K(n, pa;u,v,w,x), K*(n, p1;u,v,w,x) and
K*(n,p2;u,v,w,x) are sharp for 1 < py,pa < oo and the best possible for py =1 or
p2=1

Proof. Applying the Holder inequality we have
1 1 _
| R @

(w—v+w)(n!) Jo

i L B s

(u—v+w)(n!)

)(n >/X15<r>f<"><r>dr

(w—v+w)(n!

1 1/q1
<o | L EOma] 1,0

1 1/q2
o | [ ]

= K(n.pr:u, v, )11, 0. + K . paz v )£, o

Using the above inequality from (2.3) we get estimate (4.4). In the same manner, from
(2.2) we get estimate (4.5). The proof of sharpness and best possibility is similar as in
the proof of Theorem 2.

REMARK 8. Forn=1, % <ugs<w< % and u —v+w =1 in inequality (4.4) we
get inequality

/lf(t)dt —D(u,v,w)
0

r 1
(w— ) 4 (w1 g Buw— 1) (2= 3y — 1]
40t (g +1)

N

X ”f/”L,,l[O,l/Z]

4921 (gy + 1)

r 1
—w—w) 2t (w—u+ D2 L By — 12T (2 —u— 3w)42+1] /a2

X ||f/||Lp2[1/2,1]~
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