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AN INEQUALITY FOR POLYNOMIALS WITH POSITIVE

COEFFICIENTS AND APPLICATIONS IN RATIONAL APPROXIMATION

DANSHENG YU ∗ AND SONGPING ZHOU

(communicated by J. Pečarić)

Abstract. We extend an inequality of Leviatan and Lubinsky ([3: Theorem 3.1]) to polynomials
with positive coefficients. Two applications in approximation by rational functions with pre-
scribed numerators are given.

1. Introduction

Let C[a,b] be the set of all continuous functions on [a,b] , Lp
[a,b] the set of p power

integrable functions on [a,b] such that ‖ f‖Lp
[a,b]

< ∞ , where

‖ f‖Lp
[a,b]

=
(∫ b

a
| f (x)|pdx

)1/p

, 1 � p < +∞.

In this paper, L∞[a,b] is interpreted as C[a,b], and equipped with the norm

‖ f‖L∞[a,b]
= ‖ f‖C[a,b] = max

a�x�b
| f (x)|

for f (x) ∈ C[a,b] . Let ω( f ,δ )Lp
[a,b]

be the modulus of continuity in Lp norm of f ∈
Lp

[a,b] , that is,

ω( f ,δ )Lp
[a,b]

= sup
0<h�δ

{∫ b−h

a
| f (x+h)− f (x)|pdx

}1/p

, 1 � p < +∞,

and
ω( f ,δ )L∞[a,b]

= sup{| f (x)− f (y)| : |x− y|� δ ,x,y ∈ [a,b]}.
For convenience, write

ω( f ,δ )Lp
[0,1]

= ω( f ,δ )Lp , ‖ f‖Lp
[0,1]

= ‖ f‖Lp .
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Denote by Πn(+) the set of all algebraic polynomials with positive coefficients of
degree at most n on [0,1] , that is,

Πn(+) =

{
pn(x) : pn(x) = ∑

0�k+l�n

ak,lx
k(1− x)l,ak,l � 0

}
.

Approximation by reciprocals of polynomials is a special type of rational approx-
imation. Because of the unique values in theories and applications, it has been investi-
gated extensively. For last a dozen years, many important progresses in this direction
have been achieved. Xu ([7]) established the following

THEOREM X. Let f ∈ C[0,1], f (x) � 0, x ∈ [0,1] , and f �≡ 0. Then there is a
sequence of polynomials Pn ∈Πn(+) such that

‖ f −1/Pn‖ � Cωϕ( f ,n−1/2),

where ωϕ( f , t) is the Ditzian-Totik modulus of smoothness with ϕ(x) =
√

x(1− x).

Recently, Zhao and Zhou [8] generalized Theorem Xu to include the usual Lp
[0,1]

for 1 < p < +∞ . Mei and Zhou [4] obtained an analogue in L1
[0,1] later by a different

method. When f has finitely many sign changes in some finite interval I , it is impos-
sible to approximate f (x) by reciprocals of polynomials with real coefficients, and is
also in the same situation for approximation by reciprocals of polynomials with positive
coefficients. However, in this case, f can be approximated by rational functions with
the numerators consisting of polynomials of degree l and denominators polynomials
with positive (or real) coefficients (the class of this kind of rational functions can be
denoted by Rl

n(+)). Zhou [9] investigated this type of problem by obtaining

THEOREM Z. Let f (x) ∈C[0,1] change sign exactly once, then there exist a x0 ∈
(0,1) and a Pn(x) ∈Πn(+) , such that∥∥∥∥ f (x)− x− x0

Pn(x)

∥∥∥∥
C

� Cω( f ,n−1/2).

A very recent paper of Mei [6] generalized Theorem Zhou to Lp
[0,1] spaces for

1 < p < +∞ as follows.

THEOREM M. Let l � 1 . If f (x) ∈ Lp
[0,1] , 1 < p < +∞ , changes sign l times in

(0,1) , then there exist 0 < b1 < b2 < · · · < bl < 1 , a polynomial Pn(x) ∈Πn(+) and a
positive integer N(b) only depending on b such that∥∥∥∥∥ f (x)− ∏l

j=1(x−b j)
Pn(x)

∥∥∥∥∥
Lp

� Cp,b,lω( f ,n−1/2)Lp

holds for n > N(b) , where b = min{|b j+1−b j| : j = 1,2, · · · , l−1} , Cp,b,l is a positive
constant only depending on p,b and l (independent of n and the function if b keeps
unchanged).

The following definition of sign change of a function f in Lp spaces is adopted
([5]).
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DEFINITION. Let f (x) ∈ Lp
[0,1] , 1 � p < ∞ . If there are l points 0 < a1 < a2 <

· · · < al < 1 such that

σ(Πl
j=1(x−a j)) f (x) � 0,x ∈ [0,1],σ = ±1,

and for every j = 1,2, · · · , l and any 0 < η < a j+1−a j(al+1 = 1),

mes({x ∈ (a j,a j+1) : f (x) �= 0}∩ (a j,a j +η)) > 0,

then we say f (x) changes sign exactly l times at a1,a2, · · · ,al.

In fact, it is Leviatan and Lubinsky ([3]) who first established such kind of results
for polynomials with real coefficients for f (x) changing sign exactly l times. Their
main tool used in the proof is the following important inequality:

THEOREM LL. There is an absolute constant C > 0 with the following property:
Let −1 < b1 < b2 < · · · < bl < 1 , and set

ρ(x) := Πl
j=1(x−b j).

Then there exists, for n � 3l , a polynomial S(x) of degree � n such that for x∈ [−1,1] ,

0 � 1− |ρ(x)|
S(x)

� min

⎧⎨
⎩1,

Cl
n

l

∑
j=1

√
1−b2

j

|x−b j|

⎫⎬
⎭ .

We will establish an important inequality for polynomials with positive coeffi-
cients analogue to Theorem LL, and improve Theorem Z and Theorem M as applica-
tions.

In the present paper, C always stands for an absolute positive constant, and Cp,b a
positive constant only depending on p and b , their values may be different even in the
same line.

2. An Inequality analogue to Theorem LL

THEOREM 2.1. For any 0 < b1 < b2 < · · · < bl < 1, let

ρ(x) =
l

∏
j=1

(x−b j).

Then there exists a polynomial Sn(x) ∈Πn(+) such that for any x ∈ [0,1], n � l ,

0 � 1− |ρ(x)|
Sn(x)

� min

{
1,

Cl√
n

l

∑
j=1

ϕ(x)
|x−b j|

}
. (1)

REMARK 1. Obviously, inequality (1) has better estimate than that of Theorem
LL in the sense that we use ϕ(x) instead of ϕ(b j) in the right hand, which we believe
will play important roles in establishing pointwise estimates.
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LEMMA 2.1. ([2: Corollary 4.2]) If f (x) is convex on [0,1] , then

Bn( f ,x) � Bn+1( f ,x) � f (x),0 < x < 1,

where Bn( f ,x) is the Bernstein polynomial of degree n of f (x) defined as

Bn( f ,x) =
n

∑
k=0

f (k/n)pn,k(x),

and

pn,k(x) =
(

n
k

)
xk(1− x)n−k.

Proof of Theorem 2.1. For any x0 ∈ (0,1) , Let g(x) = |x− x0| . By noting that
g(x) is convex on [0,1] , thus, by Lemma 2.1, we have

Bn(g,x) � g(x), 0 < x < 1.

Therefore,

0 � 1− g(x)
Bn(g,x)

� 1, 0 < x < 1. (2)

For any 0 < α � 2 (see DeVore [1]),

|Bn( f ,x)− f (x)| � C

(
x(1− x)

n

)α/2

if only if ω2( f ,h) = O(hα). It implies that

|Bn(g,x)−g(x)| � C
ϕ(x)√

n
. (3)

Combining Lemma 2.1 with (3), we get

0 � 1− g(x)
Bn(g,x)

=
|Bn(g,x)−g(x)|

Bn(g,x)

� C
ϕ(x)√

nBn(g,x)
� C

ϕ(x)√
ng(x)

. (4)

Set Bn,x0(x) := Bn(g,x) ∈Πn(+). By (2) and (4), we deduce that for any x0 ∈ (0,1),

0 � 1− |x− x0|
Bn,x0(x)

� min

{
1,

Cϕ(x)√
n|x− x0|

}
, 0 < x < 1. (5)

Since Bn(g,0) = g(0) and Bn(g,1) = g(1) , inequality (5) also holds for all x ∈ [0,1].
From the proof of (5), for every b j, j = 1,2, · · · , l, we actually find a polynomial

Bn,b j(x) such that

0 � 1− |x−b j|
Bn,b j(x)

� min

{
1,

Cϕ(x)√
n|x−b j|

}
, 0 � x � 1.



AN INEQUALITY FOR POLYNOMIALS WITH POSITIVE COEFFICIENTS 579

Define

Sn(x) :=
l

∏
j=1

B[n/l],b j
(x),

where [x] denotes the greatest integer not exceeding x . We will proceed to prove The-
orem 2.1 by the same manner as that of [3].

Obviously, Sn(x) is polynomial with positive coefficients and has degree at most
l([n/l]) � n. Moreover, by (5), for all 1 � j � l and x ∈ [0,1] ,

B[n/l],b j
(x) � |x−b j|,

hence

Sn(x) �
l

∏
j=1

|x−b j| = |ρ(x)|.

Next, (5) also gives

0 � 1− |ρ(x)|
Sn(x)

= 1−
l

∏
j=1

(
1−
(

1− |x−b j|
B[n/l],b j

))

� 1−
l

∏
j=1

(
1−min

{
1,

Clϕ(x)√
n|x−b j|

})

�
l

∑
j=1

min

{
1,

Clϕ(x)√
n|x−b j|

}

where we have used the inequality (see [3])

1−
l

∏
j=1

(1− y j) �
l

∑
j=1

y j, y j ∈ [0,1], 1 � j � l.

Together with the earlier estimates, we finish the proof of Theorem 2.1. �

3. Applications

3.1. Generalization of Theorem Z

THEOREM 3.1. Let l � 1 . There exists an absolute constant C > 0 with the fol-
lowing property: If f ∈C[0,1] changes sign exactly l times in (0,1) , say at b1,b2, · · · ,bl ,
then for each n � 1 , there is a polynomial Pn ∈ Πn(+) , having the same sign as f in
(bl,1) , and such that for x ∈ [−1,1] ,∣∣∣∣ f (x)− (x−b1)(x−b2) · · · (x−bl)

Pn(x)

∣∣∣∣� C(l +1)2ωϕ ( f ,n−1/2).

REMARK 2. The rational function constructed in Theorem 3.1 is copositive with
f (x) , while that of Theorem Z may not have this property since x0 may not be the same
sign changing point of f (x) .
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Let s, t ∈ [0,1/2] , set a := s+t
2 , we claim that

ϕ(a) � 1
2
ϕ(s), ϕ(a) � 1

2
ϕ(t). (6)

In fact, without loss of generality, we may assume that a � 1/2, then

ϕ2(a) = a(1−a) � 1
2
(1−a) =

1
2

(
1− s

2
+

1− t
2

)

� 1
4
(1− s) � 1

4
ϕ2(s).

By (6) and a similar discussion of [3, Lemma 3.5], we obtain

LEMMA 3.1. There exists an absolute constant C such that for s,t ∈ [0,1] and
f ∈C[0,1] ,

| f (s)− f (t)|min

{
1,

ϕ(s)√
n|s− t|

}
� Cωϕ

(
f ,

1√
n

)
. (7)

LEMMA 3.2. If f ∈C[0,1] has a zero in [0,1] , then there exists an absolute con-
stant C such that

| f (x)| � ωϕ( f ,4).

Proof. Let f (b) = 0. For any x ∈ [0,1] , write

a :=
1
2
(x+b); hϕ(a) := |x−b|.

Then

| f (x)| = | f (x)− f (b)| =
∣∣∣∣ f
(

a+
h
2
ϕ(a)

)
− f

(
a− h

2
ϕ(a)

)∣∣∣∣� ωϕ( f ,h).

Hence we only need to prove h � 4.
If both x and b are no less than 1

2 , then by noting that (see (6))

ϕ(a) � 1
2
ϕ(x), ϕ(a) � 1

2
ϕ(b),

we have

h =
∣∣∣∣1− x− (1−b)

ϕ(a)

∣∣∣∣� max{1− x,1−b}
ϕ(a)

� max

{
2
1− x
ϕ(x)

,2
1−b
ϕ(b)

}
� 4max

{
x(1− x)
ϕ(x)

,
b(1−b)
ϕ(b)

}
� 4.

If both x and b are no larger than 1
2 , then a similar discussion also leads to h � 4.
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If one of x and b is no large than 1
2 and the other is no less than 1

2 , say a � 1
2 ,

then

ϕ2(a) = a(1−a) � 1
2
(1−a) =

1
2

(
1− x

2
+

1−b
2

)
� 1

8
,

so
h = |x−b|/ϕ(a) � 2

√
2.

Proof of Theorem 3.1 Theorem 3.1 can be proved by Lemma 3.1, Lemma 3.2 with
following the line of [3, Theorem 2.1], we omit the details here.

3.2. Improvement of Theorem M.

We improve Theorem M by establishing that

THEOREM 3.2. Let l be a nonnegative integer. If f (x) ∈ Lp
[0,1], 1 < p � ∞ ,

changes sign exactly l times on (0,1) , then there exist 0 < b1 < b2 < · · · < bl < 1 ,
a polynomial Pn(x) ∈ Πn(+) and a positive integer N(b) only depending on b such
that ∥∥∥∥∥ f (x)− ∏l

j=1(x−b j)
Pn(x)

∥∥∥∥∥
Lp

� Cp(l +1)2ω( f ,n−1/2)Lp

holds for n > N(b).

REMARK 3. We improve Theorem M by using Cp(l + 1)2 to replace Cp,b,l , and
the method used in this paper is more efficient and simpler.

Without loss of generality, we always assume that l � 1.
We need the following lemmas.

LEMMA 3.3. ([5]) Let f (x) ∈ Lp
[−1,1],1 � p � ∞ , change sign exactly l times in

(0,1) . Write

fh(x) =
1
h

∫ x+h/2

x−h/2
f (u)du

as the Steklov function of f (x) . Then for sufficiently small h > 0, fh(x) also changes
sign exactly l times on (h/2,1−h/2).

LEMMA 3.4. ([8]) Let f ∈ Lp
[0,1] . Extend f to a function FN ∈ Lp

[−1,2] on the

interval [−1,2] as follows:

FN(x) :=

⎧⎪⎨
⎪⎩

f (x), x ∈ [0,1],
N
∫ 1
1−1/N f (t)dt, x ∈ (1,2],

N
∫ 1/N
0 f (t)dt, x ∈ [−1,0),

where N be a positive integer. Then

ω
(
FN(x),N−1)

Lp
[−1,2]

� Cω( f ,N−1)Lp .
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By the definition, we observe that FN(x) has the same number of sign change
points as f (x) for sufficient large N . Denote by FN,h the corresponding Steklov func-
tion of FN(x) , then by Lemma 3.3, we see that FN,h has the same sign change number
as that of f (x) . Altogether the above observation, with Lemma 3.4, and the well known
properties of Steklov functions, leads to

LEMMA 3.5. Let f ∈ Lp
[0,1],1 � p � ∞, then

‖FN −FN,h‖Lp
[−1+h/2,2−h/2]

� Cω(FN ,h)Lp
[−1,2]

� Cω( f ,h)p, (8)

and

‖(FN,h)′‖Lp
[−1+h/2,2−h/2]

� Cω(FN ,h)Lp
[−1,2]

� Cω( f ,h)p. (9)

LEMMA 3.6. ([8]) Let f (x) ∈ Lp
[0,1],1 < p �∞, f (x) � 0, x ∈ [0,1], and f �≡ 0.1

Then there exists a polynomial Qn ∈Πn(+) such that

∥∥∥∥ f − 1
Qn

∥∥∥∥
Lp

� Cpω( f ,n−1/2)Lp .

Proof of Theorem 3.2. We need to prove Theorem 3.2 in case 1 < p < ∞ by
induction on l , the number of sign changes. Assume that f (x) ∈ Lp

[0,1], 1 < p < ∞ ,

changes sign l times in (0,1) , then as we have pointed out FN,h(x) also changes sign l
times in (0,1) , say at 0 < b1 < b2 < · · · < bl < 1, for sufficient large N and sufficient
small h > 0. From now on, we will always take N = h−1 = n−1/2 .

When l = 1, according to Theorem 2.1, there exists a polynomial Bn(x) ∈Πn(+)
such that

0 � 1− |x−b1|
Bn(x)

� min

{
1,

Cϕ(x)√
n|x−b1|

}
. (10)

We restrict FN,h(x) on [0,1] . By Lemma 3.6, there exists a polynomial Qn(x) ∈Πn(+)
such that (by (8))

∥∥∥∥|FN,h|− 1
Qn

∥∥∥∥
Lp

� Cpω(|FN,h|,n−1/2)Lp � Cpω(FN,h,n
−1/2)Lp

� Cp

(
‖FN −FN,h‖Lp +ω(FN,n−1/2)Lp

)
� Cpω( f ,n−1/2)Lp . (11)

1 f �≡ 0 means mes (x : f �= 0) > 0 .
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Let Pn(x) = Bn(x)Qn(x) , then

∣∣∣∣FN,h(x)− (x−b1)
Pn(x)

∣∣∣∣ =
∣∣∣∣|FN,h(x)|− |x−b1|

Pn(x)

∣∣∣∣
=
∣∣∣∣|FN,h(x)|

(
1− |x−b1|

Bn(x)

)
+

|x−b1|
Bn(x)

(
|FN,h(x)|− 1

Qn(x)

)∣∣∣∣
� |FN,h(x)|min

{
1,

C√
n|x−b1|

}
+

|x−b1|
Bn(x)

(
|FN,h(x)|− 1

Qn(x)

)
=: I1 + I2. (12)

By (11) and the inequality (see (10))

|x−b1|
Bn(x)

� 1,x ∈ [0,1],

we have

‖I2‖Lp � Cpω( f ,n−1/2)Lp . (13)

Define the Hardy-Littlewood maximum function M( f ,x) by

M( f ,x) = sup
x∈I

1
|I|
∫

I
| f (t)|dt,

then it is well-known that

‖M( f )‖Lp � Cp‖ f‖Lp , p > 1. (14)

Since FN,h(x) ∈C[0,1] , then FN,h(b1) = 0. For any x �= b1 and p > 1, it holds that

|FN,h(x)|p min

{
1,

1√
n|x−b1|

}p

=
(
|FN,h(x)−FN,h(b1)| 1√

n|x−b1|
)p

� 1
(
√

n)p (M((FN,h)′p. (15)

From (9), (10), (14) and (15), we have

‖I1‖Lp � 1√
n‖M((FN,h)′)‖Lp � Cp√

n‖(FN,h)′‖Lp

� Cpω( f ,n−1/2)Lp . (16)

Combining (12), (13) and (16) yields that∥∥∥∥FN,h(x)− (x−b1)
Pn(x)

∥∥∥∥
Lp

� Cpω( f ,n−1/2)Lp . (17)



584 DANSHENG YU AND SONGPING ZHOU

With (8) and (17), we get∥∥∥∥ f (x)− (x−b1)
Pn(x)

∥∥∥∥
Lp

� ‖ f −FN,h‖Lp +
∥∥∥∥FN,h(x)− (x−b1)

Pn(x)

∥∥∥∥
Lp

= ‖FN −FN,h‖Lp +
∥∥∥∥FN,h(x)− (x−b1)

Pn(x)

∥∥∥∥
� Cpω( f ,n−1/2)Lp .

Thus Theorem 3.2 holds for l = 1.
Assume that Theorem 3.2 holds in case f (x) changes sign l − 1 times, that is,

there exists a polynomial An(x) ∈Πn(+) such that∥∥∥∥∥ f (x)− ∏l−1
j=1(x−b j)

An(x)

∥∥∥∥∥
Lp

� Cpl
2ω( f ,n−1/2)Lp .

Set F̃N,h(x) = FN,h(x)sgn(x−bl), For F̃N,h(x) , we obviously have

ω(F̃N,h,t)Lp � ω(FN,h,t)Lp � ω( f ,t)Lp . (18)

Now, F̃N,h(x) change sign l − 1 times in (0,1) . By the assumption and (18), there
exists a polynomial Cn(x) ∈Πn(+) such that∥∥∥∥∥F̃N,h(x)−

∏l−1
j=1(x−b j)

Cn(x)

∥∥∥∥∥
Lp

� Cpl
2ω( f ,n−1/2)Lp .

Employing Theorem 2.1 again, we see that there exists a polynomial Dn(x) ∈ Πn(+)
such that ∣∣∣∣1− |x−bl|

Dn(x)

∣∣∣∣� min

{
1,

C√
n|x−bl|

}
.

Define
En(x) = Cn(x)Dn(x),

then ∥∥∥∥∥FN,h(x)−
∏l

j=1(x−b j)
En(x)

∥∥∥∥∥
Lp

=

∥∥∥∥∥F̃N,h(x)sgn(x−bl)−
∏l

j=1(x−b j)
Cn(x)Dn(x)

∥∥∥∥∥
Lp

�
∥∥∥∥F̃N,h

(
sgn(x−bl)− (x−bl)

Dn(x)

)∥∥∥∥
Lp

+

∥∥∥∥∥
(

F̃N,h(x)−
∏l−1

j=1(x−b j)

Cn(x)

)
(x−bl)
Dn(x)

∥∥∥∥∥
Lp

�
∥∥∥∥|F̃N,h(x)|

∣∣∣∣1− |x−bl|
Dn(x)

∣∣∣∣
∥∥∥∥

Lp

+

∥∥∥∥∥
∣∣∣∣∣F̃N,h(x)−

∏l−1
j=1(x−b j)

Cn(x)

∣∣∣∣∣ |x−bl|
Dn(x)

∥∥∥∥∥
Lp

:= J1 + J2.
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Note that |F̃N,h(x)|= |FN,h(x)| and FN,h(bl) = 0, then repeat the proof of the case l = 1,
we can easily deduce that

J1 � Cpω( f ,n−1/2)Lp ,

and
J2 � Cpl

2ω( f ,n−1/2)Lp .

Finally, we achieve that∥∥∥∥∥ f (x)− ∏l
j=1(x−b j)
En(x)

∥∥∥∥∥
Lp

� ‖ f −FN,h‖Lp +
∥∥∥∥FN,h(x)− ∏l

j=1(x−b j)
En(x)

∥∥∥∥
Lp

� Cp(l +1)2ω( f ,n−1/2)Lp

to complete Theorem 1. �
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