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Abstract. Motivated by statistical and actuarial applications of Grüss’s inequality, we argue that
the inequality can be sharpened if there is additional information about the mean values of the
two functions in Grüss’s inequality. In this sense, our research deviates from a large body of
literature where Grüss’s inequality has been sharpened by imposing more smoothness on the
functions.

1. Introduction

Grüss (1935) proved that if two functions f (x) and g(x) are such that a � f (x) �
A and b � g(x) � B for all x in an interval [x1,x2] , then
∣∣∣∣ 1
x2−x1

∫ x2

x1

f (x)g(x)dx− 1
(x2−x1)2

∫ x2

x1

f (x)dx
∫ x2

x1

g(x)dx

∣∣∣∣ � 1
4
(A−a)(B−b). (1.1)

Inequality (1.1) can be reformulated in probabilistic terms as follows. Let ξ be a ran-
dom variable uniformly distributed on the interval [x1,x2] . That is, the probability
density function of ξ is equal to (x2 − x1)−1 when x ∈ [x1,x2] and 0 for all other
x ∈ R . The difference inside the absolute values on the left-hand side of inequality
(1.1) can now be written as E[ f (ξ )g(ξ )]−E[ f (ξ )]E[g(ξ )] , which is the covariance
Cov[ f (ξ ),g(ξ )] . Consequently, inequality (1.1) is equivalent to

∣∣Cov[ f (ξ ),g(ξ )]
∣∣ � 1

4
(A−a)(B−b). (1.2)

In general, the constant 1/4 cannot be replaced by any smaller one. It is worth also
noting that when the functions f (x) and g(x) are non-decreasing, or both are non-
increasing, then the random variables X = f (ξ ) and Y = g(ξ ) are called comonotonic
and play an important role in actuarial science (see, e.g., Denuit, Dhaene, Goovaerts,
and Kaas, 2005).

We can formulate Grüss’s inequality for general random variables X and Y with-
out assuming any specific structure of the random variables. Namely, let (Ω,A ,P) be
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a probability triplet, and let X and Y be random variables such that a � X � A and
b �Y � B for some finite a � A and b � B . Then (see Theorem 1 by Dragomir, 1999)

∣∣Cov[X ,Y ]
∣∣ � 1

4
(A−a)(B−b), (1.3)

which is the ‘probabilistic interpretation’ of Grüss’s inequality that we refer to in the
title of this paper.

NOTE 1.1. The aforementioned Theorem 1 by Dragomir (1999) concerns with
general inner spaces. Hence, in order to derive bound (1.3) from the theorem, we
choose the space L2(Ω,A ,P) of all random variables with finite second moments
E[X2] =

∫
ΩX2(ω)P(dω) equipped with the inner product 〈X ,Y 〉 = E[XY ] . For fur-

ther generalizations of Grüss’s inequality in inner spaces, see Dragomir (2005) and Ma
(2007).

In the next section we shall present a problem that has motivated our interest in
Grüss’s inequality. There we also obtain a sharper inequality assuming additional infor-
mation about the location of the means E[X ] and E[Y ] . Section 3 concludes the paper
with afterthoughts.

2. A sharper Grüss-type bound

Numerous statistical and actuarial applications rely on constructing confidence
intervals for the unknown mean E[X ] , also known as the net premium in actuarial
science, using the empirical mean n−1∑n

i=1 Xi of independent (or dependent) copies
X1, . . . ,Xn of X . Given a confidence level, say (1−α)100%, the margin of error of
the asymptotic confidence interval for E[X ] is z1−α/2

√
σ2[X ]/n , where z1−α/2 is the

(1− α/2) th standard normal quantile, whose numerical value is known given α ∈
(0,1) . Hence, to determine the minimal sample size n needed to achieve a specified
margin of error, we need a good estimate of the variance σ2[X ] , which is unknown.
However, since in many applications we may reasonably assume that a � X � A for
some finite constants a and A , from Grüss’s inequality (1.3) with X ≡ Y , and also
using the equation σ2[X ] = Cov[X ,X ] , we obtain the bound

σ2[X ] � 1
4
(A−a)2. (2.1)

Two notes follow before we resume our main discussion.

NOTE 2.1. Bound (2.1) is the best possible in the sense that there is a randomvari-
able, say X0 , for which inequality (2.1) is an equality. Indeed, rephrasing Dragomir’s
(1999, pp. 76–77) example, let ε be a Bernoulli random variable taking on two values
±1 with the same probability 1/2, and let X0 be defined by X0 = 2−1(A+a)+2−1(A−
a)ε . Note that X0 = a and X0 = A with the same probability 1/2, which provides a
convenient redefinition of X0 . The mean of this random variable is E[X0] = (A+a)/2,
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and the second moment E[X2
0 ] = (A2 + a2)/2. Consequently, the variance σ2[X0] ,

which is E[X2
0 ]− (E[X0])2 , can be written as follows:

σ2[X0] =
1
4
(A−a)2.

This equation establishes the optimality of bound (2.1). Note in passing that we have
just proved that supa�X�Aσ2[X ] = σ2[X0] .

NOTE 2.2. Bound (2.1) holds for every random variable X such that a � X � A .
If, however, we also happen to know, or assume, that the mean E[X ] is zero, then we
have that σ2[X ] = −aA−E[(A−X)(X−a)] and so

σ2[X ] � −aA. (2.2)

(Note that when E[X ] = 0, then a � 0 and A � 0, and so −aA � 0.) Bound (2.2) is
sharper than bound (2.1) except in the case a = −A when the two bounds coincide.

The above notes lead us naturally to the following problem: Suppose that in view
of our understanding of the physical phenomenon at hand, or some other considerations,
we know that the mean E[X ] is in an interval [μ1,μ2] ⊆ [a,A] . Under this additional
information, what upper bound can we have for σ2[X ]? An answer to this question is
provided in Theorem 2.1 below. Before formulating it we first note that the inclusions
E[X ] ∈ [a,A] and E[Y ] ∈ [b,B] always hold. Furthermore, since Cov[X ,Y ] = 0 when
a = A and/or b = B , we can and thus do assume without loss of generality that a < A
and b < B .

THEOREM 2.1. Assume that E[X ] ∈ [μa,μA] and E[Y ] ∈ [μb,μB] for some inter-
vals [μa,μA] ⊆ [a,A] and [μb,μB] ⊆ [b,B] . Then we have that

∣∣Cov[X ,Y ]
∣∣ � (1−A)(1−B)

1
4
(A−a)(B−b), (2.3)

where A and B are what we call ‘information coefficients’, defined by the equations

A = 1− 2
A−a

sup
x∈[μa,μA]

√
(A− x)(x−a) ,

B = 1− 2
B−b

sup
x∈[μb,μB]

√
(B− x)(x−b) .

Proof. The proof is elementary and starts with |Cov[X ,Y ]| � σ [X ]σ [Y ] , which
is of course a consequence of the Cauchy–Bunyakovsky-Schwarz inequality. Next we
note that σ2[X ] � (A−E[X ])(E[X ]−a) and, likewise, σ2[Y ] � (B−E[Y ])(E[Y ]−b) .
Since E[X ] ∈ [μa,μA] and E[Y ] ∈ [μb,μB] , we have that

|Cov[X ,Y ]| �
√

(A−E[X ])(E[X ]−a)
√

(B−E[Y ])(E[Y ]−b)

� sup
x∈[μa,μA]

√
(A− x)(x−a) sup

x∈[μb,μB]

√
(B− x)(x−b).

Bound (2.3) follows.
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NOTE 2.3. The ‘information coefficients’ A and B are always in the interval
[0,1] . The fact that the coefficients do not exceed 1 immediately follows from their
definitions. To see that the coefficients are non-negative, we just need to notice that the
function x �→ (A− x)(x− a) achieves its maximum at x = (a+A)/2, which is in the
interval [a,A] .

NOTE 2.4. When [μa,μA] = [a,A] , which means that there is no additional infor-
mation about the mean E[X ] since it is always in [a,A] , then A = 0. Likewise, when
[μb,μB] = [b,B] , then B = 0. In summary, when there is no ‘useful’ additional infor-
mation about X and Y , that is, when A = 0 and B = 0, then we have Grüss’s bound
(1.3).

NOTE 2.5. The case (a+A)/2∈ [μa,μA] gives A = 0. Hence, in this case know-
ing that E[X ]∈ [μa,μA] is not useful in the current context. However, when the interval
[μa,μA] does not cover the point (a+A)/2, then A > 0 and thus bound (2.3) is sharper
than Grüss’s bound (1.3). In this case, therefore, knowing that E[X ] ∈ [μa,μA] is a
useful bit of information.

NOTE 2.6. If we know that E[X ] = 0, then we can choose μa = 0 = μA , which
gives the equation

A = 1− 2
A−a

√−aA .

If, in addition, E[Y ] = 0, then we have an analogous equation for B . Hence, when the
means of X and Y are both equal to zero, then bound (2.3) reduces to∣∣Cov[X ,Y ]

∣∣ �
√−aA

√−bB . (2.4)

When X = Y , bound (2.4) reduces to bound (2.2).

NOTE 2.7. In view of Theorem 2.1, we can now reflect upon Grüss’s original
inequality (1.1) and see that it can be sharpened depending on the values of (x2 −
x1)−1 ∫ x2

x1
f (x)dx and (x2 − x1)−1 ∫ x2

x1
g(x)dx . Likewise, in the notation of Dragomir

(1999) and Ma (2007), the upper bound of Grüss’s inequality in inner spaces can be
sharpened depending on the values of the inner products 〈x,e〉 and 〈y,e〉 .

NOTE 2.8. There are of course many other extensions and generalizations of Grüss’s
inequality. For recent contributions to the area, we refer to, e.g., Dragomir (2005),
Cerone (2006), Dragomir (2007), Elezović, Marangunić and Pečarić (2007), as well as
to the references therein.

3. Afterthoughts

In our considerations so far, we have not assumed any particular dependence
structure between the random variables X and Y . One can of course take a differ-
ent route and specify a dependence structure of some particular theoretical or practi-
cal interest. For example, when X and Y are ‘perfectly’ positively dependent (i.e.,
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X = Y ) or ‘perfectly’ negatively dependent (i.e., X = −Y ), then bound (1.3) says that
|Cov[X ,Y ]| � (A− a)2/4. On the other hand, when X and Y are uncorrelated, then
Cov[X ,Y ] = 0 by definition. This opens up yet another venue for sharpening Grüss’s
inequality.

NOTE 3.1. Dependence structures between two random variables are frequently
defined in terms of their joint distribution function (s,t) �→ P[X � s,Y � t] . This func-
tion and the covariance Cov[X ,Y ] are related to each other via Hoeffding’s (1940)
equality

Cov[X ,Y ] =
∫

R

∫
R

(
P[X � s,Y � t]−P[X � s]P[Y � t]

)
dsdt; (3.1)

see Block and Fang (1988) for a multivariate version. Among various ways for specify-
ing the joint distribution function, we can utilize the notion of copula, which has been
actively explored and utilized in various theoretical and applied contexts (see, e.g., De-
nuit, Dhaene, Goovaerts, and Kaas, 2005; Nelsen, 2006).

Next, let X = f (ξ ) and Y = g(ξ ) , where the random variable ξ is same as in
Section 1. Then the integrand in (3.1) can be written as

1
x2− x1

∫ x2

x1

1{ f (x) � s,g(x) � t}dx

−
(

1
x2 − x1

∫ x2

x1

1{ f (x) � s}dx

)(
1

x2− x1

∫ x2

x1

1{g(x) � t}dx

)
, (3.2)

where the indicator 1{S} is equal to 1 if statement S is correct and 0 otherwise. Re-
placing the integrand in (3.1) by quantity (3.2), we arrive at an alternative representation
of the covariance Cov[ f (ξ ),g(ξ )] in (1.1). Note, for example, that

(x2− x1)−1
∫ x2

x1

1{ f (x) � s}dx

can be interpreted as the amount of ‘time’ that the function f (x) spends below the level
s relative to the length of the ‘time’ interval [x1,x2] . Analogous interpretations hold for
the two other integrals in (3.2).
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