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THE GENERALIZED HYPERGEOMETRIC
FUNCTION AND ASSOCIATED FAMILIES OF
MEROMORPHICALLY MULTIVALENT FUNCTIONS

M. K. AOUF

(communicated by J. Pecaric)

Abstract. Making use a linear operator, which is defined here by means of the Hadamard prod-
uct (or convolution) involving the generalized hypergeometric function, we introduce two novel
subclasses O q5(01;A,B,A) and Q}f , (01;A,B,A) of meromorphically multivalent functions
of order A (0 <A < p) in the punctured disc U*. In this paper we investigate the various impor-
tant properties and characteristics of these subclasses of meromorphically multivalent functions.
We extend the familiar concept of neighborhoods of analytic functions. We also derive many
results for the Hadamard products of functions belonging to the class Q;r“”( og;A,B,A).

1. Introduction

Let ¥, denote the class of functions f(z) of the form:
f@ =7+ Y ad? (peN={1,2,..}), (L.1)
k=1
which are analytic and p-valent in the punctured disc
U'={z:zeC and 0<|7]<1}=U\{0}.

For functions f(z) € ¥, givenby (1.1) and g(z) € ¥, given by

glr)=z"+ i b " (peN), (1.2)
k=1

we define the Hadamard product (or convolution) of f(z) and g(z) by
(f*8)@) =27+ Y asd ™" = (g% f)(2) - (1.3)
=1

For complex parameters
or,....,0gand Bi,...B8 (Bj¢Z, ={0,—1,-2,..}; j=1,2,....5),
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we now define the generalized hypergeometric function (Fy(ct, ..., 04: B, ..., Bs:z) by

o (on)e(og) 2

F; PRXER) 5Py -5 Ps32) = Tha N AN 1y

q ‘(al a(i ﬁl ﬁ Z) ]Z:O (ﬁl)k~-~(ﬁs>k k'
(g<s+1;q, s€Ny=NU{0}; z€ U), (1.4)

where (0)y is the Pochhammer symbol defined, in terms of the Gamma function T, by

0) _re+v) [1 (v=0; 0 € C\{0}), (1.5)
YTTTO) 100+ (0+v—1),(VEN; 0 €C). '
Corresponding to the function (o, ..., 0t; b1, ..., Bs; 2) , defined by
h,,(al,...,ocq;ﬁl,...,ﬁs;z) :Ziquy(Oll,...,OCq;ﬁl,...,BS;Z) R (1.6)

we consider a linear operator
Hy(ot,...,0q:P1,....B5) 1 Zp — 2,
which is defined by means of the following Hadamard product (or convolution):

H,,(ocl,...,ocq;ﬁl,...,Bs)f(z) = h,,(OCl,...,Olq;ﬁl,...,ﬂs;z) *f(Z) . (17)

We observe that, for a function f(z) of the form (1.1), we have

. - R
Hpy(aty, ..., 0tgs Br, -, Bs) f(2) =2 p+k§:17(ﬁl)k-~-(ﬁs)k Tk P, (1.8)

o

If, for convenience, we write

Hp7q7s(061):Hp(Oll,...(Xq;Bl,...7BS) s (19)

then one can easily verify from the definition (1.7) that

/!

Z(HI7-,¢I-,S(al )f(Z)) = aal,q,s(al + 1)f(Z) - (061 er)Hp.,q,s(al )f(Z) (1.10)

The linear operator Hp, 4 ¢(ct;) was investigated recently by Liu and Srivastava [20].
Some interesting subclasses of analytic functions associated with the generalized hy-
pergeometric function, were considered recently by (for example) Dizok and Srivastava
([8] and [9] ), Gangadharan et al. [10] and Liu [17].

For fixed parameters A,B and A (-1 < B<A<1; 0< A <p; pEN), we say
that a function f(z) € X, is in the class Q) 4 <(a1;4,B,A) of meromorphically p-valent
functions in U if it also satisfies the inequality:

<1 (zeU). (1.11)
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Furthermore, we say that a function f(z) € Oy, ((@1;A,B,A) wherever f(z) is of the
form [cf. Equation. (1.1)]:

fo)=7"+ i lax|Z* (peN). (1.12)
k=p

We note that:

pqs(al B ﬁ A’) = pqs(al,ﬂ, ﬁ)

2(Hpgs(on)f (z)) +p
= ff(Z) 62,, and (H sz:; (1)) SZ) <ﬁ
s(e1)f(2)
H;ZS(OCI) f(z) +24—p
eV 0<A<pipeN: 0<f< L)} (1.13)

Meromorphic multivalent functions have been extensively studied by (for exam-
ple) (Mogra [21] and [22]), Uralegaddi and Ganigi [28], Uralegaddi and Somanatha
[29], Aouf ([4] and [5]), Aouf and Hossen [6], Srivastava et al. [27], Owa et al. [23],
Joshi and Aouf [13], Joshi and Srivastava [14], Aouf et al. [7], Rania and Srivastava
[24], Yang ([30] and [31]), Kulkarni et al. [15], Liu [16] and Liu and Srivastava ([18]
and [19]).

In this paper we investigate the various important properties and characteristics
of the classes Q, 4(1;A,B,A) and Q;q’s(al;A,B,/l). Following the recent inves-
tigations by Altintas et al. [3, p. 1668], we extend the concept of neighborhoods of
analytic functions, which was considered earlier by (for example) Goodman [11] and
Ruscheweyh [25], to meromorphically multivalent functions, belonging to the classes
Opgs(01;A,B,A) and Q) (0n;A,B,A). We also derive many results for the Hada-
mard products of functions belonging to the p-valently meromorphic function class
Q;qs(al 7A7B7A) :

2. Inclusion properties of the class O, , ;(c1;A4,B,A)

We begin by recalling the following result (popularly known as Jack’s lemma
[12]), which we shall apply in proving our first inclusion theorem (Theorem 1 below).

LEMMA 1. Jack’s lemma (see [12]) Let the (nonconstant) function w(z) be ana-
Iytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| =r < 1
at a point zo € U, then

2w (20) = tw(20) , (2.1)

where Y is a real number and y > 1.

THEOREM 1. Let oy € R\{0}. If

(A-B)(p—4)

oy >
1= 1+B

(-1<B<A<1;0<A<p,peN), (2.2)
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then
Qp,q,s(al + 1§A>B7A) - Qp,q,s (Otl;A,B,)t) .

Proof. Let f(z) € Qpqs(c1+1;A,B,A) and suppose that

WHpgs()f (@) p+[pB+(A—B)(p—A)w(2) 23

Hpqs(0u)f(2) 1+ Bw(z)

where the function w(z) is either analytic or meromorphic in U, with w(0) = 0. Then,
by using (1.10) and (2.3), we have

Hpqs(c1+1)f(2) _ o+t [uB—(A—B)(p—A)]w(z)
Hp.,q.,s(al )f(Z) 1+ BW(Z) '
By differentiating (2.4) with respect to z logarithmically and using (1.10), we have
2(Hpgs(a +1)f(2)) _ p+[pB+(A—B)(p—A)]w(2)
Hp,q,s(al + 1)f(Z) 1 +BW(Z)

B (A=B)(p—A)aw (2)
[1+Bw(z){a1 +[ouB—(A—=B)(p—A)w(z)}

2.4)

(2.5)
If we suppose now that
max [w(z)| = |w(z0)| =1 (20 € U), (2.6)
|z/<]zol
and applying Jack’s lemma, we find that
20w (20) = yw(z0) (¥ > 1). 2.7)

Writing w(zg) = € (0 < 0 < 27) and putting z = 79 in (2.5), we get
0(Hpgsloa £/ o) ’
H[Lq.x(“l*’l)f(ZO)

(Hp.q.s(01+1)f(z0))’
B )+ [PB+(A—B)(p— W

_ (o +7)+[ouB—(A—B)(p—A)]e”
on+ By —y) — (A—B)(p—A)lel®
_ V2(1-B%)+2y[ou (1+B)~B(A—B) (p—A)|+2y[201 B—(A—B) (p—A )] cos 0
|0 +[B(ot1 —y)— (A—B) (p—2)]ei®?
—1<B<A<LL;0<A<p; peN). (2.8)

+p

—1

-1

A
(@ > g0

Set

g(0) =y*(1-B*) +2y[ou(1+B*) — B(A—B)(p—1)]
+2y2a1B — (A—B)(p—A)|cos® (0< 6 <2m). (2.9)
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Then, by hypothesis, we have
8(0) =y*(1 = B%) +2y(1+B)[ou(1+B) ~ B(A~B)(p—A)] > 0

and
g(m) =y’ (1-B%)+2y(1+B)[ou(1 - B)+ (A—B)(p—1)] >0,

which, together, imply that
g(0)=>0 (0<0<2m). (2.10)

In view of (2.10), (2.8) would obviously contradict our hypothesis that f(z) € Q,, 4 +(c1 +
1;A,B, ). Hence, we must have |w(z)| < 1(z € U), and we conclude from (2.3) that
f(z) € Qpgs(0u +1;A,B,A). The proof of Theorem 1 is thus completed.

Next we prove an inclusion property associated with a certain integral transform
introduced below.

THEOREM 2. If f(z) € Qpqs(0u;A,B,A), then the function g(z) given by the
following integral transform:

Hpasto)s(@) = | AP [0 by () (0P
0

p(A+1)—A(A—B)

(B> 0: Re (u) > B2

>0,0<A<p,peN) (2.11)

is also in the same class Qp 4(Q1;A,B,A).

Proof. Suppose that f(z) € O, 4.5(0;A,B,A) and put

I

Hpgs()gz)  p+[pB+(A—B)(p—A)w() (2.12)

Hp.,q.,s(al )g(z) 1 +BW(Z)

where the function w(z) is either analytic or meromorphicin U, with w(0) = 0. Then,
by using (2.11) and (2.12), we find after some calculations that

/!

Hpgs()f(z) _ p+[pB+(A—B)(p—A)w() (2.13)

Hpq5(0n)f(2) 1+ Bw(z)
(A=B)(p—21)zw'(2)
[1+Bw(2)][(n — pB) +{uB —B[pB+(A—B)(p—A)|}w(z)]

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1 and so is
omitted.
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3. Properties of the class O, (a1;A,B,1)

In this section we assume further that
0;j>0(j=1,...,9),B;>0(j=1,..,5), A+B<O0 (-1 <B<A<I1),0<A<p
and peN.

We first determine a necessary and sufficient condition for a function f(z) € £,
of the form (1.12) to be in the class Q;w(al;A,B,k) of meromorphically p-valent
functions with positive coefficients.

THEOREM 3. Let f(z) € X, be given by (1.12). Then f(z) € Q) , ((01;A,B,A) if
and only if

3 [(k+p)(1—B)— (A~ B)(p— AT plon)lax < (A—B)(p—a),  (3.1)
k=p

where, for convenience,

(o) m---(Otg)m

Enlen) = BBl

(meN). (3.2)

Proof. Let f(z) € O, (c1;A,B,A) is given by (1.12). Then, from (1.11) and
(1.12), we have

W(Hpgs(0)F(2))
"y a)fc TP

(Hp.g.s(01)f(2)
B T B+ (A=B)(p—2)]

S (k+p)Tes plotn) ag |27
_ =) <1 (zeU). (33)
(A=B)(p=A)+ 3 [(A=B)(p—A) - (kp)BILes o) g 247
14

o~

I ™8

Since |Re (z)| < |z](z € C), choosing z to be real and letting z — 1~ through real
values, (3.3) yields

o o

Y (ktp)Tisp(n)|ar] < (A= B)(p=2)+ Y [(A=B)(p—2)+ (k+p)B]Tks plctr) ] ,

k=p k=p
34
which leads us at once to (3.1).
In order to prove the converse, we assume that the inequality (3.1) holds true.
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Then, if we let z € dU, we find from (1.12) and (3.1) that

W(Hp.gs(0)F(2))
"y @) TP

(Hpg.s(e)f(2))
B* H;’Z.X(“i)f(§> + [PB +(A— B)(p - A)}

S (k+ p)Tesplon)|a

< —
(A=B)(p—A)+ X [(A=B)(p—A)+ (kt p)BITks pl0n ) ]
=p
<1 (zedU={z:zeCandlz|=1}). (3.5)

Hence, by the maximum modulus theorem, we have f(z) € Q) , ((01;A,B,A). This
completes the proof of Theorem 3.

COROLLARY 1. Let f(z) € £, be given by (1.12). If f(z) € O}, ,(01;A,B,4),
then

(A-B)(p—4)
k+p)(1=B) = (A=B)(p—A)[Tkyp(n)

lax| < T (k= p;p€N). (3.6)

The result is sharp for the function f(z) given by

(A=B)(p—4)

L Ty T (A=B)(p—2)|Trp(on)

* (k=p;peN). (3.7)

THEOREM 4. The following inclusion relationship holds true:

Q) (1 +1A,BA) C O, (ou;A,BAY),

P:q,S
where
(1-B)(p—A)au

M P B w2 (A B )

(3.8)

The result is sharp.

Proof. We first assume that the function f(z), given by (1.12), belongs to the class
0, 4501+ 1;A,B,A). Then, by using Theorem 3, we have

i [(k+p)(1 —B) — (A—B)(p — A)[Tksp(ou + 1)

<1. 39
t (A—B)(p—l) ‘ak‘ ( )
In order to prove that f(z) € Q) , ((01;A,B,A*), we must have
< [(k+p)(1—B)—(A—=B)(p—A%)|T
S R T W
=p
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Thus, in view of (3.9), (3.10) will be satisfied if

[(k+p)(1 —B) — (A—B)(p — A")|Tksp(on)

(A=B)(p—A%)
[(k+p)(1 —B) — (A= B)(p = A)|Tksp(0u +1)
< [ — k=
This is equivalent to

(1-B)(u+k+p)—(A-B)(p—2)

Since the right-hand side of (3.11) is an increasing function of k, putting k = p in
(3.11), we get (3.8).
Finally the result is sharp for the function f(z) given by

(A-B)(p—4)
2p(1—B) —(A=B)(p—A)Tap(on +1)

f@=z7"+ # (peN). (3.12)

Next we prove the following growth and distortion properties for the class O
A,B,)).

pqs(al;

THEOREM 5. Ifafunction f(z) definedby (1.12)is in the class O} , [(a1;A,B, 7).
If the sequence {Cy} is nondecreasing, then

<@+m4n_m—mw—m p! ﬁgr@W>
)l

(p—1)! Cp (p—m)!
(m) (p+m-1! (A-B)(p—A) p! , ) —(ptm)
<|ral< (P52 ¢ -mt )
(3.13)

O<|zl=r<L;0<A<p;meNy=NU{0}; pEN; p>m),
where

Ce=[(k+p)(1—=B)—(A=B)(p—A)ksp(cn) (k= pip €N). (3.14)
The result is sharp for the function f(z) given by

fR)=z7"+ (A-B)(p-2) Z(peN). (3.15)

2p(1=B) = (A=B)(p—A)lp(0)

Proof. In view of Theorem 3, we have

G
'Zk'\ak\ ZCklak\ (A=B)(p—4),
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which yields

A—B)(p—4)p!

Y k! <( c (pEN). (3.16)
k=p P

Now, by differentiating both sides of (1.12) m times with respect to z, we have

(m) [ m(p+m71)! —(p+m) < k! k—m
f (Z)_( 1) (p—l)' z P +k:§:p(k_m)'|ak‘z )

(meNy; pEN; p>m), (3.17)

and Theorem 5 follows easily from (3.16) and (3.17).
Finally, it is easy to see that the bounds in (3.13) are attained for the function f(z)
given by (3.15).

Next we determine the radii of meromorphically p-valent starlikeness of order
0 (0 < 0 < p) and meromorphically p-valent convexity of order 8 (0 < § < p) for
functions in the class Q7 , (0134, B,4).

THEOREM 6. Let the function f(z) defined by (1.12) be in the class O}, (ou;
A,B,A) Then

(i) f(z) is meromorphically p-valent starlike of order & (0 < 8 < p) in the disc
lz| <7y, that is,

Re (—i{é?) >8 (zl<r;0<8<p; peN), (3.18)

where

A CELI LI RE T) RC e

kp k+0)(A—B)(p—1)

(ii) f(z) is meromorphically p-valent convex of order § (0 < 8 < p) in the disc
|z| < 1, that is,

Re —(1+Zf,”(z)) >8 (ld<m:0<8<p:peN), (3.20)
f(2)
where
[ pp—8)[(k+ p)(1 —B) — (A—B)(p— A)|Te pt) | F7
“‘225{ k1 8)A_B)(p—A) - } - 62D

Each of these results is sharp for the function f(z) given by (3.7).
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Proof. (i) From the definition (1.12), we easily get

oo

M0) 3 (k+p)lax] |7
TP | ep 3.22
o < = (3.22)
e P28 2(p—5)—k2 (k—p+20) a7
=P
Thus, we have the desired inequality:
S
f(f;”i <1(0<8<p;peN) (3.23)
zf (2
if c s
D (%) lag||zFP < 1. (3.24)
p—

k=p
Hence, by Theorem 3, (3.24) will be true if

<k+5) ot < (k+p)(1-B)—(A-B)(p—4)
p—5 (A=B)(p—4)

The last inequality (3.25) leads us immediately to the disc |z| < r;, where r; is given
by (3.19).

(i1) In order to prove the second assertion of Theorem 6, we find from the definition
(1.12) that

(k=pipeN). (325

AL S K(k-+ )2+
AL < e . (3.26)
L+ S0 p 23] 2p(p-0) -~ 3 Kk p+ 28)ad e
Thus we have the desired inequality:
1444 p
; Zf,,é)(” I (0<8<p:pEN), (3.27)
+ 7o P +20
if _
> KEXO) |l < 1. (3.28)
=, p(p—98)

Hence, by Theorem 3, (3.28) will be true if

k(k+6 k+p)(1—B)—(A—B)(p—A)|Tkyp(ct
( + ) |Z‘k+p< [( p)( ) ( )(p )] k+P( 1) (k}p;pEN).
p(p—6) (A=B)(p—4)
(3.29)
The last inequality (3.21) readily yields the disc |z| < r, with r, defined by (3.21), and
the proof of Theorem 6 is completed by merely verifying that each assertion is sharp
for the function f(z) given by (3.7).
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4. The concept of neighborhoods and associated partial sums

In this section, we also assume that

> (.]: 177q) and BJ >O(]: 1"“’S) ’

Following the earlier works (based upon the familiar concept of neighorhoods of an-
alytic functions) by Goodman [11] and Ruscheweyh [25], and (more recenlty) by Al-
tintas et al. ([1], [2] and [3]), Liu [16], and Liu and Srivastava ([18], [19] and [20]),
we begin by introducing here the & -neighborhood of a function f(z) € %, of the form
(1.1) by means of the definition given below:

Ns(f) = {g gEZ,: g() p-l-Zka “P and

=1
 [(A—B)(p—A)+k(1+[B])]I'k(c)

ar—by| <06
§ (A-B)(p—2) a5 =Bl
(1<B<A<1;5>0;0</1<p;p6N)}. 4.1)

Making use of the definition (4.1), we now prove Theorem 7 below.

THEOREM 7. Let the function f(z) defined by (1.1) be in the class Qp4s(0t;
A,B,A). If f(z) satisfies the following condition:

L
TOT T OpgulonidBA) (e€C Il <5550, @2)

then
NS(f) - QpA,q?s(al;A>Byl) . 4.3)

Proof. 1t is easily seen from (1.11) that g(z) € Qp 4.s(c1:A,B,A) if and only if,
for any complex o with |o| =1,

H[)Aq.x (al )g(z)

(Hp.g.s(0)g(2))’
B e+ PB+(A=B)(p—2)]

which is equivalent to

#0 (zeU;0€C;lol=1), (44

M;ﬁo (zeU), (4.5)

where, for convenience,

k(1 — 0B) — (A~ B)(p~ MolTK(e) .,
k=1 (B—A)(p—k)(f '

(4.6)
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From (4.6), we have

[k(1-0B) — (A—B)(p—A)o]lk(a)
(B—A)(p—4~A)o

[k(1+B]) + (A=B)(p — A)|Tx(ou)

h (A-B)(p—2)

- =]

(k;p €N). A.7)

Now if f(z) € X,, given by (1.1), satisfies the condition (4.2), then (4.5) yields

’(fj#lz(z) =206 (zeU;56>0). (4.8)
By letting
@) =277+ Y b P eNs(f), (4.9)
k=1
so that
2= gf(?] *h(z) = i (ar — bt
z k=1
o [(A=B)(p—A)+k(1+[B])]Tx(on)
< —b
P A-B)(p—7) e = b4
<0 (zeU;06>0), (4.10)

which leads us to (4.5), and hence also (4.4) for any o € C such that |o| = 1. This
implies that g(z) € Qp4.s(01;A,B,A), which evidenlty completes the proof of the as-
sertion (4.3) of Theorem 7.

We now define the 8 -neighorhood of a function f(z) € %, of the form (1.12) as
follows

Ng(f) = {g:g €X,:8(2)=z"+ Z |bk\zk and

k=p
> (k4 p)(1—B)—(A—B)(p—2)|Tis,
NSRS T TN
k=p
(1<B<A<1;5>0;0<7L<p;p€N)}. (4.11)

THEOREM 8. Let the function f(z) defined by (1.12) be in the class Q) , (01 +
LABA)(~1<B<A<LA+B<0; 0<A < pipeN). Then

N (f) Cc O s(ai:A,BA) (8= 2p ). (4.12)

P9, - o +2p

The result is sharp.
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Proof. Making use of the same method as in the proof of Theorem 7, we can show
that [cf. Equation (4.6)]

hz) =27+ a

k=p
_r, ¥ Mktp)—ol(A—B)(p—2)+(k+p)B]}Tisp(on)
=z '+k:2p B-Ap 7)o sk @13

Thus, under the constraints: A+B < 0,0 <A < p and p € N, which are provided by
the hypothesis of Theorem 8, if f(z) € O, (ou + 1;A,B,A) is given by (1.12), we
obtain

‘—(fzhz(Z) - 1+§)Ck|akzk+p
i (k+p)(1 =) — (A= B)p—Mlisplon +1)
oc1+2p - (A=B)(p—a) o

Also, from Theorem 3, we get

7P

(041 _ 2p .
o +2p o +2p

The remaining part of the proof of Theorem 8§ is similar to that of Theorem 7, and we
skip the details involved.
To show the sharpness of the assertion of Theorem 8, we consider the functions

f(z) and g(z) given by
(A-B)(p—4)

fla=27+ 2p(1—B)—(A—B)(p—A)|Typ(cn + 1)Zp < qus(al +1:A,B,1)
(4.14)
and
. (A—B)(p—1)
SO =" B B - A B)(pMTaglen 1 1)
(A—B)(p—1)8’
BB G- B M) | *.15)
where
§>5=_2P
o1+2p

Clearly, the function g(z) belongs to N *, (f). On the other hand, we find from Theorem

3 that g(z) is not in the class QM Y(ocl;A,B,/l). Thus the proof of Theorem 8 is
completed.

Next, we prove the following result.
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THEOREM 9. Let f(z) € Z, be given by (1.1) and define the partial sums s)(z)
and s,(z) as follows:

n—1
si(z) =27 and s,(z) =z P+ Y, @ P (nEN), (4.16)
k=1
Suppose also that

[(A=B)(p—A) +k(1+[B])|Tk(c)

d <1 (dy= . 4.17
/;::1 kla| <1 (dy A—B)p—7) ) (4.17)
then
(i) f(Z) € Qp.,q.,s(al;AvBaA);
(ii) If {Tx(o1)} (k € N) is nondecreasing and
(A-B)(p—4)
r . 4.18
o) > B =)+ (1 1B 19
Then ) :
Z .
Re{sn(z)}>ld—” (zeU;neN), 4.19)
and @ 4
Sn\Z n .
Re{f(z)}>l+dn (zeU;neN). (4.20)

Each of the bounds in (4.19) and (4.20) is the best possible for each n € N.

Proof. (i) Itis not difficult to see that z7 7 € Q4 s(01;A,B,A)(p € N). Thus, from
Theorem 7 and the hypothesis (4.17) of Theorem 9, we have

Ni(z77) C Qpgs(aisA,B,A), (4.21)

which shows that f(z) € 0, 4.s(0t;A,B,A) as asserted by Theorem 9.
(i1) Under the hypothesis in Part (ii) of Theorem 9, we can see from (4.17) that

dk+1>dk>1 (kEN) 4.22)
Therefore, we have
n—1 oo oo
N Jar] +dn Y, lar] < Y, dia| <1, (4.23)
k=1 k=n k=1
by using the hypothesis (4.17) of Theorem 9 again.
By setting
/@) ! @z o
—d (1=l =1 k=n 4.24
gl(z) n |:sn(Z) ( dn>:| + ) ( )
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and applying (4.23), we find that

gl(z)_l‘ dnz |ak‘

gi(z)+1

N

k=n
— - <1 (zeU), (4.25)
2-2% |a| —dn ¥ |axl
k=1 k=n

X

~—

which readily yields the assertion (4.19) of Theorem 9. If we take

P
fl@)=z"- , (4.26)
dn
then ) , |
z Z _
=1-——>1—-— (z—17),
Sn (Z) dp dp ( )
which shows that the bound in (4.19) is the best possible for each n € N.
Similarly, if we put
(1+dy) 3 at
sn(z d -
g2<z)=<1+d,,)<;(())—1+”d>=1—+ (4.27)
< n 1+ 3 ap*
k=1
and make use of (4.23), we can deduce that
(1+d,) 3 |
g2(z)—1 ‘ k=n
< <1 (zeU), (4.28)
g(2)+1 ( )

n—1 oo
223 e + (1 =) 3 [a

which leads us immediately to the assertion (4.20) of Theorem 9.
The bound in (4.20) is sharp for each n € N, with the extremal function f(z) given
by (4.26). The proof of Theorem 9 is thus completed.

5. Convolution properties for the class O, (c1;A,B, 1)

For the functions
fi@) =27+ Y lajld (i=1,2%peN), (5.1)
k=p

we denote by (f1 * f>)(z) the Hadamard product (or convolution) of the functions fi(z)
and f>(z), that s,

(fixf)@) =27+ Y lacillaralz. (5.2)
k=p
Throughout this section, we assume further that
C(p,A,A,B,k) = (k+p)(1 _B) - (A _B)(p_l) (k = p) (53)

and
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THEOREM 10. Let the functions fi(z) (j =1,2) defined by (5.1) be in the class
Q,f_’q_rs(al;A,B,/l). Then (f1* f2)(z) € Q,f_’q_ys(al;A,B,y), where

— _ 2(1-B)(A—B)(p—7)?
V—P{l [2p(1—B)—(A—B)(p_l)}Zl"zp(al)_’_(A_B)z(p_ky}- (5.5)

The result is sharp for the functions fj(z)(j = 1,2) given by

(A-B)(p—4)

filR)=z"+ 2p(1—B)—(A—B)(p—A)|Tap(c)

? (j=1,2peN). (5.6)

Proof. Employing the technique used earlier by Schild and Silverman [26], we
need to find the largest y such that

i C(p, '}/>A7B>k)rp+k(al)
D(p,v,A,B)

lak 1]]ax2| < 1 (5.7

k=p

for f(z) € Q;w(al;A,B,/l) (j=1,2). Since fj(z) € Q,f_’q_ys(al;A,B,)k) (j=1,2),
we readily see that

i C(paA’aA7ka)FP+k(al)
D(p,A,A,B)

k=p

il <1 (j=1,2). (5.8)

Therefore, by the Cauchy-Schwarz inequality, we obtain

& C(p,A,A,BK)T, (o)
<. .
Z D(p,A,A,B) |ak 1 llak] < 1 (59

k=p

This implies that we only need to show that

C(p7 ,}/7A7B7k) C(p7A'7A7B7k)
-1 la.1]|ax 2| < T —A) \Nakllaxz] (k= p) (5.10)

or, equivalently, that

(p — Y)C(p7z‘7AaB7k)
Vil < (=5 yamr €27 o0

Hence, by the inequality (5.9), it is sufficient to prove that

D(P717A>B) < (p_Y)C(p>A'>A7B>k)
< k=p). 5.12
Clp A B o) ~ (- ACpraBR P 1
It follows from (5.12) that
_ _ PRy

< —
VS P 1C(p, 2, A B OPT (o) + [D(p, A, A B)P
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Now, defining the function ¢ (k) by

(k+p)(1-B)(A-B)(p—A)?

OK) =P (o 2 A B APy i(cn) + D(p. 2 A B

(k=p), (5.14)

we see that @ (k) is an increasing function of k. Therefore, we conclude that

2(1-B)(A-B)(p—4)*

2p(1-B) = (A=B)(p— A)Top(en) + (A= B)*(p— A)? } ’
(5.15)

Y<(P(P)=P{1—[

which evidently completes the proof of Theorem 10.
Putting A= 8 and B= —f(0 < < 1) in Theorem 10, we obtain the following

consequence.

COROLLARY 2. Let the functions fj(z) (j=1,2) defined by (5.1) be in the class
0} 45(01, 4, B). Then (fi* f2)(z) € O}, (0,7, B), where

_ _ B(1+B)(p—2) )
y_p<1 (p+aB)Top(an) +B2(p—2)*) (5.16)

The result is sharp for the functions fj(z)(j = 1,2) given by

M

(p+af)Tap(0n)

Using arguments similar to these in the proof of Theorem 10, we obtain the fol-
lowing result:

film) =27+  (j=1,2; peN). (5.17)

THEOREM 11. Let the function fi(z) defined by (5.1) be in the class Q; , (013 A,
B, L). Suppose also that the function f>(z) defined by (5.1) be in the class Q , (013 A,
B,Y). Then (f1* f2)(z) € O 4 5(01,A,B, &), where

(- 2(1-B)(A-B)(p—A)(p—7)
é_p(l 2p(1-B)—(A-B)(p—A)|2p(1-B) —(A-B)(p V)}sz(alHQ) '
(Q=A-B>*(p-A)(p-7). (5.18)
The result is sharp for the functions fj(z)(j = 1,2) given by
@) =27+ A-B)p—2) & (pEN) (5.19)

2p(1—B)—(A—B)(p—A)|Tp(cn)
and

(A-B)(p—v)
2p(1—B) —(A—B)(p—7)T2p(0n)

fHl@) =z + & (pEN). (5.20)

Putting A =8 and B= —f(0 < B < 1) in Theorem 11, we obtain Corollary 3
below.
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COROLLARY 3. Let the function fi(z) defined by (5.1) be in the class O} , (o,
A, B). Suppose also that the function f>(z) defined by (5.1) be in the class Q,f_,q_,S(Oll Y. B).

Then (fi % f2)(z) € @}, (01,m,B), where

A, BU+B)p—2A)(p—7) )
(- G e ) O
The result is the best possible for the functions f;(z)(j =1,2) given by
) B(p 73‘) 2
filr) =z I+—(p+?tB)Fz,,(a1)Zl (pEN) (5.22)
" Blr—7)
T (O
hi)=zr + (er)/ﬁ)ng(al)Zp (peN). (5.23)

THEOREM 12. Let the functions fi(z) (j =1,2) defined by (5.1) be in the class
0, 45(013A, B, A). Then the function h(z) defined by

hz) =27+ 3 (lax1 [ + | |*)Z (5.24)
k=p

belongs to the class Q) , ((01;A,B, ), where

- (1 4(1—B)(A—B)(p— 1)
P\ p(1=B) = (A=B)(p— A1) (0u) +2(A—B)2(p — 1.2

) . (5.25)
This result is sharp for the functions fj(z)(j = 1,2) defined by (5.6).

Proof. Noting that

C( ’A”A7B’k) 2

ZW [Ceep(en)] a1

2
- C(p7A7A>B7k)Fk+p(al) .
\(% boAAp il <1 (=12, 526

for fi(z) € Q,f_’q_rs(al;A,BJL) (j=1,2), we have

S [C(p, A LA, B LK)

,Z;, 2[D(p, 1,A,B)]2

[Fkﬂa(al)]z (lag1 >+ laxa*) < 1. (5.27)

Therefore, we have to find the largest { such that

C(p,C,A,B,k) < [C(p>A>A7B>k)]2Fk+p(al)
=0 = 2A-B)p—A)

(k>=p), (5.28)
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that is, that

2(k+p)(1—-B)(A—B)(p—1)?
s [C(p,A,A,Bk))*Tiip(cr) +2[D(p,A,A,B)|? (k=p). (5.29)

Now, defining a function ¥ (k) by

2(k+p)(1-B)(A—B)(p—A)?

\P(k) =pP— [C(p,A,A,B7k)]2Fk+p(al) +2[D(p,A,A,B)]

> (k=p),  (530)

we observe that ¥ (k) is an increasing function of k. We thus conclude that

A(1-B)(A-B)(p—A)* )
2(1=B) = (A=B)(p—A)P1 =Tap(on) +2(A - B)*(p */1()5231;

C<T(p)=p<1—

which completes the proof of Theorem 12.

Setting A= and B= —[(0 < 8 < 1) in Theorem 12, we obtain the following
corollary.

COROLLARY 4. Let the functions fj(z) (j = 1,2) defined by (5.1) be in the
class QF , (o, A,B). Then the function h(z) defined by (5.24) belongs to the class
Q;q?S(al,g,B), where

2B(1+B)(p—A)? > _ (5.32)

3= (1 -
P\ T ATy + 287 (p— 2
The result is sharp for the functions fi(z) (j=1,2) given already by (5.17).
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