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GENERALIZED HYERS–ULAM–RASSIAS STABILITY OF

FUNCTIONAL INEQUALITIES AND FUNCTIONAL EQUATIONS

ZHEN-XIA GAO, HUAI-XIN CAO, WEN-TING ZHENG AND LU XU

(communicated by J. Pečarić)

Abstract. In this paper, the definitions of the stability of functional inequalities and functional
equations are given. Also we prove the generalized Hyers-Ulam-Rassias stability of the follow-
ing functional inequality and functional equation

‖ f (x)+ f (y)+2 f (z)‖ �
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥ ,

f (x)+ f (y)+2 f (z) = 2 f

(
x+ y

2
+ z

)
,

in the spirit of the Hyers’ direct method for approximately additive mappings.

1. Introduction

The stability problem of equations originated from a question of Ulam [1] con-
cerning the stability of group homomorphisms.

ULAM’S QUESTION. Let G1 be a group and G2 a metric group with a metric
d(·, ·) . Given ε > 0, does there exist a δ > 0 such that if a mapping f : G1 → G2

satisfies d( f (xy), f (x) f (y)) � δ for all x,y ∈ G1 , then there is a homomorphism g :
G1 → G2 with d( f (x),g(x)) � ε for all x ∈ G1 ?

In other words, we are looking for situations when the homomorphisms are stable,
i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
near it.

In 1941, Hyers [2] considered the case of approximately additive mappings be-
tween Banach spaces and proved the following result.

THEOREM 1.1 (D. H. HYERS). Suppose that E1 and E2 are Banach spaces and
f : E1 → E2 satisfies the following condition: there is an ε � 0 such that

‖ f (x+ y)− f (x)− f (y)‖� ε, ∀x,y ∈ E1.
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Then the limit

h(x) = lim
n→∞

1
2n f (2nx), ∀x ∈ E1

exists and there exists a unique additive mapping h : E1 → E2 such that

‖ f (x)−h(x)‖ � ε, ∀x ∈ E1.

Moreover, if f (tx) is continuous in t ∈ R for each x ∈ E1 , then the h is linear.

Taking this famous result into consideration, the additive Cauchy equation

f (x+ y) = f (x)+ f (y) (1.0)

is said to have the Hyers-Ulam stability (HU-stability, shortly) on (E1,E2) if for each
f : E1 → E2 satisfying

‖ f (x+ y)− f (x)− f (y)‖ � ε, ∀x,y ∈ E1

for some ε � 0, there exists an additive h : E1 → E2 such that f −h is bounded on E1 .
The method which was provided by Hyers, and which produces the additive h ,

was called a direct method. This method is the most important and most powerful tool
for studying the stability of various functional equations.

In 1978, Th. M. Rassias [3] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

THEOREM 1.2 (TH. M. RASSIAS). Let E1 and E2 be two Banach spaces and
f : E1 → E2 be a mapping such that f (tx) is continuous in t ∈ R for each fixed x .
Assume that there exists θ � 0 and p ∈ [0,1) such that

‖ f (x+ y)− f (x)− f (y)‖� θ (‖x‖p +‖y‖p), ∀x,y ∈ E1. (1.1)

Then there exists a unique linear mapping T : E1 → E2 such that

‖ f (x)−T (x)‖ � 2θ
2−2p‖x‖p, ∀x ∈ E1.

This phenomenon of stability was introduced by Rassias and called the Hyers-
Ulam-Rassias stability (HUR-stability, shortly). Clearly, the Hyers’ theorem is the spe-
cial case of the Rassias’ theorem.

In 1990, Th. M. Rassias [4] during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved for
p � 1. In 1991, Z. Gajda [5] following the same approach as in [3], gave an affirmative
solution to this question for p > 1. It was shown by Z. Gajda [5], as well as by Th. M.
Rassias and P. S̆emrl [6], that one cannot prove a Th. M. Rassias’ type theorem when
p = 1. The counterexamples of Z. Gajda [5], as well as of Th. M. Rassias and P. S̆emrl
[6], have stimulated several mathematicians to invent new definitions of approximately
additive or approximately linear mappings, cf. P. Gǎvruta [7] and S. Jung [8], who
among others studied the HUR-stability of functional equations. The inequality (1.1)
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that was introduced for the first time by Th. M. Rassias [3] provided a lot of influence
in the development of a generalization of the HU-stability concept. This new concept
is known as HUR-stability of functional equations (cf. the books of P. Czerwik [9] and
D. H. Hyers, G. Isac and Th. M. Rassias [10]).

J. M. Rassias [11] following the spirit of the innovative approach of Th. M. Rassias
[3] for the unbounded Cauchy difference proved a similar stability theorem in which he
replaced the factor ‖x‖p +‖y‖p by ‖x‖p‖y‖p for p,q ∈ R with p+q �= 1.

In 1992, a generalized of Rassias’ theorem was obtained by Gãvruta in [7] .

THEOREM 1.3 (GÃVRUTA). Suppose that (G,+) is an abelian group, E is a
Banach space and that there is a function ϕ : G×G→ [0,∞) satisfying

ϕ̃(x,y) :=
1
2

∞

∑
n=0

1
2nϕ(2nx,2ny) < ∞, ∀x,y ∈ G.

If f : G → E is a mapping with

‖ f (x+ y)− f (x)− f (y)‖� ϕ(x,y), ∀x,y ∈ G,

then there exists a unique additive mapping T : G → E such that

‖ f (x)−T (x)‖ � ϕ̃(x,x), ∀x,y ∈ G.

We call this phenomenon of stability the generalized Hyers-Ulam-Rassias stability
(GHUR-stability, shortly).

In 1996, G. Isac and Th. M. Rassias [12] applied the HUR-stability theory to
prove fixed point theorems and study some new applications in nonlinear analysis. In
[13], D. H. Hyers, G. Isac and Th. M. Rassias studied the asymptoticity aspect of
HU-stability of mappings. During the past few years several mathematicians have pub-
lished on various generalizations and applications of HU-stability and HUR-stability
to a number of functional equations and mappings, for example: quadratic functional
equation, invariant means, multiplicative mappings-superstability, bounded n th differ-
ences, convex functions, generalized orthogonality functional equation, Euler-Lagrange
functional equation, Navier-Stokes equations. Several mathematicians have contributed
their papers on these subjects; see C. Park [14-16], Th. M. Rassias [17-19] and F. Skof
[20].

In the period 1982-1994 further generalizations were obtained by J. M. Rassias
[11, 21-23].

J. M. Rassias and M. J. Rassias [24] considered and investigated quadratic equa-
tions involving a product of powers of norms following the innovative approach of Th.
M. Rassias who had introduced the concept of the unbounded Cauchy difference in
the year 1978 and he had treated the subject for the sum of powers of norms. They
studied the problem in which an approximate quadratic mapping degenerates to a gen-
uine quadratic mapping. Analogous results could be investigated with additive type
equations involving a product of powers of norms. The stability problems of several
functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [7, 14, 15, 18, 25]).
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Let G be an n -divisible abelian group where n ∈ N (i.e., a �→ na : G → G is a
surjection), R the set the set of all real numbers, Q the set of all rational numbers
and let N be the set of all natural numbers. Let X be a normed space with norm
‖ · ‖X and Y be a Banach space with norm ‖ · ‖Y . Denote by M(G,X) = the set of all
mappings from G into X , let L∞(G,X) = { f : G → X | ‖ f‖∞ := supx∈G ‖ f (x)‖X < ∞}
and R+ = {r ∈ R : r � 0} . The sets M(G,Y ) , M(Gr,X) and M(Gr,R+)) can be
defined similarly.

REMARK. If G is an n -divisible abelian group and n is even, then G must be a
2-divisible abelian group. For a positive integer r > 1, let Gr be the r copies of G ,
i.e.,

Gr = {(x1,x2, . . . ,xr) : x j ∈ G}.
Next, we give the definitions of the stability of functional inequalities and func-

tional equations.

DEFINITION 1.1. Given mappings E : M(G,X)→M(Gr,R+) , ϕ : Gr → R+ and
ψ : G → R+ , if

E( f )(x1,x2, . . . ,xr) � ϕ(x1,x2, . . . ,xr), ∀x1,x2, . . . ,xr ∈ G,

implies that there exists g ∈ M(G,X) such that E(g) � 0 and ‖ f (x)−g(x)‖∞ � ψ(x)
(∀x ∈ G) , then we say that the inequality E( f ) � 0 is (ϕ ,ψ)-stable in M(G,X) . In
this case, we also say that the solutions of the inequality E( f ) � 0 is (ϕ ,ψ)-stable in
M(G,X) .

DEFINITION 1.2. Given mappings E : M(G,X) → M(Gr,X) , ϕ : Gr → R+ and
ψ : G → R+ , if

‖E( f )(x1,x2, . . . ,xr)‖∞ � ϕ(x1,x2, . . . ,xr), ∀x1,x2, . . . ,xr ∈ G,

implies that there exists g ∈ M(G,X) such that E(g) = 0 and ‖ f (x)−g(x)‖∞ � ψ(x)
(∀x ∈ G) , then we say that the equation E( f ) = 0 is (ϕ ,ψ)-stable in M(G,X) . In
this case, we also say that the solutions of the equation E( f ) = 0 is (ϕ ,ψ)-stable in
M(G,X)

One of the most famous functional equations is the additive functional equation
(1.0). In 1821, it was first solved by A. L. Cauchy in the class of continuous real-
valued functions. It is often called an additive Cauchy functional equation in honor
of A. L. Cauchy. The theory of additive functional equations is frequently applied to
the development of theories of other functional equations. Moreover, the properties
of additive functional equations are powerful tools in almost every field of natural and
social sciences. Every solution of the additive functional equation (1.0) is called an
additive function.

It is well known that if an additive function f : R→R satisfies one of the following
conditions:

(a) f is continuous at a point;
(b) f is monotonic on an interval of positive length;
(c) f is bounded on an interval of positive length;
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(d) f is integrable;
(e) f is measurable,

then f is of the form f (x) = cx with a real constant c . That is to say f has the
linearity. That is, if a solution of the additive equation (1.0) satisfies one of the very
weak conditions (a) to (e), then it does have the linearity. But every additive functional
which is not linear displays a very strange behavior. More precisely, the graph of every
additive functional f : R → R which is not of the form f (x) = cx is dense in R2 .

There are a number of variations of the additive functional equations.

EXAMPLE 1.1. The following equation

2 f

(
x+ y

2

)
= f (x)+ f (y)

is called a Jensen’s functional equation. Every solution of a Jensen’s functional equation
is called a Jensen . It is well known that a f between real vector spaces with f (0) = 0
is a Jensen if and only if it is an additive (see [26] or [27]). We may refer to the paper
[28] of H. Haruki and Th. M. Rassias for the entire solutions of a generalized Jensen’s
functional equation.

DEFINITION 1.3. For a mapping f : G → X , the equation

f (x)+ f (y)+n f (z) = n f

(
x+ y

n
+ z

)
, ∀x,y,z ∈ G,n ∈ N\ {0} (1.2)

is said to be a generalized Cauchy-Jensen equation (GCJE, shortly). Specially, when
n = 2, it is called a Cauchy-Jensen equation (CJE, shortly).

2. Functional inequalities associated with GCJE

In this section, let G be an n -divisible abelian group for some positive integer n .

PROPOSITION 2.1. A mapping f : G → X is additive if and only if it satisfies

‖ f (x)+ f (y)+n f (z)‖X �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥
X

, ∀x,y,z ∈ G. (2.1)

Proof. Sufficiency. Suppose that the condition (2.1) is satisfied. Letting x = y =
z = 0 in (2.1) implies that ‖(n+2) f (0)‖X � ‖n f (0)‖X . So f (0) = 0. Replacing x by
−nz and letting y = 0 in (2.1) yield that

‖ f (−nz)+n f (z)‖X � ‖ f (0)‖X = 0, ∀z ∈ G.

Thus, f (−nz) = −n f (z) , ∀z ∈ G . By letting z = − x+y
n in (2.1), we get∥∥∥∥ f (x)+ f (y)+n f

(
−x+ y

n

)∥∥∥∥
X

= ‖ f (x)+ f (y)− f (x+ y)‖X

�
∥∥∥∥n f

(
x+ y

n
− x+ y

n

)∥∥∥∥
X

= ‖ f (0)‖X .
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Hence
f (x+ y) = f (x)+ f (y), ∀x,y ∈ G.

Necessity. Let f be additive. Then

f (x+ y) = f (x)+ f (y), ∀x,y ∈ G,

and so
f (rx) = r f (x), ∀r ∈ Q, x ∈ G.

Thus

f (x)+ f (y)+n f (z) = n f

(
x+ y

n

)
+n f (z) = n f

(
x+ y

n
+ z

)
, ∀x,y,z ∈ G.

Hence

‖ f (x)+ f (y)+n f (z)‖X �
∥∥∥∥n f ,

(
x+ y

n
+ z

)∥∥∥∥
X

, ∀x,y,z ∈ G.

This completes the proof. �
According to the proof of Proposition 2.1, we can get the following corollary.

COROLLARY 2.1. For a mapping f : G→ X , the following statements are equiv-
alent.

(a) f is additive.
(b) f (x)+ f (y)+n f (z) = n f ( x+y

n + z), ∀x,y,z ∈ G.

(c) ‖ f (x)+ f (y)+n f (z)‖X � ‖n f ( x+y
n + z)‖X , ∀x,y,z ∈ G.

Clearly, a vector space is an n -divisible abelian group, so Corollary 2.1 is right
when G is a vector space.

3. GHUR-stability of functional inequalities and functional equations associated
with CJE

In this section, let G be a 2-divisible abelian group and f : G → Y .

THEOREM 3.1. Let ϕ : G3 →R+ satisfy limn→∞
1
2nϕ(2nx,2ny,2nz) = 0 , ∀x,y,z∈

G and

ϕ̌(x,z) :=
∞

∑
n=0

1
2n+1ϕ(2n+1x,0,−2nz) < ∞, ∀x,z ∈ G.

Suppose that f : G → Y is a mapping such that f (−x) = − f (x) for all x ∈ G and for
all x,y,z ∈ G,

‖ f (x)+ f (y)+2 f (z)‖Y �
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

+ϕ(x,y,z), (3.1)

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � ϕ̌(x,x), ∀x ∈ G. (3.2)
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Proof. Replacing x by 2x and letting y = 0 and z = −x in (3.1), we get

‖ f (2x)−2 f (x)‖Y � ϕ(2x,0,−x), ∀x ∈ G. (3.3)

That is,

‖ f (x)− 1
2

f (2x)‖Y � 1
2
ϕ(2x,0,−x), ∀x ∈ G. (3.4)

It follows from (3.4) that

∥∥∥∥ 1
2l f (2lx)− 1

2m f (2mx)
∥∥∥∥

Y
�

m−1

∑
k=l

∥∥∥∥ 1
2k f (2kx)− 1

2k+1 f (2k+1x)
∥∥∥∥

Y

=
m−1

∑
k=l

1
2k

∥∥∥∥ f (2kx)− 1
2

f (2k+1x)
∥∥∥∥

Y

�
m−1

∑
k=l

1
2k+1ϕ(2k+1x,0,−2kx)

(3.5)

for all nonnegative integers m and n with m > l and x ∈ G . Since for all x ∈ G , the
series

∞

∑
k=0

1
2k+1ϕ(2k+1x,0,−2kx)

converges, (3.5) implies that { 1
2n f (2nx)} is a Cauchy sequence for all x ∈G and there-

fore convergent since Y is a Banach space. Put

h(x) = lim
n→∞

1
2n f (2nx), ∀x ∈ G.

Moveover, letting l = 0 and m → ∞ in (3.5) yield (3.2). Moreover, we see from (3.1)
that

‖h(x)+h(y)+2h(z)‖Y = lim
n→∞

∥∥∥∥ 1
2n f (2nx)+

1
2n f (2ny)+2 · 1

2n f (2nz)
∥∥∥∥

Y

= lim
n→∞

1
2n ‖ f (2nx)+ f (2ny)+2 f (2nz)‖Y

� lim
n→∞

1
2n

(
2

∥∥∥∥ f

(
2n

(
x+ y

2
+ z

))∥∥∥∥
Y

+ϕ(2nx,2ny,2nz)
)

=
∥∥∥∥2h(

x+ y
2

+ z)
∥∥∥∥

Y
.

Thus

‖h(x)+h(y)+2h(z)‖Y �
∥∥∥∥2h

(
x+ y

2
+ z

)∥∥∥∥
Y
, ∀x,y,z ∈ G.

It follows from Proposition 2.1 that h is additive.
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Next, let g : G → Y be another additive mapping satisfying

‖ f (x)−g(x)‖Y � ϕ̌(x,x), ∀x ∈ G.

Then for every x ∈ G , we have

‖h(x)−g(x)‖Y =
∥∥∥∥ 1

2n h(2nx)− 1
2n g(2nx)

∥∥∥∥
Y

�
∥∥∥∥ 1

2n f (2nx)− 1
2n h(2nx)

∥∥∥∥
Y

+
∥∥∥∥ 1

2n f (2nx)− 1
2n g(2nx)

∥∥∥∥
Y

� 2
1
2n ϕ̌(2nx,2nx)

= 2
∞

∑
m=n

1
2m+1ϕ(2m+1x,0,−2mx)

→ 0 (n → ∞).

This implies that g = h . Thus, the mapping h is unique. The proof is completed. �
Suppose that G is a normed space with norm ‖ · ‖ . If we put ϕ(x,y,z) =

θ‖x‖p‖y‖q‖z‖t and ϕ(x,y,z) = θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 3.1, respectively,
then we get the Corollaries 3.1 and 3.2.

COROLLARY 3.1. Let p, t �= 0 , q > 0 , θ > 0 and let f : G → Y be an odd
mapping. If

‖ f (x)+ f (y)+2 f (z)‖Y � ‖2 f (
x+ y

2
+ z)‖Y +θ‖x‖p‖y‖q‖z‖t , ∀x,y,z ∈ G,

then f is an additive mapping.

COROLLARY 3.2. Let p,t > 0 , p,t < 1 , q �= 0 , θ > 0 and let f : G → Y be an
odd mapping. If

‖ f (x)+ f (y)+2 f (z)‖Y � ‖2 f (
x+ y

2
+ z)‖Y +θ (‖x‖p +‖y‖q +‖z‖t), ∀x,y,z ∈ G,

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � θ
(

2p

2−2p‖x‖p +
1

2−2t ‖x‖t
)

, ∀x ∈ G.

THEOREM 3.2. Let ϕ : G3 → R+ satisfy

ϕ̌(x,z) :=
∞

∑
n=0

2nϕ
(

1
2n x,0,− 1

2n+1 z

)
< ∞, ∀x,z ∈ G

and limn→∞ 2nϕ( 1
2n x, 1

2n y, 1
2n z) = 0 for all x,y,z ∈ G. If f : G → Y is an odd mapping

such that ∀x,y,z ∈ G,

‖ f (x)+ f (y)+2 f (z)‖Y �
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

+ϕ(x,y,z), (3.6)
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then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � ϕ̌(x,x), ∀x ∈ G. (3.7)

Proof. Replacing x by 2x and letting y = 0 and z = −x in (3.6), we get

‖ f (2x)−2 f (x)‖Y � ϕ(2x,0,−x), ∀x ∈ G. (3.8)

Replacing x by x
2 in (3.8), we get

∥∥∥ f (x)−2 f
( x

2

)∥∥∥
Y

� ϕ
(
x,0,− x

2

)
, ∀x ∈ G. (3.9)

Hence, it follows from (3.9) that

∥∥∥∥2l f

(
1
2l

x

)
−2m f

(
1
2m x

)∥∥∥∥
Y

�
m−1

∑
k=l

∥∥∥∥2k f

(
1
2k

x

)
−2k+1 f

(
1

2k+1 x

)∥∥∥∥
Y

=
m−1

∑
k=l

2k

∥∥∥∥ f

(
1
2k x

)
− f

(
1

2k+1 x

)∥∥∥∥
Y

�
m−1

∑
k=l

2kϕ
(

1
2k x,0,− 1

2k+1 x

)
.

for all nonnegative integers m and n with m > l and x ∈ G . Since for all x,y,z ∈ G ,
the series

∞

∑
k=0

2kϕ
(

1
2k x,0,− 1

2k+1 x

)

converges, we see that {2n f ( 1
2n x)} is a Cauchy sequence for all x ∈ G and then con-

verges since Y is a Banach space. Put

h(x) = lim
n→∞

2n f

(
1
2n x

)
, ∀x ∈ G.

The remainder is similar to the proof of Theorem 3.1. This completes the proof. �

Suppose that G is a normed space with norm ‖ · ‖ . If we put ϕ(x,y,z) =
θ‖x‖p‖y‖q‖z‖t and ϕ(x,y,z) = θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 3.2, respectively,
then we get Corollaries 3.3 and 3.4.

COROLLARY 3.3. Let p,t �= 0,q > 0 , θ > 0 and f : G → Y be an odd mapping.
If

‖ f (x)+ f (y)+2 f (z)‖Y �
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

+θ‖x‖p‖y‖q‖z‖t , ∀x,y,z ∈ G,

then f is an additive mapping.
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COROLLARY 3.4. Let p,t > 0 , p,t < 1 , q �= 0 , θ > 0 and f : G → Y be an odd
mapping. If

‖ f (x)+ f (y)+2 f (z)‖Y �
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥
Y
+θ (‖x‖p+‖y‖q+‖z‖t), ∀x,y,z∈G,

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � θ
(

2p

2p−2
‖x‖p +

1
2t −2

‖x‖t
)

, ∀x ∈ G.

By the definitions of the stability of inequality, if we define E : M(G,Y )→M(Gr,R∗)
as

(E f )(x,y) := ‖ f (x)+ f (y)+2 f (z)‖Y −
∥∥∥∥2 f

(
x+ y

2
+ z

)∥∥∥∥
Y
,

then the inequality E f � 0 is (ϕ , ϕ̌)-stable in M(G,Y ) where (ϕ , ϕ̌) is as in Theorem
3.1 and Theorem 3.2, respectively.

THEOREM 3.3. Let ϕ : G3 → R+ satisfy

ϕ̌(x,z) :=
∞

∑
n=0

1
2n+2

(
ϕ(2n+1x,0,−2nz)+ϕ(−2n+1x,0,2nz)

)
< ∞

for all x,z ∈ G and limn→∞
1
2nϕ(2nx,2ny,2nz) = 0 , for all x,y,z ∈ G. If f : G →Y is a

mapping such that f (0) = 0 and for all x,y,z ∈ G,

∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� ϕ(x,y,z), (3.10)

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � ϕ̌(x,x), ∀x ∈ G. (3.11)

Proof. Replacing x by 2x and letting y = 0 and z = −x in (3.10), we get

‖ f (2x)+2 f (−x)‖Y � ϕ(2x,0,−x), ∀x ∈ G. (3.12)

Replacing x by −x in (3.12), we get

‖ f (−2x)+2 f (x)‖Y � ϕ(−2x,0,x), ∀x ∈ G. (3.13)

Put g(x) = f (x)− f (−x)
2 . Using (3.12) and (3.13) yield that

‖2g(x)−g(2x)‖Y � 1
2
(ϕ(2x,0,−x)+ϕ(−2x,0,x)), ∀x ∈ G.
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That is,

‖g(x)− 1
2
g(2x)‖Y � 1

4
(ϕ(2x,0,−x)+ϕ(−2x,0,x)), ∀x ∈ G. (3.14)

It follows from (3.14) that

∥∥∥∥ 1
2l g(2lx)− 1

2m g(2mx)
∥∥∥∥

Y
�

m−1

∑
k=l

∥∥∥∥ 1
2k g(2kx)− 1

2k+1 g(2k+1x)
∥∥∥∥

Y

=
m−1

∑
k=l

1
2k

∥∥∥∥g(2kx)− 1
2
g(2k+1x)

∥∥∥∥
Y

�
m−1

∑
k=l

1
2k+2 (ϕ(2k+1x,0,−2kx)+ϕ(−2k+1x,0,2kx))

(3.15)
for all nonnegative integers m and n with m > l and x ∈ G . Since for all x ∈ G , the
series

∞

∑
n=0

1
2n+2

(
ϕ(2n+1x,0,−2nx)+ϕ(−2n+1x,0,2nx)

)

converges, (3.15) implies that { 1
2n g(2nx)} is a Cauchy sequence for all x ∈ G and

therefore converges since Y is complete. Put

h(x) = lim
n→∞

1
2n g(2nx), ∀x ∈ G.

Moveover, by letting l = 0 and m→∞ in (3.15), (3.11) follows. It follows from (3.10)
that

∥∥∥∥h(x)+h(y)+2h(z)−2h

(
x+ y

2
+ z

)∥∥∥∥
Y

= lim
n→∞

∥∥∥∥ 1
2n f (2nx)+

1
2n f (2ny)+2 · 1

2n f (2nz)−2
1
2n f

(
2nx+2ny

2
+2nz

)∥∥∥∥
Y

= lim
n→∞

1
2n

∥∥∥∥ f (2nx)+ f (2ny)+2 f (2nz)−2 f

(
2nx+2ny

2
+2nz

)∥∥∥∥
Y

� lim
n→∞

1
2nϕ(2nx,2ny,2nz)

= 0.

This implies that

h(x)+h(y)+2h(z) = h(
x+ y

2
+ z), ∀x,y,z ∈ G.

Now, Corollary 2.1 yields that that h is additive.
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Next, let g : G → Y be another additive mapping satisfying

‖ f (x)−g(x)‖Y � ϕ̌(x,x), ∀x ∈ G.

Then for every x ∈ G , we have

‖h(x)−g(x)‖Y =
∥∥∥∥ 1

2n h(2nx)− 1
2n g(2nx)

∥∥∥∥
Y

�
∥∥∥∥ 1

2n f (2nx)− 1
2n h(2nx)

∥∥∥∥
Y

+
∥∥∥∥ 1

2n f (2nx)− 1
2n g(2nx)

∥∥∥∥
Y

� 2
1
2n ϕ̌(2nx,2nx)

= 2
∞

∑
m=n

1
2m+2

(
ϕ(2m+1x,0,−2mx)+ϕ(−2m+1x,0,2mx)

)

→ 0 (n → ∞).

Consequently, h(x) = g(x), for all x ∈G . This shows that the mapping h is unique and
completes the proof. �

Suppose that G is a normed space with a norm ‖ · ‖ . If we put ϕ(x,y,z) =
θ‖x‖p‖y‖q‖z‖t and ϕ(x,y,z) = θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 3.3, respectively,
then we get Corollaries 3.5 and 3.6.

COROLLARY 3.5. Let q > 0 , p,t �= 0 , θ > 0 and let f : G → Y be a mapping
with f (0) = 0 . If

∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� θ‖x‖p‖y‖q‖z‖t , ∀x,y,z ∈ G,

then f is an additive mapping.

COROLLARY 3.6. Let p,t > 0 , p,t < 1 , q �= 0 , θ > 0 and let f : G → Y be a
mapping with f (0) = 0 . If
∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� θ (‖x‖p +‖y‖q +‖z‖t), ∀x,y,z ∈ G,

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � θ
(

2p

2−2p‖x‖p +
1

2−2t ‖x‖t
)

, ∀x ∈ G.

THEOREM 3.4. Let ϕ : G3 → R+ satisfy

ϕ̌(x,z) :=
∞

∑
n=0

2n−1
(
ϕ(2−nx,0,−2−(n+1)z)+ϕ(−2−nx,0,2−(n+1)z)

)
< ∞
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for all x,z ∈ G and limn→∞ 2nϕ( 1
2n x, 1

2n y, 1
2n z) = 0 , ∀x,y,z ∈ G. If f : G → Y is a

mapping such that f (0) = 0 and for all x,y,z ∈ G,∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� ϕ(x,y,z), (3.16)

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � ϕ̌(x,x), ∀x ∈ G. (3.17)

Proof. Replacing x by 2x and letting y = 0 and z = −x in (3.16), we get

‖ f (2x)+2 f (−x)‖Y � ϕ(2x,0,−x), ∀x ∈ G. (3.18)

Replacing x by −x in (3.18), we get

‖ f (−2x)+2 f (x)‖Y � ϕ(−2x,0,x), ∀x ∈ G. (3.19)

Put g(x) = f (x)− f (−x)
2 . By (3.18) and (3.19), we get

‖2g(x)−g(2x)‖Y � 1
2

(ϕ(2x,0,−x)+ϕ(−2x,0,x)), ∀x ∈ G. (3.20)

Replacing x by x
2 in (3.20), we get

∥∥∥g(x)−2g
(x

2

)∥∥∥
Y

� 1
2

(
ϕ

(
x,0,− x

2

)
+ϕ

(
−x,0,

x
2

))
, ∀x ∈ G. (3.21)

The remainder is similar to the proof of Theorem 3.3. This completes the proof. �
Suppose that G is a normed space with the norm ‖ · ‖ . If we put ϕ(x,y,z) =

θ‖x‖p‖y‖q‖z‖t and ϕ(x,y,z) = θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 3.4, respectively,
then we get Corollaries 3.7 and 3.8.

COROLLARY 3.7. Let p,t �= 0 , q > 0 , θ > 0 and let f : G → Y be a mapping
with f (0) = 0. If∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� θ‖x‖p‖y‖q‖z‖t , ∀x,y,z ∈ G,

then f is an additive mapping.

COROLLARY 3.8. Let p,t > 1 ,q �= 0 , θ > 0 and let f : G → X be a mapping
with f (0)=0. If∥∥∥∥ f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)∥∥∥∥
Y

� θ (‖x‖p +‖y‖q +‖z‖t), ∀x,y,z ∈ G,

then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖Y � θ
(

2p

2−2p‖x‖p +
1

2−2t ‖x‖t
)

, ∀x ∈ G.
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By the definition of the stability of equation, if we define E : M(G,Y )→M(Gr,Y )
as

(E f )(x,y) := f (x)+ f (y)+2 f (z)−2 f

(
x+ y

2
+ z

)
,

then the equation E f = 0 is (ϕ , ϕ̌)-stable in M(G,Y ) where (ϕ , ϕ̌) is as in Theorem
3.3 and Theorem 3.4, respectively.
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