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INEQUALITIES AND MONOTONICITY

PROPERTIES FOR SOME SPECIAL FUNCTIONS

CHAO-PING CHEN

(communicated by G. Alassia)

Abstract. The monotonicity, convexity, log-convexity and complete monotonicity properties for
some special functions are proved, and some inequalities are established.

1. Introduction

A function f is said to be completely monotonic on an interval I , if f has deriva-
tives of all orders on I and satisfies

(−1)n f (n)(x) � 0 for all x ∈ I and n = 0,1,2, . . . . (1)

If the inequality (1) is strict, then f is said to be strictly completely monotonic on I . It
is known (Bernstein’s Theorem) that f is completely monotonic on (0,∞) if and only
if

f (x) =
∫ ∞

0
e−xt dμ(t),

where μ is a nonnegative measure on [0,∞) such that the integral converges for all x >
0, see [13, p.161]. A detailed collection of the most important properties of completely
monotonic functions can be found in [13, Chapter IV].

A sequence {an}∞n=1 of real numbers is called strictly convex (concave), if

an+2−2an+1 +an > (<)0 for all n � 1.

A sequence {an}∞n=1 of real numbers is called strictly log-convex (log-concave), if it is
positive and

a2
n+1 < (>)anan+2 for all integers n � 1.

By the arithmetic-geometric mean inequality, the log-convexity implies the convexity,
and the concavity implies the log-concavity.

Mathematics subject classification (2000): 33B15, 26A48.
Keywords and phrases: Monotonicity, convexity, log-convexity, complete monotonicity, psi function,

inequality.
This work was supported by Natural Scientific Research Plan Project of Education Department of Henan Province

(2008A110007), by Project of the Plan of Science and Technology of Education Department of Henan Province
(2007110011).

c© � � , Zagreb
Paper JMI-03-07

79



80 CH.-P. CHEN

The classical gamma function

Γ(x) =
∫ ∞

0
tx−1e−t dt (x > 0)

is one of the most important functions in analysis and its applications. The psi or
digamma function, the logarithmic derivative of the gamma function, and the polygamma
functions can be expressed [1, pp. 259-260] as

ψ(x) =
Γ′(x)
Γ(x)

= −γ+
∫ ∞

0

e−t − e−xt

1− e−t dt, (2)

ψ(n)(x) = (−1)n+1
∫ ∞

0

tn

1− e−t e
−xt dt (3)

for x > 0 and n ∈ N , where γ = 0.57721566490153286 . . . is the Euler-Mascheroni
constant defined by

γ = lim
n→∞

Dn, where Dn =
n

∑
k=1

1
k
− logn. (4)

It is also known as the Euler-Mascheroni constant. According to Glaisher [8], the use
of the symbol γ is probably due to the geometer Lorenzo Mascheroni (1750-1800)who
used it in 1790 while Euler used the letter C. Euler’s constant plays an important role
in Analysis (Gamma function, Bessel functions, exponential-integral, ...) and occurs
frequently in Number Theory (order of magnitude of arithmetical functions for instance
[9]).

Direct use of formula (4) to compute the Euler’s constant is of poor interest since
the convergence is very slow. The Euler-Maclaurin summation can be used to have a
complete asymptotic expansion of the harmonic numbers Hn = ∑n

k=1
1
k ,

Hn − logn = γ+
1
2n

−
∞

∑
k=1

B2k

2k
1

n2k ,

where the B2k are the Bernoulli numbers defined by

t
et −1

=
∞

∑
k=0

Bk
tk

k!
. (5)

First four Bernoulli numbers with even indices are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

, (6)

and then

γ = Hn− logn− 1
2n

+
1

12n2 −
1

120n4 +
1

252n6 −
1

240n8 + . . . .
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In 1991, R. M. Young [14] presented an elegant geometrical proof for the double
inequality

1
2(n+1)

< Dn − γ <
1
2n

, n = 1,2, . . . . (7)

In [3, 4, 6, 12], other bounds for Dn − γ were established. Since

ψ(n+1) = −γ+
n

∑
k=1

1
k
, (8)

the inequality (7) can be written as

1
2(n+1)

< ψ(n+1)− logn <
1
2n

, n = 1,2, . . . . (9)

Motivated by the inequality (9), we establish the following results.

THEOREM 1. The function f (x) = (x+1) [ψ(x+1)− logx] is strictly completely
monotonic on (0,∞) . The function g(x) = x [ψ(x+1)− logx] is a so-called Bernstein
function on (0,∞) , that is, g > 0 and g′ is strictly completely monotonic on (0,∞) .

REMARK 1. From the representations [1, pp. 258-259]

ψ(x) = logx− 1
2x

+O(x−2),

ψ(x+1) = ψ(x)+
1
x
,

we conclude

lim
x→∞

f (x) =
1
2

and lim
x→∞

g(x) =
1
2
,

the inequalities (7) are immediate consequences of the fact that f is strictly decreasing
on (0,∞) and g is strictly increasing on (0,∞) .

REMARK 2. From the integral representations

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt, x > 0, (10)

lnx =
∫ +∞

0

e−t − e−xt

t
dt, x > 0, (11)

we conclude that

Dn − γ =
∫ ∞

0

(
1
t
− 1

et −1

)
e−nt dt. (12)

By using the following generalization of the Schwarz inequality

∫ ∞

0
g(t)[ f (t)]m dt

∫ ∞

0
g(t)[ f (t)]n dt �

[∫ ∞

0
g(t)[ f (t)](m+n)/2 dt

]2

, (13)
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where f and g are two nonnegative functions of a real variable and m and n belong to
a set S of real numbers, such that the integrals in (13) exist, A. Laforgia and P. Natalini
[11] proved that the inequality

(Dn+1− γ)2 � (Dn − γ)(Dn+2− γ) (14)

holds for all integers n � 1. The inequality (14) is called in the literature the Turán-type
inequality.

It is well-known that the complete monotonicity implies the log-convexity [7].
By Theorem 1, the function f (x) = (x + 1) [ψ(x+1)− logx] is strictly log-convex
on (0,∞) , and g(x) = x [ψ(x+1)− logx] is strictly concave on (0,∞) . From log-
convexity of the sequence { f (n)}∞n=1 and log-concavity of the sequence {g(n)}∞n=1
(Note that the concavity of the sequence {g(n)}∞n=1 implies its log-concavity), we ob-
tain that for all integers n � 1, then

(n+2)2

(n+1)(n+3)
(Dn+1− γ)2 < (Dn − γ)(Dn+2− γ) <

(n+1)2

n(n+2)
(Dn+1− γ)2. (15)

Obviously, the left inequality of (15) is an improvement of the inequality (14).

The convergence of the sequence Dn to γ is very slow. In 1993, D. W. DeTemple
[6] studied a modified sequence which converges faster and proved

1
24(n+1)2 < Rn− γ <

1
24n2 , n � 1, (16)

where

Rn =
n

∑
k=1

1
k
− log

(
n+

1
2

)
.

Now let
H(n) = n2(Rn− γ), n � 1.

By (8), we see that

H(n) = (Rn− γ)n2 =
[
ψ(n+1)− log

(
n+

1
2

)]
n2. (17)

Some computer experiments led M. Vuorinen to conjecture that H(n) increases on the
interval [1,∞) from H(1) = −γ +1− log(3/2) = 0.0173 . . . to 1/24 = 0.0416 . . . . E.
A. Karatsuba [10] proved that for all integers n � 1, H(n) < H(n+1) , by clever use of
Stirling formula and Fourier series. Some computer experiments also seem to indicate
that [(n+1)/n]2H(n) is a decreasing convex function [5].

The following Theorem 2 shows the monotonicity and convexity properties of
H(n) , [(n+1/2)/n]2H(n) and [(n+1)/n]2H(n) .

THEOREM 2. Let H(n) (n = 1,2, . . .) be defined by (17). Then for all integers
n � 1 , H(n) and [(n+ 1/2)/n]2H(n) are both strictly increasing concave sequences,
while [(n+1)/n]2H(n) is strictly decreasing convex sequence.
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REMARK 3. By the asymptotic formula [2, p. 550]

ψ(x) = log

(
x− 1

2

)
+

1
24(x−1/2)2 +O(x−4) as x → ∞,

we conclude that

lim
n→∞

H(n) =
1
24

and lim
n→∞

[(n+1)/n]2H(n) =
1
24

. (18)

From the monotonicity of H(n) , [(n+ 1)/n]2H(n) and (18), we obtain the inequality
(16).

REMARK 4. From the monotonicity of [(n+1/2)/n]2H(n) and the limit relation
limn→∞[(n+1/2)/n]2H(n) = 1

24 , we obtain

Rn− γ <
1

24(n+ 1
2)2

, n � 1. (19)

Obviously, the upper in (19) is sharper than one in (16).
The inequality (19) can be written as

1√
24[ψ(n+1)− log(n+1/2)]

−n >
1
2
. (20)

From the asymptotic formula [2, p. 550]

ψ(x) = log

(
x− 1

2

)
+

1

24(x− 1
2)2

− 7

960(x− 1
2 )4

+O(x−6) as x → ∞,

we obtain

1√
24[ψ(x+1)− log(x+1/2)]

− x =
1− x

√
24[ψ(x+1)− log(x+1/2)]√

24[ψ(x+1)− log(x+1/2)]

=
1− x

√
1

(x+1/2)2 − 7
40(x+1/2)4 +O(x−6)√

1
(x+1/2)2 − 7

40(x+1/2)4 +O(x−6)

=
x+ 1

2 − x
√

1− 7
40(x+1/2)2 +O(x−4)√

1− 7
40(x+1/2)2 +O(x−4)

=
1
2 + 7x

80(x+1/2)2 +O(x−3)

1− 7
80(x+1/2)2 +O(x−4)

→ 1
2

as x → ∞,

and then,

lim
n→∞

[
1√

24[ψ(n+1)− log(n+1/2)]
−n

]
=

1
2
. (21)

Hence, the constant 1
2 in the upper bound of (19) is the best possible.
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By Theorem 2, the sequences [(n+1)/n]2H(n) is convex. The following Theorem
3 further considers its log-convexity.

THEOREM 3. Let H(n) (n = 1,2, . . .) be defined by (17). Then for all integers
n � 1 , the sequences [(n+1)/n]2H(n) is strictly log-convex.

REMARK 5. The concavity of the sequence [(n+ 1/2)/n]2H(n) implies its log-
concavity. From log-convexity of the sequence [(n+1)/n]2H(n) and log-concavity of
the sequence [(n+1/2)/n]2H(n) we obtain the Turán-type inequality

(n+2)4

(n+1)2(n+3)2 (Rn+1− γ)2 < (Rn − γ)(Rn+2− γ)

<
(n+ 3

2 )4

(n+ 1
2)2(n+ 5

2)2
(Rn+1− γ)2

(22)

for all integers n � 1.

2. Proofs of theorems

Proof of Theorem 1. Using the representations [1, p. 259]

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (23)

and

logx =
∫ ∞

0

e−t − e−xt

t
dt, (24)

we imply

f (x) = (x+1)
∫ ∞

0
δ (t)e−(x+1)tdt,

where

δ (t) =
1
t
− 1

et −1
, t > 0.

Easy computations reveal that the function δ is strictly decreasing on (0,∞) with
limx→0 δ (t) = 1

2 and limx→0 δ (t) = 0.
For x > 0, n = 0,1,2, . . . , we have

(−1)n f (n)(x) = (−1)n
n

∑
k=0

(
n
k

)
(x+1)(n−k)

(∫ ∞

0
δ (t)e−(x+1)tdt

)(k)

= (x+1)
∫ ∞

0
δ (t)e−(x+1)ttndt−n

∫ ∞

0
δ (t)e−(x+1)ttn−1dt

=
∫ n/(x+1)

0
δ (t)e−(x+1)t tn−1[(x+1)t−n]dt

+
∫ ∞

n/(x+1)
δ (t)e−(x+1)ttn−1[(x+1)t−n]dt (25)
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> δ (n/(x+1))
∫ n/(x+1)

0
e−(x+1)ttn−1[(x+1)t−n]dt

+δ (n/(x+1))
∫ ∞

n/(x+1)
e−(x+1)ttn−1[(x+1)t−n]dt

= δ (n/(x+1))
∫ ∞

0
e−(x+1)ttn−1[(x+1)t−n]dt.

Since
m!

(x+ s)m+1 =
∫ ∞

0
tme−(x+s)t dt (x > 0; s � 0, m = 0,1,2, . . .), (26)

we conclude ∫ ∞

0
e−(x+1)ttn−1[(x+1)t−n] dt = 0,

so that (25) implies

(−1)n f (n)(x) > 0 (x > 0, n = 0,1,2, . . .).

Hence, the function f is strictly completely monotonic on (0,∞) .
Using the representations (23) and (24), we imply

g(x) = x
∫ ∞

0
ω(t)e−xtdt, (27)

where

ω(t) =
et

t
− 1

et −1
−1, t > 0. (28)

Easy computations reveal that

t2(et −1)2

et ω ′(t) =
∞

∑
n=4

[
(n−2)2n−1−2(n−1)

] tn

n!
> 0, t > 0, (29)

hence, the function ω is strictly increasing on (0,∞) , and ω(t) > limt→0ω(t) = 1
2 ,

and then g(x) > 0. For x > 0, n = 1,2, . . . , we have

(−1)ng(n)(x) = (−1)n
n

∑
k=0

(
n
k

)
x(n−k)

(∫ ∞

0
ω(t)e−xtdt

)(k)

= x
∫ ∞

0
ω(t)e−xt tndt−n

∫ ∞

0
ω(t)e−xt tn−1dt

=
∫ n/x

0
ω(t)e−xttn−1(xt −n)dt

+
∫ ∞

n/x
ω(t)e−xt tn−1(xt−n)dt

< ω(n/x)
∫ n/x

0
e−xt tn−1(xt −n)dt

+ω(n/x)
∫ ∞

n/x
e−xt tn−1(xt −n)dt

= ω(n/x)
∫ ∞

0
e−xt tn−1(xt −n)dt = 0.

(30)
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Hence, g is a Bernstein function on (0,∞) . The proof of Theorem 1 is complete. �

In order prove our Theorem 2 and Theorem 3 we need to the following results [2]:
For x > 1

2 , N = 0,1,2, . . . ,

log

(
x− 1

2

)
−

2N

∑
k=1

B2k(1/2)
2k(x− 1

2)2k
< ψ(x)

< log

(
x− 1

2

)
−

2N+1

∑
k=1

B2k(1/2)
2k(x− 1

2 )2k

(31)

and

(n−1)!
(x− 1

2)n
+

2N+1

∑
k=1

B2k(1/2)
(2k)!

(n+2k−1)!
(x− 1

2 )n+2k
< (−1)n+1ψ(n)(x)

<
(n−1)!
(x− 1

2)n
+

2N

∑
k=1

B2k(1/2)
(2k)!

(n+2k−1)!
(x− 1

2 )n+2k
, n = 1,2, . . . ,

(32)

where

Bk(1/2) = −
(

1− 1
2k−1

)
Bk, k = 0,1,2, . . . ,

Bk are Bernoulli numbers defined by (5). By (6) we get

B2(1/2) = − 1
12

, B4(1/2) =
7

240
, B6(1/2) = − 31

1344
, B8(1/2) =

127
3840

.

From (31), we obtain for x > 1
2 ,

1

24(x− 1
2)2

− 7

960(x− 1
2 )4

< ψ(x)− log

(
x− 1

2

)
<

1

24(x− 1
2 )2

. (33)

1

24(x− 1
2 )2

− 7

960(x− 1
2)4

< ψ(x)− log

(
x− 1

2

)

<
1

24(x− 1
2)2

− 7

960(x− 1
2 )4

+
31

8064(x− 1
2 )6

.

(34)

From (32), we obtain for x > 1
2 ,

1

12(x− 1
2 )3

− 7

240(x− 1
2 )5

<
1

x− 1
2

−ψ ′(x) <
1

12(x− 1
2)3

, (35)

1

12(x− 1
2 )3

− 7

240(x− 1
2)5

+
31

1344(x− 1
2 )7

− 127

3840(x− 1
2 )9

<
1

x− 1
2

−ψ ′(x) <
1

12(x− 1
2)3

− 7

240(x− 1
2 )5

+
31

1344(x− 1
2 )7

,

(36)
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0 < ψ ′′(x)+
1

(x− 1
2 )2

<
1

4(x− 1
2)4

, (37)

1

4(x− 1
2)4

− 7

48(x− 1
2)6

< ψ ′′(x)+
1

(x− 1
2 )2

<
1

4(x− 1
2 )4

− 7

48(x− 1
2 )6

+
31

920(x− 1
2 )8

.

(38)

Now we are in position to prove our Theorem 2 and Theorem 3.

Proof of Theorem 2. Let a � 0 be a real number and fa(x) be defined by

fa(x) = (x+a)2
[
ψ(x+1)− log

(
x+

1
2

)]
, x > −1

2
. (39)

Differentiation yields

f ′a(x) = 2(x+a)
[
ψ(x+1)− log

(
x+

1
2

)]
− (x+a)2

[
1

x+ 1
2

−ψ ′(x+1)

]
.

f ′′a (x) = 2

[
ψ(x+1)− log

(
x+

1
2

)]
−4(x+a)

[
1

x+ 1
2

−ψ ′(x+1)

]

+(x+a)2

[
ψ ′′(x+1)+

1

(x+ 1
2 )2

]
.

From (31) and (32) we obtain the asymptotic formulas

ψ(x) = log

(
x− 1

2

)
+

1

24(x− 1
2 )2

− 7

960(x− 1
2 )4

+O(x−6), (40)

ψ ′(x) =
1

x− 1
2

− 1

12(x− 1
2)3

+
7

240(x− 1
2 )5

+O(x−7), (41)

which concludes that

lim
x→∞

f ′0(x) = lim
x→∞

f ′1/2(x) = lim
x→∞

f ′1(x) = 0. (42)

By (33), (35) and (37), we obtain

f ′′0 (x) < 2

[
1

24(x+ 1
2)2

]
−4x

[
1

12(x+ 1
2 )3

− 7

240(x+ 1
2 )5

]
+ x2

[
1

4(x+ 1
2)4

]

= −5x2− 23
4 x− 5

8

60(x+ 1
2 )5

< 0 for x � 2,

and then, f ′0(x) > limx→∞ f ′0(x) = 0 for x � 2. Hence, the function f0 is strictly in-
creasing concave for x � 2.
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A dierct calculation produces

f0(1) =
(

1− γ− log
3
2

)
= 0.01731922699 . . .,

f0(2) = 4

(
1+

1
2
− γ− log

5
2

)
= 0.025957441 . . .,

f0(3) = 9

(
1+

1
2

+
1
3
− γ− log

7
2

)
= 0.03019229938 . . .,

f0(1)−2 f0(2)+ f0(3) = −0.00440335563 . . .< 0.

Thus, the sequence H(n) is strictly increasing concave for all integers n � 1.
By (34), (35) and (38), we obtain

f ′′1/2(x) < 2

[
1

24(x+ 1
2)2

− 7

960(x+ 1
2 )4

+
31

8064(x+ 1
2 )6

]

−4

(
x+

1
2

)[
1

12(x+ 1
2 )3

− 7

240(x+ 1
2 )5

]

+
(

x+
1
2

)2
[

1

4(x+ 1
2 )4

− 7

48(x+ 1
2 )6

+
31

192(x+ 1
2 )6

]

= −
21
480(x+ 1

2 )2− 341
4032

(x+ 1
2 )6

< 0 for x � 1,

and then, f ′1/2(x) > limx→∞ f ′1/2(x) = 0 for x � 1. Hence, the function f1/2 is strictly

increasing concave for x � 1, and the sequence [(n+1/2)/n]2H(n) is strictly increas-
ing concave for all integers n � 1.

By (34), (36) and (38), we obtain

f ′′1 (x) > 2

[
1

24(x+ 1
2 )2

− 7

960(x+ 1
2 )4

]

−4(x+1)

[
1

12(x+ 1
2 )3

− 7

240(x+ 1
2 )5

+
31

1344(x+ 1
2 )7

]

+(x+1)2

[
1

4(x+ 1
2 )4

− 7

48(x+ 1
2 )6

]

=
280(x+ 1

2)4 +63(x+ 1
2 )3−290(x+ 1

2)2 −432.5(x+ 1
2 )−155

3360(x+ 1
2)7

> 0 for x � 3
2
.

and then, f ′1(x) < limx→∞ f ′1(x) = 0 for x � 3
2 . Hence, the function f1 is strictly de-

creasing convex for x � 3
2 .
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A dierct calculation produces

f1(1) = 4

(
1− γ− log

3
2

)
= 0.06927690796 . . .,

f1(2) = 9

(
1+

1
2
− γ− log

5
2

)
= 0.0584042429 . . .,

f1(3) = 16

(
1+

1
2

+
1
3
− γ− log

7
2

)
= 0.0536751989 . . .,

f1(1)−2 f1(2)+ f1(3) = 0.00614362106 . . .> 0.

Hence, the sequence [(n + 1)/n]2H(n) is strictly decreasing convex for all integers
n � 1. The proof of Theorem 2 is complete. �

Proof of Theorem 3. Let f1(x) be defined by

f1(x) = (x+1)2
[
ψ(x+1)− log

(
x+

1
2

)]
, x > 0.

Direct calculation produces[
ψ(x+1)− log

(
x+

1
2

)]
[log f1(x)]

′′

=

[
ψ ′′(x+1)+

1

(x+ 1
2 )2

][
ψ(x+1)− log

(
x+

1
2

)]

−
[

1

x+ 1
2

−ψ ′(x+1)

]2

− 2
(x+1)2

[
ψ(x+1)− log

(
x+

1
2

)]2

.

By (33), (35) and (38), we obtain[
ψ(x+1)− log

(
x+

1
2

)]2

[log f1(x)]
′′

>

[
1

4(x+ 1
2)4

− 7

48(x+ 1
2)6

][
1

24(x+ 1
2 )2

− 7

960(x+ 1
2 )4

]

−
[

1

12(x+ 1
2 )3

]2

− 2
(x+1)2

[
1

24(x+ 1
2)2

]2

=
40x3−21x2−142x− 169

2

11520(x+ 1
2)8(x+1)2

+
49

46080(x+ 1
2 )10

> 0 for x � 3.

A dierct calculation produces

f1(1) f1(3) = 0.003718451 > 0.003411055 = f 2
1 (2),

f1(2) f1(4) = 0.002979014 . . . > 0.002881026 = f 2
1 (3) > 0.
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Hence, the sequences [(n+1)/n]2H(n) (n = 1,2, . . .) is strictly log-convex. The proof
of Theorem 3 is complete. �

By Theorem 2, we pose the following conjecture.

CONJECTURE 1. Let

H(x) =
[
ψ(x+1)− log

(
x+

1
2

)]
x2, x > 0. (43)

Then,

(i) The functions H(x) and [(x+ 1/2)/x]2H(x) are both so-called Bernstein func-
tion on (0,∞) . That is,

H(x) > 0, (−1)n(H(x))(n+1) > 0 (44)

for x > 0,n = 0,1,2, . . . , and

[(x+1/2)/x]2H(x) > 0, (−1)n([(x+1/2)/x]2H(x))(n+1) > 0 (45)

for x > 0,n = 0,1,2, . . . .

(ii) The function [(x+1)/x]2H(x) is strictly completely monotonic on (0,∞) .
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[2] G. ALLASIA, C. GIORDANO AND J. PEČARIĆ, Inequalities for the gamma function relating to asymp-
totic expansions, Math. Inequal. Appl., 5, 3 (2002), 543–555.

[3] H. ALZER, ıInequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg,
68 (1998), 363–372.

[4] G. D. ANDERSON, R. W. BARNARD, K. C. RICHARDS, M. K. VAMANAMURTHY AND M. VUORI-
NEN, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347, 5 (1995),
1713–1723.

[5] G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN, Topics in special functions, P
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