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SOME BOUNDS ON SAMPLE PARAMETERS WITH

REFINEMENTS OF SAMUELSON AND BRUNK INEQUALITIES

R. SHARMA, A. KAURA, M. GUPTA AND S. RAM

(communicated by J. Matkowski)

Abstract. We derive bounds on the extreme deviation of a finite universe in terms of its range
and standard deviation. The bounds for the range and ratio of the extreme values are obtained in
terms of the standard means.

1. Introduction

Let x1,x2, ...,xn denote n real numbers with arithmetic mean

A =
1
n

n

∑
i=1

xi (1.1)

and standard deviation

S =

√
1
n

n

∑
i=1

(xi −A)2 . (1.2)

The Samuelson inequality asserts that for a sample of size n no observation xi

(i = 1,2, ...,n) can lie more than
√

n−1 standard deviation away from the mean [1]

d �
√

n−1 S, (1.3)

where
d = max{|xi −A| , i = 1,2, ...,n} (1.4)

is maximum deviation from the mean. The complementary Brunk inequalities says that
[2]

S �
√

n−1 d1 and S �
√

n−1 d2 , (1.5)

where d1 = M−A, d2 = A−m and m � xi � M, (i = 1,2, ...,n) . Such inequalities as
the above, their further refinements and extensions have been studied by several authors.
In particular, Bhatia and Davis have proved that [3]

S2 � (M−A)(A−m) . (1.6)
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What remains unnoticed in (1.6) is an interesting observation that the upper bound can
be expressed in terms of maximum deviation d, and range r defined by

r = M−m. (1.7)

This provides refinements of the Brunk and Samuelson inequalities, and we get an
upper bound for the maximum deviation in terms of the standard deviation and range
of the sample (Theorem-2.1, below). We obtain one more refinement of the Samuelson
inequality (Theorem-2.2, below).

The Karl Pearson coefficient of dispersion V, defined by

V =
S
A

, (1.8)

is a widely used measure of dispersion. We obtain bounds for V in terms of m and M
(Theorem 2.3, below).

Let H,G and m2 be the harmonic mean, geometric mean and root mean square,
respectively, defined by

H =

(
1
n

n

∑
i=1

1
xi

)−1

, (1.9)

G =

(
n

∏
i=1

xi

) 1
n

(1.10)

and

m2 =

(
1
n

n

∑
i=1

x2
i

) 1
2

. (1.11)

We obtain a lower bound for r in terms of A and H and a complementary upper
bound in terms of G and m2 (Theorem-2.4, below). Some bounds for the ratio M

m
are also proved (Theorem-2.5, below). The bounds for the difference A−H are de-
rived (Theorem-2.6, below) which affect further improvements on the corresponding
bounds proved in [4],

(M−m)S2

M (M−m)−S2 � A−H � (M−m)S2

m(M−m)+S2 . (1.12)

2. Main Results

THEOREM 2.1. For m � xi � M, (i = 1,2, . . . ,n) and under the above notations

r
2
−
√( r

2

)2−S2 � {d1,d2,d} � r
2

+

√( r
2

)2 −S2 . (2.1)

The upper bound (2.1) gives a refinement of the Samuelson inequality for nS �
√

n−1
r . An equivalent formulation of (2.1) is:

S2 � d (r−d) = di (r−di) , i = 1,2. (2.2)

This provides refinements of the Brunk inequalities.
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Proof. Inequality (1.6) can be solved to find the following bounds for mean:

m+M
2

−
√( r

2

)2 −S2 � A � m+M
2

+

√( r
2

)2−S2 . (2.3)

It is evident that
d = M−A or A−m . (2.4)

In either case, (2.3) implies (2.1), and r � nd. The remaining assertions of the theorem
are now immediate. �

THEOREM 2.2. For m � xi � M, (i = 1,2, . . . ,n) and n � 3,

r
2
−
√

n−2
2

(
S2− r2

2n

)
� {d1,d2,d} � r

2
+

√
n−2

2

(
S2− r2

2n

)
, (2.5)

or equivalently

S2 � r2

2n
+

2
n−2

(
d− r

2

)2
� d2

n−1
. (2.6)

This provides a refinement of the Samuelson inequality.

Proof. There is no loss of generality in assuming that x1 = m and xn = M. We
can write (1.1) in the form

A =
m+M

n
+

n−2
n

x2 + ...+ xn−1

n−2
. (2.7)

On using Cauchy inequality we get that

(
A− m+M

n

)2

� n−2
n2

(
nS2 +nA2−m2−M2) . (2.8)

Inequality (2.8) yields the following bounds for mean:

m+M
2

−
√

n−2
2

(
S2− r2

2n

)
� A � m+M

2
+

√
n−2

2

(
S2− r2

2n

)
. (2.9)

By (2.4), d = M−A or A−m, in both cases, (2.9) implies (2.5). Further it is easily
seen that

r2

2n
+

2
n−2

(
d− r

2

)2
� d2

n−1
(2.10)

if and only if
(nd− (n−1)r)2 � 0. (2.11)

Hence (2.6) provides a refinement of the Samuelson inequality. �



102 R. SHARMA, A. KAURA, M. GUPTA AND S. RAM

THEOREM 2.3. For 0 < m � xi � M, (i = 1,2, . . . ,n)

V � M−m

2
√

Mm
(2.12)

and, for n � 3

V � M−m√
(n−1)(m2 +M2)+2mM

, (2.13)

where V is defined by (1.8).

Proof. It follows from (1.6) that

V �
√

(M−A)(A−m)
A

, A > 0. (2.14)

On using derivatives we find that the right hand side expression of (2.14) has maximum
at

A =
2mM
m+M

. (2.15)

Substituting (2.15) into (2.14) we obtain (2.12) . Similarly it follows from (2.6) that

S2

A2 � r2

2nA2 +
2

(n−2)A2

(
d− r

2

)2
. (2.16)

The right hand side expression of (2.16) has minimum at

A =
(n−1)

(
m2 +M2

)
+2mM

n(m+M)
. (2.17)

Substituting (2.17) into (2.16) we obtain (2.13). �

THEOREM 2.4. For 0 < m � xi � M, (i = 1,2, . . . ,n)

r � 2
√

H (A−H) (2.18)

and

r �
√

n
(
m2

2−G2
)
, (2.19)

where H,G and m2 are respectively defined by (1.9), (1.10) and (1.11).

Proof. From inequality [3]:

A � m+M− mM
H

(2.20)

it follows that

M−m � H (A−m)
H−m

−m. (2.21)
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The right hand side expression of (2.21) has minimum at

m = H−
√

H (A−H). (2.22)

Substituting (2.22) into (2.21) we get (2.18).
To prove (2.19) we write

m2
2 =

m2 +M2

n
+

n−2
n

x2
2 + ...+ x2

n−1

n−2
(2.23)

and on using inequality

x2
2 + ...+ x2

n−1

n−2
� (x2x3...xn−1)

2
n−2 (2.24)

we find that

m2
2−G2 � m2 +M2

n
+

n−2
n

[
G

(mM)
1
n

] 2n
n−2

−G2. (2.25)

Minimising the right hand side expression of (2.25) we get

m2
2 −G2 � (M−m)2

n
. (2.26)

Inequality (2.19) now follows immediately from (2.26). �

THEOREM 2.5. For 0 < m � xi � M, (i = 1,2, . . . ,n)

M
m

�
[

S
A

+

√
1+

S2

A2

]2

, (2.27)

M
m

�
[√

A
H

+

√
A
H

−1

]2

, (2.28)

M
m

�
[(

A
G

) n
2

+

√(
A
G

)n

−1

]2

, (2.29)

M
m

�
[(

G
H

) n
2

+

√(
G
H

)n

−1

]2

, (2.30)

M
m

�
(m2

G

)n
+

√(m2

G

)2n−1 (2.31)

and
M
m

�
[
1+

√
α
2

(√
α +4+

√
α
)]2

, (2.32)
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where

α = n

(√
A
H

−1

)
. (2.33)

Proof. For m > 0, we find from inequality (1.6) that

M
m

� S2 +A2−mA
m(A−m)

. (2.34)

On using derivatives we get that

S2 +A2−mA
m(A−m)

�
[

A√
S2 +A2−S

]2

. (2.35)

Combining (2.34) and (2.35) we get on simplification (2.27).
It follows from inequality (2.20) that

M
m

� H (A−m)
m(H −m)

. (2.36)

Also
H (A−m)
m(H−m)

�
[√

A
H

+

√
A
H

−1

]2

. (2.37)

Combining (2.36) and (2.37) we obtain (2.28).
To prove (2.29) we observe that

A =
m+M

n
+

x2 + ...+ xn−1

n
(2.38)

and
x2 + ...+ xn−1

n−2
� (x2...xn−1)

1
n−2 . (2.39)

Therefore
A
G

� m+M
nG

+
n−2
nG

(
Gn

mM

) 1
n−2

. (2.40)

The right hand side expression of (2.40) has minimum at

G = (mM)
1
n

(
m+M

2

) n−2
n

. (2.41)

Combining (2.40) and (2.41) we get on simplification

M
m

−2

(
A
G

) n
2
√

M
m

+1 � 0. (2.42)

From (2.42) we easily get (2.29).
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In the same manner we can see that

M
m

−2

(
G
H

) n
2
√

M
m

+1 � 0 (2.43)

and (
M
m

)2

−2
(m2

G

)n M
m

+1 � 0. (2.44)

From(2.43) and (2.44) we respectively get (2.30) and (2.31).
On using Cauchy’s inequality it is easily seen that

A
H

� 1
n2

[
n−2+

m+M√
mM

]2

. (2.45)

From (2.45) we get that
M
m

− (2+α)

√
M
m

+1 � 0. (2.46)

Inequality (2.32) now follows immediately from (2.46). �

THEOREM 2.6. For 0 < m � xi � M, (i = 1,2, . . . ,n)

A−H � 2S2

m+M+
√

(M−m)2−4S2
(2.47)

and

A−H � 2S2

m+M−
√

(M−m)2 −4S2
. (2.48)

Proof. For m < H < M , we have [4]

S2 � M (A−H)(M−A)
M−H

(2.49)

and

S2 � m(A−m)(A−H)
H−m

. (2.50)

From(2.49) and (2.50) we respectively find that

A−H � (M−A)S2

M (M−A)−S2 (2.51)

and

A−H � (A−m)S2

m(A−m)+S2 . (2.52)
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The right hand side expression of (2.51) is an increasing function of A and assumes its
minimum at

A =
m+M

2
−
√(

M−m
2

)2

−S2 . (2.53)

Substituting (2.53) in (2.51) we get (2.47). Similarly, the right hand side expression of
(2.52) assumes its maximum at

A =
m+M

2
+

√(
M−m

2

)2

−S2 . (2.54)

Substituting (2.54) in (2.52) we get (2.48). �
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