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APPLICATIONS OF SRIVASTAVA–ATTIYA OPERATOR TO THE CLASSES

OF STRONGLY STARLIKE AND STRONGLY CONVEX FUNCTIONS

J. K. PRAJAPAT AND S. P. GOYAL

(communicated by A. Čižmešija)

Abstract. Srivastava-Attiya operator is used to define some new subclasses of strongly starlike
and strongly convex functions of order β and type α in the open unit disk U . For each of these
new function classes, several inclusion relationships are established. Some interesting corollaries
and applications of the results presented here are also discussed.

1. Introduction

Let A denote the class of functions f (z) normalized by

f (z) = z+
∞

∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. A function
f ∈ A is said to be in the class S ∗(α) of starlike functions of order α in U, if it
satisfies the following inequality:

ℜ
(

z f ′(z)
f (z)

)
> α (z ∈ U, 0 � α < 1), (1.2)

and is said to be in the class K (α) of convex functions of order α in U, if it satisfies
the following inequality:

ℜ
(

1+
z f ′′(z)
f ′(z)

)
> α (z ∈ U, 0 � α < 1). (1.3)

On the other hand, a function f (z)∈A is said to be in the class of strongly starlike
functions of order β and type α , denoted by S ∗

s (α,β ) , if it satisfies the following
inequality: ∣∣∣∣arg

(
z f ′(z)
f (z)

−α
)∣∣∣∣< π

2
β (z ∈ U; 0 � α < 1; 0 < β � 1), (1.4)
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and is said to be in a corresponding class Kc(α,β ) of strongly convex functions of
order β and type α , if∣∣∣∣arg

(
1+

z f ′′(z)
f ′(z)

−α
)∣∣∣∣< π

2
β (z ∈ U; 0 � α < 1; 0 < β � 1). (1.5)

It is obvious that f (z) ∈ Kc(α,β ), if and only if z f ′(z) ∈ S ∗
s (α,β ). We also

observe that

S ∗
s (0,β ) = S ∗

s (β ) and Kc(0,β ) = Kc(β ),

where for 0 < β � 1, S ∗
s (β ) and Kc(β ) are, respectively, the classes of strongly star-

like functions of order β and strongly convex functions of order β in U . Furthermore,
we have the following relationships:

S ∗
s (α,1) = S ∗(α) and Kc(α,1) = K (α)

The generalized Hurwitz-Lerch Zeta function φ(z,s,a) is defined by (cf., e.g., [9,
p. 121 et seq.]):

φ(z,s,a) =
∞

∑
n=0

zn

(a+n)s (1.6)

(a ∈ C/Z
−
0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1),

contains, as its special cases, well-known functions as the Riemann and Hurwitz (or
generalized) Zeta function, Lerch Zeta function, the Polylogarithmic function and the
Lipschitz-Lerch Zeta function. One may refer to the Srivastava and Choi [9] (see also,
[8]) for further details and references to these functions.

Srivastava and Attiya in [8] (see also, [7]), introduced the following family of
linear operator:

Jμ,b : A −→ A ,

defined by

Jμ,b( f )(z) = Gμ,b(z)∗ f (z) (z ∈ U; b ∈ C/Z
−
0 ; μ ∈ C; f ∈ A ), (1.7)

where * denote the Hadamard product (or convolution) of analytic functions and func-
tion Gμ,b is given by

Gμ,b(z) := (1+b)μ[φ(z,μ ,b) − b−μ ]

= z+
∞

∑
n=2

(
b+1
b+n

)μ
zn (z ∈ U). (1.8)

Now using (1.8) in (1.7), we get

Jμ,b( f )(z) = z+
∞

∑
n=2

(
b+1
b+n

)μ
anz

n (z ∈ U; f ∈ A ). (1.9)
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For f (z) ∈ A and z ∈ U , Srivastava and Attiya in [8] showed that

J0,b( f )(z) := f (z), (1.10)

J1,0( f )(z) =
∫ z

0

f (t)
t

dt := A( f )(z), (1.11)

J1,γ( f )(z) =
1+ γ
zγ

∫ z

0
tγ−1 f (t) dt := Iγ ( f )(z) (γ > −1), (1.12)

Jσ ,1( f )(z) = z+
∞

∑
n=2

(
2

n+1

)σ
an zn := Iσ ( f )(z) (σ > 0), (1.13)

where A( f ) and Iγ are the integral operators introduced by Alexandor [1] and Bernardi
[2], respectively, and Iσ ( f ) is the Jung-Kim-Srivastava integral operator [4] closely re-
lated to some multiplier transformation studied by Fleet [3] (see also, [5]).

By applying the definition (1.9), Srivastava and Attiya obtained the following re-
lation [8, p. 210, Eq. (24)]:

zJ′μ+1,b( f )(z) = (b+1) Jμ,b( f )(z)−b Jμ+1,b( f )(z). (1.14)

Using the linear operator Jμ,b, we now introduce the following subclasses of A :

S ∗
s (μ ,b,α,β ) :=

{
f : f (z) ∈ A , Jμ,b( f )(z) ∈ S ∗

s (α,β ) and
zJ′μ ,b( f )(z)
Jμ ,b( f )(z) �= α (z ∈ U)

}
(1.15)

and

Kc(μ ,b,α,β ) :=

{
f : f (z) ∈ A , Jμ,b( f )(z) ∈ Kc(α,β ) and

(
zJ′μ ,b( f )(z)

)′
J′μ ,b( f )(z) �= α (z ∈ U)

}
.

(1.16)
It is obvious from the definitions (1.15) and (1.16) that

f (z) ∈ Kc(μ ,b,α,β ) ⇐⇒ z f ′(z) ∈ S ∗
s (μ ,b,α,β ).

2. Main Results

In order to derive our main results, we shall need the following lemmas.

LEMMA 1. (see [6]) Let a function p(z) be analytic in U with

p(0) = 1 and p(z) �= 0 (z ∈ U).

If there exists a point z0 ∈ U such that

|arg(p(z)
)| < π

2
β (|z| < |z0|) and |arg(p(z0)

)| = π
2
β (0 < β � 1), (2.1)

then
z0p′(z0)
p(z0)

= ikβ , (2.2)
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where

k � 1
2

(
a+

1
a

)
when arg

(
p(z0)

)
=

π
2
β , (2.3)

k � −1
2

(
a+

1
a

)
when arg

(
p(z0)

)
= −π

2
β , (2.4)

and (
p(z0)

) 1
β = ± ia (a > 0).

LEMMA 2. (see, [8, p. 210]) Let f ∈ A , z, t j ∈ U ( j = 1, ...,n), n ∈ N and
b ∈ C/Z

−
0 , we have

J2,0( f )(z) =:
∫ z

0

1
t1

∫ t1

0

f (t2)
t2

dt2 dt1, (2.5)

Jn,0( f )(z) =:
∫ z

0

1
t1

∫ t1

0

1
t2

∫ t2

0
...

1
tn−1

∫ tn−1

0

f (tn)
tn

dtn dtn−1 ... dt1, (2.6)

J2,b( f )(z) =:
(1+b)2

zb

∫ z

0

1
t1

∫ t1

0
tb−1
2 f (t2) dt2 dt1, (2.7)

Jn,b( f )(z) =:
(1+b)n

zb

∫ z

0

1
t1

∫ t1

0

1
t2

∫ t2

0
...

1
tn−1

∫ tn−1

0
tb−1
n f (tn) dtn dtn−1 ... dt1. (2.8)

Theorem 1 below gives our first main inclusion relationship.

THEOREM 1. Let f ∈ A . Suppose also that

μ ∈ C, 0 � α < 1, 0 < β � 1 and b > −α.

Then

S ∗
s (μ ,b,α,β ) ⊂ S ∗

s (μ+1,b,α,β ).

proof. Let f ∈ S ∗
s (μ ,b,α,β ). Then, upon setting

p(z) =
1

1−α

(
zJ′μ+1,b( f )(z)

Jμ+1,b( f )(z)
−α

)
(z ∈ U), (2.9)

we see that the function p(z) is analytic in U , with p(0) = 1 and p(z) �= 0 for z ∈ U.

Using the identity (1.14) in (2.9), and differentiating with respect to z , we get

zJ′μ,b( f )(z)

Jμ,b( f )(z)
−α = (1−α)p(z)+

(1−α)zp′(z)
b+α+(1−α)p(z)

. (2.10)
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Suppose now that there exists a point z0 ∈ U such that the conditions (2.1) to (2.4)
of Lemma 1 are satisfied. Thus, if arg

(
p(z0)

)
= π

2 β for z0 ∈ U, then

z0J′μ,b( f )(z0)

Jμ,b( f )(z0)
−α = (1−α)p(z0)

(
1+

z0p′(z0)/p(z0)
b+α+(1−α)p(z0)

)

= (1−α) aβ e
iπβ
2

(
1+

ikβ

b+α+(1−α)aβe
iπβ
2

)

This implies that

arg

( z0J′μ,b( f )(z0)

Jμ,b( f )(z0)
−α

)

=
πβ
2

+ arg

(
1+

ikβ

b+α+(1−α)aβe
iπβ
2

)

=
πβ
2

+ tan−1

⎛
⎝ kβ

(
b+α+(1−α)aβ cos πβ

2

)
(b+α)2+(1−α)2a2β+2(b+α)(1−α)aβ cos πβ

2 +kβ (1−α)aβ sin πβ
2

⎞
⎠

� πβ
2

(
since k � 1

2

(
a+

1
a

)
� 1 and z0 ∈ U

)
. (2.11)

Thus, (2.11) would contradict our assumption that f (z) ∈ S ∗
s (μ ,b,α,β ).

On the other hand, if we set arg
(
p(z0)

)
= − π

2 β , then it can similarly be shown
that

arg

(
z0J′μ,b( f )(z0)

Jμ,b( f )(z0)
−α

)
� −π

2
β

(
since k � 1

2

(
a+

1
a

)
� 1 and z0 ∈ U

)
,

which again contradicts the assumption that f (z) ∈ S ∗
s (μ ,b,α,β ).

Hence the function p(z) defined by (2.9) satisfies the following inequality:

|arg(p(z)
)| < π

2
β (z ∈ U),

which implies that f (z) ∈S ∗
s (μ ,b,α,β ). This completes the proof of Theorem 1. �

We next prove the following inclusion relationships.

THEOREM 2. Let f ∈ A . Suppose also that

μ ∈ C, 0 � α < 1, 0 < β � 1 and b > −α.

Then

Kc(μ ,b,α,β ) ⊂ Kc(μ +1,b,α,β ).
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Proof. We observe from Theorem 1 that

f (z) ∈ Kc(μ ,b,α,β ) ⇐⇒ z f ′(z) ∈ S ∗
s (μ ,b,α,β )

=⇒ z f ′(z) ∈ S ∗
s (μ +1,b,α,β )

⇐⇒ f (z) ∈ Kc(μ +1,b,α,β ),

which establishes Theorem 2. �

THEOREM 3. Let f ∈ A . Suppose also that

b ∈ C/Z
−
0 , μ ∈ C, 0 � α < 1, 0 < β � 1 and c > −α,

and that
z
(
Jμ,b Ic( f )

)′(z)
Jμ,b Ic( f )(z)

�= α (z ∈ U).

Then
f (z) ∈ S ∗

s (μ ,b,α,β ) =⇒ Ic f (z) ∈ S ∗
s (μ ,b,α,β ).

Proof. We begin by assuming that f (z) ∈ S ∗
s (μ ,b,α,β ) and defining a function

q(z) by

q(z) =
1

1−α

(
z
(
Jμ,b Ic( f )

)′(z)
Jμ,b Ic( f )(z)

−α

)
(z ∈ U), (2.12)

where q(z) is analytic in U, with q(0) = 1 and q(z) �= 0 for z ∈ U.
It can easily be verified from (1.9) and (1.12) that

z
(
Jμ,b Ic( f )

)′(z) = (c+1)Jμ,b( f )(z)− c Jμ,b Ic( f )(z). (2.13)

Thus, by using (2.13) and (2.12), we find that

zJ′μ,b( f )(z)

Jμ,b( f )(z)
−α = (1−α)q(z)+

(1−α)zq′(z)
c+α+(1−α)q(z)

.

The remaining part of the proof of the Theorem 3 is similar to that of Theorem 1 and
so we omit it. �

From Theorem 3, we easily see the following result.

THEOREM 4. Under the parametric constraints stated with Theorem 3 , let

f (z) ∈ A and

(
z
(
Jμ,b Ic( f )

)′)′ (z)(
Jμ,b Ic( f )

)′(z) �= α (z ∈ U).

Then
f (z) ∈ Kc(μ ,b,α,β ) =⇒ Ic( f )(z) ∈ Kc(μ ,b,α,β ).

REMARK. Upon setting b = 1, Theorems 1 to 4 would yield the corresponding
known results due to Liu [5] for μ > 0.



APPLICATIONS OF SRIVASTAVA-ATTIYA OPERATOR. . . 135

3. Corollaries and Applications

In this concluding section, we deduce the following consequences of our main
results (Theorems 1 to 4) established in Section 2.

First of all, on setting μ = 1 and b = 0, Theorem 1 would yield the following
result.

COROLLARY 1. Let

f (z) ∈ A and f (z) �= α
∫ z

0

f (t)
t

dt (z ∈ U).

If f (z) satisfies the following inequality :∣∣∣∣∣arg
(

f (z)∫ z
0

f (t)
t dt

−α

)∣∣∣∣∣< π
2
β (0 � α < 1; 0 < β � 1),

then ∫ z

0

1
t1

∫ t1

0

f (t2)
t2

dt2 dt1 ∈ S ∗
s (α,β ) (t1, t2 ∈ U).

Next, if we set μ = 1 and b = 1 in Theorem 1, we get Corollary 2 below.

COROLLARY 2. Let

f (z) ∈ A and z f (z) �= (α +1)
∫ z

0
f (t) dt (z ∈ U).

If f (z) satisfies the following inequality :∣∣∣∣arg
(

z f (z)∫ z
0 f (t) dt

− (α+1)
)∣∣∣∣< π

2
β (0 � α < 1; 0 < β � 1),

then
4
z

∫ z

0

1
t1

∫ t1

0
f (t2) dt2 dt1 ∈ S ∗

s (α,β ) (t1,t2 ∈ U).

By putting μ = 1 and b = 0, in Theorem 2, we arrive at Corollary 3 below.

COROLLARY 3. Let

f (z) ∈ A and z f ′(z) �= α f (z) (z ∈ U).

If f (z) ∈ S ∗
s (α,β ), then

∫ z

0

1
t1

∫ t1

0

f (t2)
t2

dt2 dt1 ∈ Kc(α,β ) (t1, t2 ∈ U).

Upon setting μ = 1 and b = 1, Theorem 2 would yield the following result.
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COROLLARY 4. Let

f (z) ∈ A and z2 f ′(z) �= (α +1)
(

z f (z)−
∫ z

0
f (t) dt

)
(z ∈ U).

If f (z) satisfies the following inequality :

∣∣∣∣arg
(

z2 f ′(z)
z f (z)− ∫ z

0 f (t) dt
− (α+1)

)∣∣∣∣< π
2
β (0 � α < 1; 0 < β � 1),

then
4
z

∫ z

0

1
t1

∫ t1

0
f (t2) dt2 dt1 ∈ Kc(α,β ) (t1,t2 ∈ U).

Putting μ = 0 in Theorem 1 (or in Theorem 3), we get the following Corollary
for the integral operator Ic( f ) given by (1.7).

COROLLARY 5. If f (z) ∈ A . Suppose also that

0 � α < 1, 0 < β � 1 and c > −α,

and that
z I ′

c ( f )(z)
Ic( f )(z)

�= α (z ∈ U).

Then
f (z) ∈ S ∗

s (α,β ) =⇒ Ic( f )(z) ∈ S ∗
s (α,β ).
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