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AN ESTIMATE OF THE COMMUTATIVITY OF

C2 –FUNCTIONS AND PROBABILITY MEASURES

TAKESHI MIURA, TAKAHIRO HAYATA AND SIN-EI TAKAHASI

(Communicated by J. Pečarić)

Abstract. In [1], an estimate of the difference of the two sides of the Jensen’s inequality with
respect to probability measures was given, which is a special case of a Cauchy type mean value
theorem (cf. [3, 4, 5]). Without Cauchy type mean value theorem, we give an estimate of the
commutativity of C2 -function and probability measure. The purpose of this paper is to determine
the equality condition for the estimate above.

1. Introduction and main result

Recently A. M. Fink [1] considered how much the difference of the two sides of
the Jensen inequality might be. Although Fink dealt with probability measures and end
positive measures, we will focus on attention on probability measure. In this case, his
result reads as follows:

THEOREM A. Let μ be a probability measure on a finite closed interval [a,b]
and f ∈ L∞R([a,b],μ) with α � f � β . If ϕ is a convex C2 -function on [α,β ] , then

∫ b

a
ϕ( f )dμ−ϕ

(∫ b

a
f dμ

)
� 1

2
max
α�t�β

ϕ ′′(t)

{∫ b

a
f 2 dμ−

(∫ b

a
f dμ

)2
}

. (1)

When ϕ(t) = t2/2 , the equality holds.

It seems that the inequality (1) is well-known. In fact, A. McD. Mercer proved
the discrete version of inequality (1). Moreover, (1) is a special case of [4, Theorem 6]
by J. E. Pečarić, I. Perić and H. M. Srivastava (cf. [5, Theorem 2]). Fink only gave an
example that the equality holds in (1). Applying the argument in [1], we will determine
the equality condition for a generalized inequality of (1). The following is our main
result.
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THEOREM 1.1. Let CR(X) be the space of all real-valued continuous functions
on a compact Hausdorff space X . Let μ be a probability measure on X and f ∈CR(X)
with α = ess inf x∈X f (x) and β = ess sup x∈X f (x) with respect to μ . If ϕ is a complex-
valued C2 -function on [α,β ] and if ψ is a convex or concave C2 -function on [α,β ]
such that |ϕ ′′(t)| � A|ψ ′′(t)| (∀t ∈ [α,β ]) for some positive constant A < ∞ , then∣∣∣∣

∫
X
ϕ( f )dμ−ϕ

(∫
X

f dμ
)∣∣∣∣� K

∣∣∣∣
∫

X
ψ( f )dμ−ψ

(∫
X

f dμ
)∣∣∣∣ (2)

holds, where

K = sup

{ |ϕ ′′(t)|
|ψ ′′(t)| : t ∈ [α,β ] with ψ ′′(t) �= 0

}
.

The equality holds in (2) if and only if ϕ(t) = aψ(t)+bt + c (∀t ∈ [α,β ]) for some a,
b, c ∈ C .

Although the inequality (2) is a direct consequence of [4, Theorem 6], we will give
another proof of it in order to determine the equality condition for (2).

LEMMA 1.2. Let (Ω,μ) be a probability space and f ∈ L1(Ω,μ) . Then the fol-
lowing are equivalent.

(i)

∣∣∣∣
∫
Ω

f dμ
∣∣∣∣=

∫
Ω
| f |dμ .

(ii) There exists c ∈ C such that |c| = 1 and f (w) = c| f (w)| for μ -a.e. w ∈Ω .

Proof. (i) ⇒ (ii) Suppose that

∣∣∣∣
∫
Ω

f dμ
∣∣∣∣ =

∫
Ω
| f |dμ . If

∫
Ω

f dμ = 0, then by

hypothesis | f (w)| = 0 for μ -a.e. w ∈ Ω . So, it is enough to consider the case where∫
Ω

f dμ �= 0. Take θ ∈ [0,2π) so that
∫
Ω

f dμ = eiθ
∣∣∣∣
∫
Ω

f dμ
∣∣∣∣ . We have that

∣∣∣∣
∫
Ω

f dμ
∣∣∣∣=

∫
Ω

e−iθ f dμ =
∫
Ω

Re(e−iθ f )dμ

�
∫
Ω
|Re(e−iθ f )|dμ �

∫
Ω
| f |dμ .

It follows that ∫
Ω

Re(e−iθ f )dμ =
∫
Ω
| f |dμ ,

and so | f (w)| = Re (e−iθ f (w)) for μ -a.e. w ∈Ω . Since |e−iθ f (w)| = | f (w)| , we have
that | f (w)| = e−iθ f (w) for μ -a.e. w∈Ω . This implies that f (w) = c| f (w)| for μ -a.e.
w ∈Ω , where c = eiθ .

(ii) ⇒ (i) If there exists c ∈ C such that |c| = 1 and f (w) = c| f (w)| for μ -a.e.
w ∈Ω , then we have ∣∣∣∣

∫
Ω

f dμ
∣∣∣∣=
∣∣∣∣
∫
Ω

c| f |dμ
∣∣∣∣=

∫
Ω
| f |dμ .
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This completes the proof. �
Proof of Theorem 1.1. Let η be a C2 -function on [α,β ] . For each p,q ∈ [α,β ] ,

we have

η(q)−η(p) =
∫ q

p
η ′(t)dt = (q− p)η ′(p)+

∫ q

p
(q− t)η ′′(t)dt.

Set M =
∫
X f dμ , then we have α � M � β . Since f (x) ∈ [α,β ] , we have for each

x ∈ X that

η( f (x))−η(M) = ( f (x)−M)η ′(M)+
∫ f (x)

M
( f (x)− t)η ′′(t)dt. (3)

Integrating both sides of (3) with respect to μ , we get

∫
X
η( f (x))dμ(x)−η(M) =

∫
X

dμ(x)
∫ f (x)

M
( f (x)− t)η ′′(t)dt. (4)

Set, for each C2 -function η on [α,β ] ,

Jη =
∣∣∣∣
∫

X
η( f (x))dμ(x)−η

(∫
X

f dμ
)∣∣∣∣ .

Under this notation, it is enough to prove that

Jϕ � KJψ . (5)

Recall that M =
∫
X f dμ . By (4), applied to η = ϕ , we have that

Jϕ =
∣∣∣∣
∫

X
dμ(x)

∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣ . (6)

Set
X− = {x ∈ X : f (x) < M} and X+ = {x ∈ X : M � f (x)}.

We first consider the case when ψ is a convex function. Then ψ ′′(t) � 0 for every
t ∈ [α,β ] . Thus, |ϕ ′′(t)| � Kψ ′′(t) for every t ∈ [α,β ] . We have

Jϕ =
∣∣∣∣
∫

X−
dμ
∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt +

∫
X+

dμ
∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣ (7)

�
∫

X−
dμ
∣∣∣∣
∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣+
∫

X+
dμ
∣∣∣∣
∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣
�
∫

X−
dμ
∫ M

f (x)
(t− f (x))|ϕ ′′(t)|dt +

∫
X+

dμ
∫ f (x)

M
( f (x)− t)|ϕ ′′(t)|dt (8)

� K
∫

X−
dμ
∫ M

f (x)
(t− f (x))ψ ′′(t)dt +K

∫
X+

dμ
∫ f (x)

M
( f (x)− t)ψ ′′(t)dt (9)

= K
∫

X−
dμ
∫ f (x)

M
( f (x)− t)ψ ′′(t)dt +K

∫
X+

dμ
∫ f (x)

M
( f (x)− t)ψ ′′(t)dt
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= K

∣∣∣∣
∫

X
dμ(x)

∫ f (x)

M
( f (x)− t)ψ ′′(t)dt

∣∣∣∣= KJψ .

We thus get the inequality (5).
If ϕ is of the form ϕ(t) = aψ(t)+bt + c (t ∈ [α,β ]) for some a , b , c ∈ C , then

by a simple calculation we see that the equality holds in (2). Conversely, suppose that
the equality holds in (2). We will prove that ϕ(t) = aψ(t)+ bt + c (t ∈ [α,β ]) for
some a , b , c ∈ C . By (8), we have that∣∣∣∣

∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣=
∫ M

f (x)
(t − f (x))|ϕ ′′(t)|dt (10)

for μ -a.e. x ∈ X− , and that

∣∣∣∣
∫ f (x)

M
( f (x)− t)ϕ ′′(t)dt

∣∣∣∣=
∫ f (x)

M
( f (x)− t)|ϕ ′′(t)|dt (11)

for μ -a.e. x ∈ X+ . On the other hand, by (9), we have that

∫ M

f (x)
(t− f (x))|ϕ ′′(t)|dt = K

∫ M

f (x)
(t− f (x))ψ ′′(t)dt (12)

for μ -a.e. x ∈ X− , and that

∫ f (x)

M
( f (x)− t)|ϕ ′′(t)|dt = K

∫ f (x)

M
( f (x)− t)ψ ′′(t)dt (13)

for μ -a.e. x∈X+ . By normalizing the Lebesguemeasure dt , we may apply Lemma 1.2
to (10). Then we see that, for μ -a.e. x ∈ X− , there exists γ(x) ∈ C such that |γ(x)|= 1
and that

(t − f (x))ϕ ′′(t) = γ(x)(t − f (x))|ϕ ′′(t)|
for dt -a.e. t ∈ [ f (x),M] . By the continuity of ϕ ′′ , we see that there exists N ⊂ X−
with μ(N) = 0 such that

ϕ ′′(t) = γ(x)|ϕ ′′(t)| (∀t ∈ [ f (x),M]) (14)

for every x ∈ X− \N . We will show that there exists γ0 ∈ C with |γ0| = 1 such that

ϕ ′′(t) = γ0Kψ ′′(t) (∀t ∈ [α,M]). (15)

To do this, set

N0 = {x ∈ X− \N : ϕ ′′(t) = 0 (∀t ∈ [ f (x),M])}.
We first consider the case where N0 = X− \N . Then, by hypothesis, ϕ ′′(t) = 0 (∀t ∈
[ f (x),M]) for every x ∈ X− \N . This implies that ϕ ′′(t) = 0 for every t ∈ [α,M] . It
follows from (12) that ψ ′′(t)= 0 for every t ∈ [α,M] , that is, (15) holds if N0 = X−\N .
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We next consider the case where N0 � X− \N . Take x0 ∈ (X− \N)\N0 . By the
definition of N0 , there exists t0 ∈ [ f (x0),M] such that ϕ ′′(t0) �= 0. Since x0 ∈ X− \N ,
it follows from (14) that

ϕ ′′(t0) = γ(x0)|ϕ ′′(t0)|. (16)

Then we have γ(x0) = ϕ ′′(t0)/|ϕ ′′(t0)| . Set γ0 = γ(x0) , then by (14), we have

ϕ ′′(t) = γ0|ϕ ′′(t)| (∀t ∈ [ f (x0),M]). (17)

We will prove that
ϕ ′′(t) = γ0|ϕ ′′(t)| (∀t ∈ [ f (x),M]) (18)

for every x ∈ X− \N . Take x ∈ X− \N arbitrarily. If f (x0) � f (x) , then [ f (x),M] ⊂
[ f (x0),M] , and so by (17), we have (18). If f (x) < f (x0) , then t0 ∈ [ f (x),M] . Recall
that ϕ ′′(t0) �= 0. It follows from (14) that

γ(x) =
ϕ ′′(t0)
|ϕ ′′(t0)| = γ(x0) = γ0,

and so (18) holds. Since x ∈ X− \N was arbitrary, we have proved that (18) holds for
every x ∈ X− \N . This implies that

ϕ ′′(t) = γ0|ϕ ′′(t)| (∀t ∈ [α,M]). (19)

On the other hand, it follows from (12) that

|ϕ ′′(t)| = Kψ ′′(t) (∀t ∈ [ f (x),M])

for μ -a.e. x ∈ X− , and so

|ϕ ′′(t)| = Kψ ′′(t) (∀t ∈ [α,M]).

By (19), we have (15) even if N0 � X− \N .
In the same way, we see that there exists γ1 ∈ C with |γ1| = 1 such that ϕ ′′(t) =

γ1Kψ ′′(t) for all t ∈ [M,β ] . Thus we can write

ϕ ′′(t) =

{
γ0Kψ ′′(t) if t ∈ [α,M]
γ1Kψ ′′(t) if t ∈ [M,β ]

. (20)

We will prove that
ϕ ′′(t) = γKψ ′′(t) (∀t ∈ [α,β ]) (21)

for some γ ∈ C with |γ| = 1. By (20), we see that if ψ ′′ is identically 0 on [α,M] ,
then so is ϕ ′′ . This implies that ϕ ′′(t) = γ1Kψ ′′(t) for every t ∈ [α,β ] . Similarly to
the above, we have that ϕ ′′(t) = γ0Kψ ′′(t) for every t ∈ [α,β ] if ψ ′′ = 0 on [M,β ] .
Finally, we consider the case where ψ ′′(t1) �= 0 and ψ ′′(t2) �= 0 for some t1 ∈ [α,M]
and t2 ∈ [M,β ] . Set

r =
∫

X−
dμ
∫ M

f (x)
(t− f (x))ψ ′′(t)dt
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and

s =
∫

X+
dμ
∫ f (x)

M
( f (x)− t)ψ ′′(t)dt.

Then we have r �= 0 and s �= 0 since ψ ′′ is not identically 0 on [α,M] and [M,β ] . By
(7) and (20), we have

Jϕ = K|γ0r+ γ1s|.
On the other hand, Jψ = r + s by definition and (4). Recall, by hypothesis, that Jϕ =
KJψ . This implies that

K|γ0r+ γ1s| = K(r+ s).

If K �= 0, then it is easy to see that γ0 = γ1 . In this case, it follows from (20) that
ϕ ′′(t) = γ0Kψ ′′(t) for every t ∈ [α,β ] . On the other hand, if K = 0, then by (20), we
have (21). In any case, we conclude that there exists γ ∈ C with |γ| = 1 such that (21)
holds. Now it is obvious that ϕ(t) = aψ(t)+bt + c (∀t ∈ [α,β ]) for some a,b,c ∈ C .

If ψ is concave, then the above proof works for −ψ because −ψ is convex. This
completes the proof. �

REMARK 1.1. In Theorem 1.1, the convexity or concavity assumption for ψ is
essential. In fact, let X = [0,1] and μ a probability measure on X such that μ(0) =
μ(1) = 1/2. Let f (x) = 3x−2 for x ∈ X , ϕ(t) = t4/4+ t3/6 and ψ(t) = t3 + t2 for
t ∈ [−2,1] . Then ψ is neither convex nor concave. We have that ϕ ′′(t) = t(3t +1) and
ψ ′′(t) = 2(3t +1) , and so

sup
t∈[−2,1]
ψ ′′(t) �=0

∣∣∣∣ϕ ′′(t)
ψ ′′(t)

∣∣∣∣= sup
t∈[−2,1]

|t|
2

= 1.

On the other hand, by a simple calculation, we see that

∫
X
ϕ( f )dμ −ϕ

(∫
X

f dμ
)

=
37
24

+
1

192
=

297
192

and ∣∣∣∣
∫

X
ψ( f )dμ−ψ

(∫
X

f dμ
)∣∣∣∣= 9

8
<

297
192

.

Thus the inequality (2) does not hold.

2. Applications

COROLLARY 2.1. Let L∞R(Ω,ν) be the set of all essentially bounded real-valued
measurable functions on a probability space (Ω,ν) . Let f ∈ L∞R(Ω,ν) with α =
ess infw∈Ω f (w) and β = ess supw∈Ω f (w) . If ϕ is a complex-valued C2 -function on
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[α,β ] and if ψ is a convex or concave C2 -function on [α,β ] such that |ϕ ′′(t)| �
A|ψ ′′(t)| (∀t ∈ [α,β ]) for some constant A < ∞ , then∣∣∣∣

∫
Ω
ϕ( f )dν −ϕ

(∫
Ω

f dν
)∣∣∣∣� K

∣∣∣∣
∫
Ω
ψ( f )dν −ψ

(∫
Ω

f dν
)∣∣∣∣ (22)

holds, where

K = sup

{ |ϕ ′′(t)|
|ψ ′′(t)| : t ∈ [α,β ] with ψ ′′(t) �= 0

}
.

The equality holds in (22) if and only if ϕ(t) = aψ(t)+ bt + c (∀t ∈ [α,β ]) for some
a, b, c ∈ C .

Proof. Let X be the maximal ideal space of the commutative Banach algebra
L∞(Ω,ν) . Then X is a compact Hausdorff space and L∞(Ω,ν) is isometrically iso-
morphic to C(X) , the Banach algebra of all complex-valued continuous functions on X
(cf. [2, Theorem 4.3.1]). By the Riesz representation theorem (cf. [6, Theorem 2.14]),
there exists a probability measure μ on X such that∫

X
ĝdμ =

∫
Ω

gdν (∀g ∈ L∞(Ω,ν)), (23)

where ĝ is the Gelfand transform of g . Note that μ has the following property:

μ(G) �= 0 for every non-empty open subset G of X . (∗)
In fact, if μ(G)= 0 for some non-empty open subset G of X , then take a non-zero posi-
tive function h∈ L∞(Ω,ν) so that supp ĥ⊂G . By (23), we have

∫
Ω hdν =

∫
X ĥdμ = 0,

and so h(w) = 0 for ν -a.e. w ∈Ω . This implies that ĥ = 0 on X , which is impossible.
Thus, μ satisfies (∗) . Set α̂ = ess inf x∈X f̂ (x) and β̂ = ess sup x∈X f̂ (x) with respect
to μ . We will show that α = α̂ and β = β̂ . Since α � f (w) for ν -a.e. w ∈ Ω , we
have α � f̂ (x) for all x ∈ X . That is, α � α̂ . Suppose that α < α̂ . There exists δ > 0
such that α+δ < α̂ . By definition, we have α+δ � f̂ (x) for μ -a.e. x∈ X . It follows
from (∗) that α + δ � f̂ (x) for every x ∈ X , and so α + δ � f (w) for ν -a.e. w ∈Ω ,
a contradiction. This implies that α = α̂ . In the same way, we see that β = β̂ . By
Theorem 1.1, the inequality (2) holds for ϕ( f̂ ) , f̂ and ψ( f̂ ) instead of ϕ( f ) , f and
ψ( f ) , respectively. By (23), we have (22). �

COROLLARY 2.2. Let X be a compact Hausdorff space and μ a probability mea-
sure on X . Let f ∈CR(X) with α = ess inf x∈X f (x) > 0 and β = ess sup x∈X f (x) with
respect to μ . Set, for each p ∈ R ,

ψp(t) =

⎧⎨
⎩

t p if p ∈ R\ {0,1}
log t if p = 0
t log t if p = 1

(∀t ∈ [α,β ]).

Let ϕ be a complex-valued C2 -function on [α,β ] . We define a mapping Φ : R →R by

Φ(p) = max
t∈[α ,β ]

∣∣∣∣∣ϕ
′′(t)

ψ ′′
p(t)

∣∣∣∣∣
∣∣∣∣
∫

X
ψp( f )dμ−ψp

(∫
X

f dμ
)∣∣∣∣ (∀p ∈ R).
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Then the following are true.

(i) Φ is a continuous function on R such that∣∣∣∣
∫

X
ϕ( f )dμ −ϕ

(∫
X

f dμ
)∣∣∣∣� Φ(p) (∀p ∈ R). (24)

(ii) For each p ∈ R ,

Φ(2) �
(
β
α

)|2−p|
Φ(p). (25)

Proof. (i) Since α > 0, we have, for each p ∈ R , that ψp is a convex or concave
function with |ψ ′′

p(t)|> 0 for every t ∈ [α,β ] . Thus, we see that, for each p∈ R , there
exists a positive constant Ap < ∞ such that |ϕ ′′(t)| � Ap|ψ ′′

p(t)| for every t ∈ [α,β ] .
By Theorem 1.1, we have (24). It remains to be proved that Φ is continuous on R . To
do this, set, for each p ∈ R ,

ξ (p) = max
t∈[α ,β ]

|ϕ ′′(t)|
t p−2 and ζ (p) = max{α p,β p,α−p,β−p}.

Then ζ is a continuous function on R with ζ (p) > 1 for every p ∈ R . Firstly, we
show that ξ is continuous on R . Take p0 ∈ R arbitrarily. Note that

ξ (p) � ξ (p0)ζ (p0 − p) (26)

for every p ∈ R . In fact, we have, for each p ∈ R , that

ξ (p) = max
t∈[α ,β ]

|ϕ ′′(t)|
t p−2 = max

t∈[α ,β ]

|ϕ ′′(t)|
t p0−2 t p0−p � ξ (p0)ζ (p0 − p)

as required. This implies that

ξ (p)− ξ (p0) � (ζ (p0 − p)−1)ξ (p0)

for every p ∈ R . In the same way, we also have

ξ (p0)− ξ (p) � (ζ (p0 − p)−1)ξ (p),

which implies that

|ξ (p)− ξ (p0)| � (ζ (p0 − p)−1)max{ξ (p),ξ (p0)} (27)

for every p ∈ R . Take ε > 0 arbitrarily. Since ζ is continuous with ζ (0) = 1, there
exists δ > 0 such that 0 < ζ (p− p0)−1 < ε for every p ∈ R with |p− p0| � δ . By
(27), we have, for each p ∈ R with |p− p0| � δ , that

|ξ (p)− ξ (p0)| < εmax{ξ (p),ξ (p0)} � ε sup
q∈[p0−δ ,p0+δ ]

ξ (q).
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Since ζ is continuous, it follows from (26) that

sup
q∈[p0−δ ,p0+δ ]

ξ (q) � ξ (p0) max
q∈[p0−δ ,p0+δ ]

ζ (p0−q) < ∞.

This shows that ξ is continuous at p0 . Since p0 ∈ R was arbitrary, we have that ξ is
continuous on R .

Set, for each p ∈ R ,

η(p) =
∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣ .

By the Lebesgue dominated convergent theorem, we see that the function p 
→ ∫
X f p dμ

(p ∈ R) is continuous, and hence η is continuous on R . Secondly, we show that Φ is
continuous on R\ {0,1} . For p ∈ R\ {0,1} , we can write

Φ(p) =
1

|p(p−1)| max
t∈[α ,β ]

|ϕ ′′(t)|
t p−2

∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣

=
1

|p(p−1)| ξ (p)η(p) (28)

by definition. Since ξ and η are continuous, we have that Φ is continuous on R \
{0,1} .

Thirdly, we will prove the continuity of Φ at p = 0. Note, by definition, that

Φ(0) = max
t∈[α ,β ]

t2|ϕ ′′(t)|
∣∣∣∣
∫

X
log f dμ− log

∫
X

f dμ
∣∣∣∣ .

By the Lebesgue dominated convergent theorem, we have

lim
p→0

η(p)
|p| = lim

p→0

1
|p|
∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣

= lim
p→0

∣∣∣∣
∫

X

f p −1
p

dμ+
1
p

{
1−
(∫

X
f dμ

)p}∣∣∣∣
=
∣∣∣∣
∫

X
log f dμ− log

∫
X

f dμ
∣∣∣∣ .

It follows from (28) that

lim
p→0

Φ(p) = lim
p→0

ξ (p)
|p−1|

η(p)
|p| = ξ (0) lim

p→0

η(p)
|p| = Φ(0).

We thus conclude that Φ is continuous at p = 0.
Finally, we show that Φ is continuous at p = 1. In the same way as above, we see

that

lim
p→1

η(p)
|p−1| =

∣∣∣∣
∫

X
f log f dμ−

∫
X

f dμ log
∫

X
f dμ

∣∣∣∣
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and that

lim
p→1

Φ(p) = lim
p→1

ξ (p)
|p|

η(p)
|p−1| = ξ (1) lim

p→1

η(p)
|p−1| = Φ(1),

which proves the continuity of Φ at p = 1.
(ii) Let p ∈ R\ {0,1} . Taking ϕ(t) = t2 in (24), we have∣∣∣∣∣
∫

X
f 2 dμ−

(∫
X

f dμ
)2
∣∣∣∣∣� max

t∈[α ,β ]

2t2−p

|p(p−1)|
∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣ . (29)

It follows that

Φ(2) = max
t∈[α ,β ]

|ϕ ′′(t)|
2

∣∣∣∣∣
∫

X
f 2 dμ−

(∫
X

f dμ
)2
∣∣∣∣∣

� max
t∈[α ,β ]

|ϕ ′′(t)|
2

max
t∈[α ,β ]

2t2−p

|p(p−1)|
∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣

=
1

|p(p−1)| max
t∈[α ,β ]

|ϕ ′′(t)| max
t∈[α ,β ]

t2−p

∣∣∣∣
∫

X
f p dμ−

(∫
X

f dμ
)p∣∣∣∣ . (30)

To prove (25), we will show that

max
t∈[α ,β ]

|ϕ ′′(t)| max
t∈[α ,β ]

t2−p �
(
β
α

)|p−2|
max

t∈[α ,β ]

|ϕ ′′(t)|
t p−2 . (31)

Note that

min{α2−p,β 2−p} max
t∈[α ,β ]

|ϕ ′′(t)| � max
t∈[α ,β ]

|ϕ ′′(t)|
t p−2 . (32)

In fact, for each t ∈ [α,β ] , we have

min{α2−p,β 2−p}|ϕ ′′(t)| � t2−p |ϕ ′′(t)| = |ϕ ′′(t)|
t p−2 ,

which proves (32). It follows from (32) that

max
t∈[α ,β ]

|ϕ ′′(t)| max
t∈[α ,β ]

t2−p � 1
min{α2−p,β 2−p} max

t∈[α ,β ]

|ϕ ′′(t)|
t p−2 max

t∈[α ,β ]
t2−p

=
max{α2−p,β 2−p}
min{α2−p,β 2−p} max

t∈[α ,β ]

|ϕ ′′(t)|
t p−2

=
(
β
α

)|2−p|
max

t∈[α ,β ]

|ϕ ′′(t)|
t p−2 .

This proves (31), as required. By (30), we have (25) for p ∈ R \ {0,1} . Since Φ is
continuous, we thus conclude that (25) holds for every p ∈ R . �
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REMARK 2.1. Let X , μ , f , α , β and ϕ be as in Corollary 2.2. Let ψ be a
convex, or concave C2 -function on [α,β ] with |ψ ′′(t)| > 0 for every t ∈ [α,β ] . By
Theorem 1.1, we have

∣∣∣∣
∫

X
ϕ( f )dμ−ϕ

(∫
X

f dμ
)∣∣∣∣

� max
t∈[α ,β ]

|ϕ ′′(t)| max
t∈[α ,β ]

∣∣∣∣ 1
ψ ′′(t)

∣∣∣∣
∣∣∣∣
∫

X
ψ( f )dμ−ψ

(∫
X

f dμ
)∣∣∣∣ . (33)

In particular, if we consider the case where ψ(t) = t2 , then we have

∣∣∣∣
∫

X
ϕ( f )dμ−ϕ

(∫
X

f dμ
)∣∣∣∣� max

t∈[α ,β ]
|ϕ ′′(t)| 1

2

∣∣∣∣∣
∫

X
f 2 dμ−

(∫
X

f dμ
)2
∣∣∣∣∣ . (34)

This is just a slight modification of Fink’s estimate (1). On the other hand, taking
ϕ(t) = t2 in (33), we have

1
2

∣∣∣∣∣
∫

X
f 2 dμ−

(∫
X

f dμ
)2
∣∣∣∣∣� max

t∈[α ,β ]

∣∣∣∣ 1
ψ ′′(t)

∣∣∣∣
∣∣∣∣
∫

X
ψ( f )dμ −ψ

(∫
X

f dμ
)∣∣∣∣ .

Moreover, in the above inequality, the equality does not hold unless ψ(t) = at2 +bt +c
(t ∈ [α,β ]) for some a,b,c∈ C by Theorem 1.1. This implies that one can not improve
the right hand side of (34) by any ψ with |ψ ′′| > 0.

COROLLARY 2.3. Let p,q∈R and xi,λi > 0 for i = 1,2, · · · ,n with ∑n
i=1λi = 1 .

Set α = min1�i�n xi and β = max1�i�n xi . We have the following.

∣∣∣∣∣
n

∑
i=1

λixi
q −
(

n

∑
i=1

λixi

)q∣∣∣∣∣

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ q(q−1)
p(p−1)

∣∣∣∣max{αq−p,β q−p}
∣∣∣∣∣

n

∑
i=1

λixi
p−
(

n

∑
i=1

λixi

)p∣∣∣∣∣ if p �= 0,1

|q(q−1)|max{αq,β q}
(

log
n

∑
i=1

λixi−
n

∑
i=1

λi logxi

)

|q(q−1)|max{αq−1,β q−1}
(

n

∑
i=1

λixi logxi −
n

∑
i=1

λixi log
n

∑
i=1

λixi

)
,

(35)

Proof. Let Ω = {1,2, · · · ,n} and f (i) = xi for every i ∈ Ω . Set μ = ∑n
i=1λiδi ,

where δi is the Dirac measure at i . If α = β , then the both sides of (35) are 0, and so
(35) holds. We consider the case where α < β . Taking ϕ(t) = tq for t ∈ [α,β ] , we
have, by (i) of Corollary 2.2, that (35) holds. �
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