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A GENERALIZATION OF MUIRHEAD’S INEQUALITY

J. B. PARIS AND A. VENCOVSKÁ

(Communicated by I. Olkin)

Abstract. We give a proof of a generalization of Muirhead’s Inequality and informally explain
its application in establishing an instantial relevance principle in Polyadic Inductive Logic.

Introduction

The purpose of this short paper is to give a proof of a generalization of Muir-
head’s Inequality which is needed to establish a natural instantial relevance principle in
Polyadic Inductive Logic.

We start by briefly explaining what this principle is in very informal terms. For
a fuller account of the relevant area see [1], [2], [4], [5], [8], [9]. (The reader can
of course, without technical loss, blithely skip this account and jump straight to the
statement of Theorem 1.)

Consider an ostensibly ‘rational’ agent who will receive some classifying data
concerning individuals a1,a2,a3, . . . ,aq . The agent wishes to assign a probability to
the event that for some particular pairwise disjoint sets H1,H2, . . . ,Hr (some possibly
empty) with union {a1,a2, . . . ,aq } all the individuals in Hj will be identical as far as
this data is concerned, for each j = 1,2, . . . ,r . Assuming that the agent is otherwise
without any prior knowledge, symmetry considerations1 whose observance we would
take to be a manifestation of ‘rationality’, suggest that this probability w should simply
be a function of the multiset of numbers n1,n2, . . . ,nr where |Hi| = ni , so

w = w({n1,n2, . . . ,nr}) = w(〈n1,n2, . . . ,nr〉)
where we replace the multiset with the vector 〈n1,n2, . . . ,nr〉 of members in decreasing
order, so we are assuming without loss of generality that n1 � n2 � . . . � nr � 0.

We now ask the question: Under what conditions must this agent (bound by the
symmetry considerations mentioned above) set

w(〈n1,n2, . . . ,nr〉) � w(〈m1,m2, . . . ,mr〉) ?

where ∑i ni = ∑i mi = q and �n,�m ∈ N
r are decreasing.
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1We do not give any details of these symmetry considerations here, see e.g. [9]
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It turns out that if the data simply consists of classifying individuals according to
which of some finite set of unary relations (i.e. predicates) they do or do not satisfy then
the answer to this question, see [10], is that the agent is forced into setting w(�n) � w(�m)
just if �n � �m , meaning that

∑
j�i

n j �∑
j�i

m j for all i = 1,2, . . . ,r.

This can be proved by appealing to Muirhead’s Inequality, see [7], [3, page 45],
[6, page 87], which in its basic form asserts that

If �n,�m ∈ N
r are decreasing, ∑r

i=1 mi =∑r
i=1 ni , �n � �m and 0 � p1, ..., pr ∈ R then

∑
σ a permutation

o f {1,...,r}

r

∏
j=1

p
nj

σ( j) � ∑
σ a permutation

o f {1,...,r}

r

∏
j=1

p
mj

σ( j),

together with de Finetti’s Representation Theorem for Exchangeable Measures, which
tells us that it is enough (given the above mentioned symmetry considerations) to show
this equivalence in a very simple case, namely when the function w is determined by a
simple Bernoulli process.

The above question then is relatively easily answered when the data is expressed
in terms of purely unary relations. Complications however arise when the data about ai

also relates it to other a j , i.e. when the data involves relationships which are not purely
unary. Nevertheless, an appropriate version of de Finetti’s Representation Theorem has
recently become available, see [5], and in consequence all that is required (in the main
case) is to prove the following generalization of Muirhead’s Theorem:

THEOREM 1. If �n,�m ∈ N
r are decreasing, ∑r

i=1 mi = ∑r
i=1 ni , �n � �m and 0 �

p1, ..., pk ∈ R then

∑
{S1,...,Sr}

a partition o f
{1,...,k}

r

∏
j=1

(
∑
i∈S j

pi

)�n j

� ∑
{S1,...,Sr}

a partition o f
{1,...,k}

r

∏
j=1

(
∑
i∈S j

pi

)�mj

, (1)

where the � in (∑
i∈S j

pi)�mj etc. indicates that in the expansion of this power we only

count those terms which have a non-zero power of pi for each i ∈ S j , etc., and in

{S1, ...,Sr} a partition o f {1, ...,k}
we allow that some of the Si may be empty.

Before proving the theorem we make several remarks.
For S and m such that m < |S| we have (∑i∈S pi)�m = 0. Consequently, both

sides of (1) are zero when k > ∑r
i=1 mi .

As usual we take sums over the empty set to be 0, so(
∑
i∈ /0

pi

)�m

=
{

1 i f m = 0,
0 i f m > 0.
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It follows that

∑
{S1,...,Sr}

a partition o f
{1,...,k}

r

∏
j=1

(
∑
i∈S j

pi

)�mj

(2)

must be zero when k is strictly less than the number of non-zero entries in �m , and a
partition S1, ...,Sr can contribute to (2) only when mj � |S j| for all j = 1, ...,r , and
mj = 0 for all j for which S j is empty. Similarly for �n .

Provided that �n,�m have no coordinates equal to zero, if k = r then (1) reduces to
the basic Muirhead Inequality.

In the next section we prove a key lemma from which this inequality follows.

The Proof

LEMMA 2. Let m,n,k ∈ N , n > m � 0 , X = {1, ...,k} , 0 � p1, ..., pk ∈ R and

P(n,m) = ∑
Q⊆X

(
∑
i∈Q

pi

)�n (
∑

i∈X−Q

pi

)�m

.

Then
P(n+1,m) � P(n,m+1). (3)

Proof. We remark that the cases of k < 2 and k > n+m+1 are trivial.
Otherwise consider the terms pi1 pi2 · · · pin+m+1 which appear in the formal expan-

sion of P(n+1,m) , where

pi1 pi2 · · · pin+1 ∈
(
∑
i∈Q

pi

)�(n+1)

, pin+2 pin+3 · · · pin+m+1 ∈
(
∑

i∈X−Q

pi

)�m

for some Q⊆X , and where by the formal expansion we understand the sum of products
of the pi resulting from multiplying out(

∑
i∈Q

pi

)
×·· ·×

(
∑
i∈Q

pi

)
︸ ︷︷ ︸

(n+1) times

×
(
∑

i∈X−Q

pi

)
×·· ·×

(
∑

i∈X−Q

pi

)
︸ ︷︷ ︸

m times

,

keeping the pi in order (so not collecting powers of the same pi ) and discarding the
products that do not contain each pi at least once. We can partition these terms accord-
ing to the cases:

(a1) in+1 /∈ {i1, i2, . . . , in} ,
(a2 G,T ) in+1 ∈ {i1, i2, . . . , in} , G = {im+1, im+2, . . . , , in}− {i1, i2, . . . , im} and

T = { j |m < j � n, i j ∈ G}, for G ⊆ X , T ⊆ {m+1,m+2, . . .,n} .
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Similarly by considering the terms pi1 pi2 · · · pin+m+1 in the formal expansion of
P(n,m+1) , where

pi1 pi2 · · · pin ∈
(
∑
i∈Q

pi

)�n

, pin+1 pin+2 · · · pin+m+1 ∈
(
∑

i∈X−Q

pi

)�(m+1)

for some Q ⊆ X , we see that we can partition them according to the cases:
(b1) in+1 /∈ {in+2, in+3, . . . , in+m+1} ,
(b2 G,T ) in+1 ∈{in+2, in+3, . . . , in+m+1} , G = {im+1, im+2, . . . , , in}−{i1, i2, . . . , im}

and T = { j |m < j � n, i j ∈ G}, for G ⊆ X , T ⊆ {m+1,m+2, . . .,n} .
We now compare P(n + 1,m) and P(n,m + 1) according to this partition. The

terms from cases (a1), (b1) clearly cancel out. Now fix G and T . Then the contribution
from case (a2 G,T ) to P(n+1,m) is

∑
Q⊆X−G

(
∑
i∈Q

pi

)�m(
∑
i∈G

pi

)�|T |(
∑
i∈Q

pi

)n−m−|T |(
∑

i∈Q∪G

pi

)(
∑

i∈X−Q−G

pi

)�m

(4)

whilst the contribution from case (b2 G,T ) to P(n,m+1) is

∑
Q⊆X−G

(
∑
i∈Q

pi

)�m(
∑
i∈G

pi

)�|T |(
∑
i∈Q

pi

)n−m−|T |(
∑

i∈X−G−Q

pi

)(
∑

i∈X−G−Q

pi

)�m

.

(5)
Taking the difference (4)− (5) gives

∑
Q⊆X−G

(
∑
i∈Q

pi

)�m(
∑
i∈G

pi

)�|T |(
∑
i∈Q

pi

)n−m−|T |(
∑
i∈G

pi

)(
∑

i∈X−G−Q

pi

)�m

,

which is non-negative, together with

∑
Q⊆X−G

(
∑
i∈Q

pi

)�m(
∑
i∈G

pi

)�|T |(
∑

i∈X−G−Q

pi

)�m

×

⎧⎨
⎩
(
∑
i∈Q

pi

)n+1−m−|T |
−
(
∑
i∈Q

pi

)n−m−|T |(
∑

i∈X−G−Q

pi

)⎫⎬
⎭ . (6)

Summing over Q ⊆ X −G in (6) is the same as summing over the complements
Q′ of Q in X −G , so (6) equals

∑
Q′⊆X−G

(
∑

i∈X−G−Q′
pi

)�m(
∑
i∈G

pi

)�|T |(
∑
i∈Q′

pi

)�m

×
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⎩
(

∑
i∈X−G−Q′

pi

)n+1−m−|T |
−
(

∑
i∈X−G−Q′

pi

)n−m−|T |(
∑
i∈Q′

pi

)⎫⎬
⎭ . (7)

Consequently, it is enough to show that the sum of (6) and (7) is non-negative.
Writing Q in place of Q′ in (7) we see that the sum of (6) and (7) is

∑
Q⊆X−G

(
∑
i∈Q

pi

)�m(
∑
i∈G

pi

)�|T |(
∑

i∈X−G−Q

pi

)�m

×

(
An+1−m−|T | −An−m−|T |B+Bn+1−m−|T| −Bn−m−|T |A

)
,

where A = ∑i∈Q pi , B = ∑i∈X−G−Q pi , which is non-negative since(
An+1−m−|T | −An−m−|T |B+Bn+1−m−|T| −Bn−m−|T |A

)
=
(
An−m−|T | −Bn−m−|T |

)
(A−B) � 0. �

COROLLARY 3. Let �n,�m ∈ N
r be decreasing and 1 � i < j � r . Suppose that

nl = ml for l �= i, j , 1 � l � r, mi = ni−1 � mj = n j +1 . Then for 0 � p1, ..., pk ∈ R ,

∑
{S1,...,Sr}

a partition o f
{1,...,k}

r

∏
j=1

(
∑
i∈S j

pi

)�n j

� ∑
{S1,...,Sr}

a partition o f
{1,...,k}

r

∏
j=1

(
∑
i∈S j

pi

)�mj

.

Proof. Simply consider this inequality in the case where we fix the Sl for l �= i, j
and set Si∪S j = X and Si = Q as in Lemma 2. �

For �n,�m as in the statement of Corollary 3 we say that �m is an immediate � -
predecessor of �n .

Proof of Theorem 1. By a version of Muirhead’s lemma (see [7], alternatively see
[10, Theorem 2], and [11]) it follows that for �n,�m ∈ N

r decreasing with the same sum,
�m ��n just if there is a finite sequence of decreasing vectors �n1,�n2, . . . ,�ns each with
this same sum such that �n1 = �m , �ns =�n and for i = 1, . . . ,s− 1 �ni is an immediate
� -predecessor of �ni+1 . The result now follows by Corollary 3. �

Having derived Lemma 2 there seems to be some interest in giving an equivalent
version which avoids the use of the � and at the same time provides an inequality of
an (apparently) previously unstudied form.

COROLLARY 4. Let 0 � p1, . . . , pk ∈ R and n � m � 0 . Then

∑
V,T⊆{1,2,...,k}

V∩T= /0

(−2)k−|V∪T |
(
∑
i∈V

pi

)n(
∑
i∈T

pi

)m(
∑
i∈V

pi −∑
i∈T

pi

)
� 0.
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Proof. By induction on |Q| we can show that for Q ⊆ X = {1,2, . . . ,k} we have(
∑
i∈Q

pi

)�n

= ∑
V⊆Q

(−1)|Q|−|V |
(
∑
i∈V

pi

)n

. (8)

In more detail this is clear for Q = /0 and if it holds for all proper subsets of Q
then (

∑
i∈Q

pi

)�n

=

(
∑
i∈Q

pi

)n

− ∑
Z⊂Q

(
∑
i∈Z

pi

)�n

=

(
∑
i∈Q

pi

)n

− ∑
Z⊂Q

∑
V⊆Z

(−1)|Z|−|V |
(
∑
i∈V

pi

)n

=

(
∑
i∈Q

pi

)n

− ∑
V⊂Q

∑
V⊆Z⊂Q

(−1)|Z|−|V |
(
∑
i∈V

pi

)n

=

(
∑
i∈Q

pi

)n

+ ∑
V⊂Q

(−1)|Q|−|V |
(
∑
i∈V

pi

)n

= ∑
V⊆Q

(−1)|Q|−|V |
(
∑
i∈V

pi

)n

since for V ⊂ Q ,

0 = ∑
V⊆Z⊆Q

(−1)|Z|−|V | = (−1)|Q|−|V | + ∑
V⊆Z⊂Q

(−1)|Z|−|V |.

Hence

∑
Q⊆X

(
∑
i∈Q

pi

)�n(
∑

j∈X−Q

p j

)�m

= ∑
Q⊆X

(
∑

V⊆Q

(
∑
i∈V

pi

)n

(−1)|Q|−|V |
)(

∑
T⊆X−Q

(
∑
j∈T

p j

)m

(−1)k−|Q|−|T |
)

= ∑
V,T⊆X
V∩T= /0

(
∑
i∈V

p1

)n(
∑
j∈T

p j

)m

∑
V⊆Q

T⊆X−Q

(−1)|Q|−|V |+k−|Q|−|T |

= ∑
V.T⊆X
V∩T= /0

2k−|V |−|T |(−1)k−|V |−|T |
(
∑
i∈V

pi

)n(
∑
j∈T

p j

)m

.

It follows that the inequality P(n+1,m) � P(n,m+1) is equivalent to

∑
V,T⊆X
V∩T= /0

(−2)k−|V |−|T |
(
∑
i∈V

pi

)n+1(
∑
j∈T

p j

)m
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� ∑
V,T⊆X
V∩T= /0

(−2)k−|V |−|T |
(
∑
i∈V

pi

)n(
∑
j∈T

p j

)m+1

.

and the required result follows. �
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[4] J. LANDES, J. B. PARIS AND A. VENCOVSKÁ, Language Invariance and Spectrum Exchangeability

in Inductive Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Proceed-
ings of the 9th European Conference, ECSQARU 2007, Hammamet, Tunisia, Springer LNAI 4724,
151–160.
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