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SELF–IMPROVEMENT OF THE INEQUALITY

BETWEEN ARITHMETIC AND GEOMETRIC MEANS

J. M. ALDAZ

(Communicated by J. Pečarić)

Abstract. We show that a simple change of variable allows one to derive from the the AM-GM
inequality an improved version of itself. As an application, a refinement of Hölder’s inequality
for an arbitrary number of functions is obtained.

It is well known that the AM-GM inequality has self-improving properties, that
is, it implies better versions of itself. Let xi � 0 for i = 1, . . . ,n . The classical, equal
weights case, states that
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Let αi > 0 satisfy ∑n
i=1αi = 1. Inequality (1) self-improves to the rational weights case

simply via repetition of terms, and to the case of real weights αi just by taking limits.
So the general AM-GM inequality
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follows. There is a second way in which the AM-GM inequality self-improves. Let
s > 0 and use the change of variables xi = ys

i . Substituting in (2) and taking s-th roots
we get
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Now for 0 < s < 1, Jensen’s inequality tells us that (∑n
i=1αiys

i )
1/s � ∑n

i=1αiyi since ts

is concave, and furthermore the inequality is strict unless y1 = . . . = yn (this follows
from the equality case in Jensen’s inequality). So (2) automatically proves a family
of better inequalities, namely M(0) � M(s) if 0 < s < 1, where M denotes the usual
elementary mean. The particular case s = 1/2 immediately leads to a natural and useful
refinement of (2).
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The author was partially supported by Grant MTM2006-13000-C03-03 of the D.G.I. of Spain.

c© � � , Zagreb
Paper JMI-03-21

213



214 J. M. ALDAZ

THEOREM 1. For i = 1, . . . ,n, let xi � 0 , and let αi > 0 satisfy ∑n
i=1αi = 1 . Then
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∏
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. (4)

Note that the right most term of (4) is the variance Var(x1/2) of the vector x1/2 =
(x1/2

1 , . . . ,x1/2
n ) with respect to the probability ∑n

i=1αiδxi . So a large variance (of x1/2 )
pushes the arithmetic and geometric means apart.

Proof. Recalling that Var(X) = E(X2)− (E(X))2 = E([X −E(X)]2) , and using
(3) with s = 1/2, we obtain
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This refinement of the AM-GM inequality leads to an improvement of Hölder’s

inequality for several functions.

COROLLARY 2. For i = 1, . . . ,n, let 1 < pi <∞ be such that p−1
1 + · · ·+ p−1

n = 1 ,
and let 0 � fi ∈ Lpi satisfy ‖ fi‖pi > 0 . Then∥∥∥∥∥
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Proof. Set αi = p−1
i and xi = f pi

i (u)/‖ fi‖pi
pi in (4). To obtain (5), integrate and

multiply both sides by ∏n
i=1‖ fi‖pi . �

REMARK 3. Inequality (4) was suggested by the following result of D. I. Cartwright
and M. J. Field (cf. [5]; cf. also [4] and [6] for additional refinements along these lines).
Let 0 < m = min{x1, . . . ,xn} and let M = max{x1, . . . ,xn} . Then
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The motivation to search for variants of (6) comes the fact that it is not well suited to
the particular application considered here (refining Hölder’s inequality). One would
need to assume that | fi| � M almost everywhere. We give bounds using the variance
of x1/2 instead of the variance of x in order to ensure the integrability of the functions
involved, and also to obtain the same homogeneity on both sides of (4). On the other
hand, it is also well known that Hölder’s inequality implies the AM-GM inequality, and
hence, refinements of the former also yield refinements of the latter (cf. for instance,
[2]). Finally, let us mention that a probabilistic study of the AM-GM inequality is also
possible (cf. [3]); among other results, it is shown there that in the equal weights case
the ratio of the geometric mean over the arithmetic mean concentrates around e−γ ,
where γ is Euler’s constant.
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REMARK 4. The difference between the arithmetic and geometric means is in
general not comparable to Var(x1/2) . To see this, it is enough to consider the equal
weights case, with n >> 1, x1 = 0, and x2 = . . . = xn = 1. Or the case where n = 2,
and one of the weights is much larger than the other. But perhaps it is possible to give an
upper bound for ∑n

i=1αixi −∏n
i=1 xαi

i using Var(x1/2) times some polynomial function
of 1/miniαi . This would lead to the same type of application as above. In fact, for the
special case n = 2 a two sided, sharper version of (4) appears in Lemma 2.1 of [1]. It
is not clear to me how to extend this sharper version to n > 2.

REMARK 5. When n = 2, inequality (5) reduces to

‖ f g‖1 � ‖ f‖p‖g‖q
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pq
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∥∥∥∥∥
2

2

⎞
⎠ , (7)

where p and q are conjugate exponents, 0 � f ∈ Lp , 0 � g ∈ Lq , ‖ f‖p > 0, and
‖g‖q > 0. In addition to providing a lower bound, with 1/min{p,q} instead of 1/(pq) ,
Lemma 2.1 of [1] yields a slightly better upper bound: 1/(pq) = 1/(p + q) can be
replaced by 1/max{p,q} . But we note that (7) suffices, via the standard argument,
to give a refinement of the triangle inequality for Lp spaces, 1 < p < ∞ , which in
turn leads to a fairly straightforward proof of uniform convexity in the real valued case
(arguing as in [1]). So the self-improving properties of the AM-GM inequality have
repercussions beyond what one might expect.

REMARK 6. Note that f pi/2
i /‖ fi‖pi/2

pi is just a unit vector in L2 . The strategy
underlying inequality (5) is to normalize all functions and map them into L2 , which
becomes the common measuring ground where dispersion around the mean is deter-
mined. When n = 2, the correction term reduces to a function of the angular distance
between f p/2 and gq/2 .
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