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A NOTE ON A GAMMA FUNCTION INEQUALITY

PÉTER IVÁDY

(Communicated by N. Elezović)

Abstract. The aim of this article is to present new inequalities which improve some gamma
function inequalities of H. Alzer, Á. Baricz and N. Elezović et al.

1. Introduction

For real and positive values of x the Euler gamma function and its logarithmic
derivative Ψ the so-called digamma function, are defined by

Γ(x) =
∞∫

0

tx−1e−t dt, Ψ(x) =
Γ′(x)
Γ(x)

.

Several authors have studied different properties of the gamma function which are col-
lected, for example in [2, 3]. In particular, there exists an extensive literature on gamma
functions inequalities. For more details please refer to [7] and the references therein.
Among the various kinds of inequalities concerning the gamma function we will focus
our attention on a special inequality of D. Kershaw. In order to improve the following
inequality of W. Gautschi [6]

n1−s <
Γ(n+1)
Γ(n+ s)

< exp [(1− s)Ψ(n+1)] ,

where 0 < s < 1 and n = 1,2... Kershaw [9] established among others that

(
x+

s
2

)1−s
<

Γ(x+1)
Γ(x+ s)

<

[
x− 1

2
+
(

1
4

+ s

)1/2
]1−s

, (1.1)

holds for x > 0 and 0 < s < 1. Recently N.Elezović et al.[5] considered the following
inequalities:

x
2

< Γ(x)−
1

1−x < −1
2

+

√
1
4

+ x, 0 < x < 1 (1.2)
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which can be regarded as an esimation of the value of the gamma function. In their
paper they asked for “other bounds in terms of elementary functions”. The main pur-
pose of this paper is to present a special lower and upper bound in the above sense of
the authors, in terms of very simple rational functions in the 0 < x < 1 interval. In
particular, we shall show that

x(
− 1

2 +
√

1
4 + x

)1−x <
x2 +1
x+1

< Γ(x+1) <
x2 +2
x+2

< x

(
2
x

)1−x

, 0 < x < 1

holds. Finally, as a simple consequence of the theorem we derive refinements of some
inequalities of H. Alzer and Á. Baricz. The numerical values given in the following
sections have been calculated via Maple V Release 10.0.

2. Lemmas

In order to establish the main result of this paper we only use some simple the-
orems from basic algebra, such as Descartes’ rule of signs and Sturm’s theorem [10].
Moreover, we apply some inequalities to the logarithmic function in special intervals.
Furthermore, we use well-known estimations for the Ψ function and its derivative Ψ′ .

LEMMA 2.1. Let 0 � t � 1/5 . Then we have

p1 (t) := −2t7−4t6−7t5 + t4−2t2−3t +1 > 0.

Proof. It is easy to check that p1 (t) > p2 (t) := −12t3−2t2−3t +1 holds. Since
p2 is strictly decreasing on [0,1/5], we get p2 (t) > p2 (1/5) = 0.224 > 0. �

LEMMA 2.2. If 1/5 � t � 1/2 , then we have

p3(t) := 150t9 +270t8 +165t7 +70t6−101t5−150t4−82t3−21t2−2t +1 < 0.

Proof. Since p3 (1/5) = −1.160... < 0 it is sufficient to show that p3 is decreas-
ing on [1/5,1/2]. Building the first two derivatives we obtain

p′3 (t) = 1350t8 +2160t7 +1155t6 +420t5−505t4−600t3−246t2−42t−2,

and

p′′3 (t) = 10800t7 +15120t6 +6930t5 +2100t4−2020t3−1800t2−492t−42.

According to Descartes’ rule of signs, we infer that p′′3(t) has at most one positive
real root. Since p3(t) is continuous, moreover p′′3 (1/2) = −322.063 < 0 and p′′3(1) =
30596 > 0, there exists a unique t0 ∈ (1/2,1) , such that p′′3(t0) = 0. Thus, we have
on [1/5,1/2], p′′3(t) < 0. Hence p′3(t) is strictly decreasing. Clearly, p′3(1/5) =
−25.608 · · ·< 0 which imply p′3(t) < 0. �
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LEMMA 2.3. For all t � 0, we have

log(1+ t) �
t
(
t2 +21t +30

)
9t2 +36t +30

� t(t +6)
4t +6

. (2.1)

For a proof of (2.1) we refer to [12, p.667].

LEMMA 2.4. For 1/100 < t < 1, we have

t
33t2 +24t−57

10t3 +57t2 +24t−1
< logt.

Proof. Let us define the function h by

h(t) := t
33t2 +24t−57

10t3 +57t2 +24t−1
− logt.

Differentiation gives

h′ (t) =
(1− t)5 (100t−1)

t (10t3 +57t2 +24t−1)2 > 0.

Since h is strictly increasing and h(1) = 0 we have h(t) < 0. �

LEMMA 2.5. For 7/20 � t � 1, we have

p4 (t) := 253t7 +690t6 +338t5−424t4−390t3 +278t2−17t−8 > 0.

In order to check that p4(t) has no real roots in [7/20,1] we used the built-in
functions: sturmseq and sturm of Maple V. Release 10.0. Since p4(1/2) = 1.070,
thus p4(t) > 0. �

LEMMA 2.6. For all t > 0, we have

Ψ(t) < logt− 1
2t

− 1

12
(
t +1

/
14
)2 , (2.2)

and
1
t

+
1

2t2
+

1

6
(
t + 1

14

)3 < Ψ′ (t) <
1
t

+
1

2t2
+

1
6t3

. (2.3)

A proof of (2.2) and (2.3) is given in [8].

LEMMA 2.7. For 0 � t � 0.7, we have

p5 (t) := −6t6−21t5−52t4−42t3 +10t2 +27t +8 > 0.
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Proof. Descartes’s rule of signs reveals, that p5(t) has at most one positive real
root. Since p5(t) is continuous, p5(0.7) = 0.673 . . . > 0 and p5(0.75) = −6.348 . . . <
0, there exists only one t1 ∈ (0.7,0.75), with p5(t1) = 0. Thus we have on [0,0.7]
p5(t) > 0. �

LEMMA 2.8. Let 0 < t � 1. Then we have

24(1− t)
23t2 +14t +11

� log
t2 +1

t (t +1)
. (2.4)

Proof. The proof can be given by standard calculus. �

LEMMA 2.9. For 0.7 � t � 1, we have

log(t +2)− 1
2(t +2)

<
2t

t2 +1
. (2.5)

Proof. Setting t = u+1, in the second inequality of (2.1) we obtain the following
relation:

log(u+2)− 1
2(u+2)

− 2u
u2 +1

<
(u+1) (u+7)

4u+10
− 1

2(u+2)
− 2u

u2 +1

=
p6 (u)

2(u+2)2 (u2 +1)2 ,

where p6(u) := 2u5 +9u4 +20u3 +22u2−14u−11. We shall show that p6 is convex
on [0.7,1] . First, we find p6(0.7) = −5.2589 . . . < 0 and p6(1) = −2. For checking
the convexity of p6 it is sufficient to verify that p′′6(u) > 0, which is easy to see. If we
set f = p6 in Jensen’s inequality [11, p.15] for convex function f :

f (λa+(1−λ)b) � λ f (a)+ (1−λ) f (b) , where λ ∈ [0,1] , (2.6)

we conclude on [0.7,1] , p6(u) < 0. �

LEMMA 2.10. For 1 � t � 2, we have

p7 (t) := 2t5− t4−2t3−12t2 +5 < 0. (2.7)

Proof. We get p′7(t) = 2t(5t3−2t2 −3t−12) =: 2t p8(t), where the p8(t) poly-
nomial has at most one positive real root. Clearly, p8(1) = −12 and p8(2) = 14, thus
there exists a t2 ∈ (1,2) with p8(t2) = 0. For t ∈ (1, t2) we therefore have p8(t) < 0
such that p7 is decreasing. For t ∈ (t2,2) we obtain p′7(t) > 0, hence p7 is strictly
increasing. Since p7(1) = −8 and p7(2) = −11, we have p7(t) < 0. �
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3. Main results

We are now in a position to establish our main theorem.

THEOREM. For 0 < x � 1, we have

x(
− 1

2 +
√

1
4 + x

)1−x <
x2 +1
x+1

� Γ(x+1) , (3.1)

and

Γ(x+1) � x2 +2
x+2

� x

(
2
x

)1−x

. (3.2)

Inequalities (3.1) and the first part of (3.2) become equalities if x = 0 or x = 1.
The second inequality in (3.2) is strict for x = 0 .

Proof. We start with the proof of the first inequality of (3.1). Although, the in-
equality seems to be a relatively simple one, the proof we present here is somewhat
cumbersome. Writing it in the equivalent form, we get

f (x) := (1− x) log

(
−1

2
+

√
1
4

+ x

)
+ log

x2 +1
x2 + x

� 0, 0 < x � 1. (3.3)

In order to establish (3.3) we distinguish three cases.
Case 1. 0 < x � 1/5. It is not difficult to see that in this case we can write

f (x) > f1(x) := (1− x) log
(
x− x2)+ log

x2 +1
x2 + x

.

We shall show that f1(x) > 0 holds true. Clearly, lim
x→0

f1(x) = 0. A simple calculation

gives f1(1/5) = 0.00027 . . . > 0. Now we show that f1 is concave on [0,1/5] , from
which the assertion follows, since in (2.6) the reversed inequality holds. Differentiation
yields

f ′′1 (x) =
P(x)

x(x−1)(x+1)2 (x2 +1)2 ,

where P(x) = −2x7 −4x6 −7x5 + x4 −2x2 −3x+1. According to Lemma 2.1 we get
P(x) > 0, i.e. f ′′1 (x) < 0.

Case 2. 1/5 � x � 1/2. Now we can write

f (x) > (1− x) f2(x) := (1− x)
[
log

2x2 + x
x2 +3x+1

+
1

1− x
log

x2 +1
x2 + x

]
,

and must show that f2(x) > 0 holds true. Since f2(1/2)= 0.0100 . . .> 0, it is sufficient
to show that f2 is strictly decreasing i.e. f ′2(x) < 0. Differentiation gives

f ′2(x) =
1

1− x

[
− 5x5 +2x4−2x3 +11x2 +11x+3

(x+1) (2x+1)(x2 +1) (x2 +3x+1)
+

1
1− x

log
x2 +1
x2 + x

]
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= :
1

1− x
f3(x).

In order to get a suitable upper bound for f3, setting t = (1−x)/(x2 +x), and applying
the first inequality of (2.1) we obtain

f3(x) < − 5x5 +2x4−2x3 +11x2 +11x+3
(x+1) (2x+1)(x2 +1) (x2 +3x+1)

+
30x4 +39x3 +31x2 +19x+1

3(x2 + x)(10x4 +8x3 +13x2 +6x+3)

=
(1− x)P1(x)

3x(x+1)(2x+1)(x2 +1)(x2 +3x+1)(10x4 +8x3 +13x2 +6x+3)
,

where P1(x) = 150x9 +270x8 +165x7 +70x6−101x5−150x4−82x3−21x2−2x+1.
By using Lemma 2.2 we infer f3(x) < 0, hence f ′2(x) < 0.

Case 3. 1/2 � x � 1. Applying (2.4) we obtain

f (x) > (1− x)

[
log

(
−1

2
+

√
1
4

+ x

)
+

24
23x2 +14x+11

]
.

Substituting −1/2+
√

1/4+ x = u , (0.3660 . . . = (
√

3− 1)/2 � u � (
√

5− 1)/2 =
0.6180 . . .), and define the auxiliary function f4 by:

f4 (u) := logu+
24

23(u2 +u)2 +14(u2 +u)+11
.

It is sufficient to verify that f4(u) > 0, holds. Application of Lemma 2.4 leads to

f4 (u) > u
33u2 +24u−57

10u3 +57u2 +24u−1
+

24

23(u2 +u)2 +14(u2 +u)+11

=
3P2 (u)

(10u3 +57u2 +24u−1)
(
23(u2 +u)2 +14(u2 +u)+11

) ,

where P2 (u) = 253u7 +690u6 +338u5−424u4−390u3 +278u2−17u−8. In view of
Lemma 2.5 we get f4 (u) > 0, thus the proof of the first inequality of (3.1) is complete.

In order to establish the second inequality of (3.1) we consider two cases.
Case 1. 0 � x � 0.7. Let the function g be defined by

g(x) := log
x2 +1
x+1

− logΓ(x+1) .

We will show that g(x) is convex on that interval. According to (2.6) the inequality
g(x) � 0 will follow. A short calculation gives g(0) = 0 and g(0.7) = −0.036 . . . . For
checking the convexity of g it is sufficient to show that g′′ > 0. Differentiation yields

g′′(x) =
−x4−4x3 +2x2 +4x+3

(x+1)2 (x2 +1)2 −Ψ′ (x+1) .
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Setting in the second inequality of (2.3) t = x+1, we obtain

g′′(x) >
−x4 +4x3 +2x2 +4x+3

(x+1)2 (x2 +1)2 −
(

1
x+1

+
1

2(x+1)2 +
1

6(x+1)3

)

=
P3(x)

6(x+1)3 (x2 +1)3 ,

where P3(x) := −6x6−21x5−52x4−42x3 +10x2 +27x+8. Applying Lemma 2.7 we
conclude g′′(x) > 0, which proves the assertion.

Case 2. 0.7 � x � 1. Let g1 be defined by

g1(x) := log
(
x2 +1

)− log(Γ(x+2)) .

Since g1(1) = 0, it is sufficient to show, that g′1(x) > 0) on (0.7,1] . Differentiation
yields

g′1(x) =
2x

x2 +1
−Ψ(x+2) .

Using a weaker form of (2.2) – setting t = x+2, and applying (2.5) – leads to

Ψ(x+2) < log(x+2)− 1
2(x+2)

� 2x
x2 +1

,

i.e. g′1(x) > 0, hence the proof of (3.1) is complete.
We now proceed to prove the relations in (3.2). First we consider the left side of

(3.2). Let g2 be defined by

g2(x) := log(Γ(x+1))− log
x2 +2
x+2

.

Clearly,g2(0) = 0 and g2(1) = 0. We shall show that g2 is convex on [0,1] , thus in
view of (2.6), g2(x) � 0 will follow. After some computations we get

g′′2(x) = Ψ′ (x+1)+
x4 +8x3−16x−20

(x+2)2 (x2 +2)2 .

To prove that g′′2 is positive we set in the first part of (2.3) t = x+1, and show that

g′′2(x) >
1

x+1
+

1

2(x+1)2 +
1

6
(
x+1+1

/
14
)3 +

x4 +8x3−16x−20

(x+2)2 (x2 +2)2

=
P4(x)

6(x+1)2 (x+2)2 (x2 +2)2 (14x+15)3
> 0,

holds, where

P4(x) := 16464x10 +159936x9 +798560x8 +2416224x7+4513177x6
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+4942620x5 +2536146x4−194496x3−630428x2 +34512x+124904.

We can reduce the obvious complexity of P4(x). A little calculation reveals that P4(x) >
16384xr(x), where we have r(x) = 154x3−12x2−39x+9. Determining the minimum
value of r(x) we get r(x) � r(x0) =

(
47323−1009

√
2018

)
/5929 = 0.3367 . . . > 0,

where x0 = 1/154
(
4+

√
2018

)
= 0.3176 . . . > 0, which proves g′′2(x) > 0. To end the

proof of (3.2) we consider the function

g3(x) := log
x2 +2

x(x+2)
− (1− x) log

2
x
.

Since g3(1) = 0 and g′3(x) > 0 the assertion will follow. A direct computation gives

g′3(x) = −x3 + x2−2x+6
(x+2) (x2 +2)

+ log
2
x

and

g′′3(x) = −x6 +5x5 +16x4 +16x3 +4x2−4x+16

x(x+2)2 (x2 +2)2 .

It is clear that for x ∈ (0,1] ,g′′3(x) < 0 holds. Therefore g′3(x) is strictly decreasing on
(0,1] . Since g′3(1) = −2/3+ log2 = 0.0264 . . . > 0, we obtain g′3(x) > 0. Let

L(x) =
x2 +2
x+2

and R(x) = x

(
2
x

)1−x

.

It is not difficult to see that

L(0) = 1 and R(0) = lim
x→0

R(x) = 2.

So, the second inequality in (3.2) should be strict for x = 0.
This completes the proof of the Theorem. �
In the next section we will give some simple consequences of the theorem.

4. Refinements

Alzer [1] proved that for all x > 0,(x−1/2)logx− x+ log
√

2π < logΓ(x) holds.
The first corollary shows, that the logarithmic version of the right side of (1.2) gives
a set of improvements — according the Theorem — of the previously mentioned in-
equality of Alzer’s for interval (0,1] .

Recently Á.Baricz [4] proves — among others — that if x ∈ (0,1] , then

1− x
1+ x

e(1−γ)x

x
� Γ(x), (4.1)

holds, where γ = lim
n→∞

(
1+ 1

2 + 1
3 + ...+ 1

n − logn
)
= 0.57721 . . . is the Euler-Mascheroni

constant. The second corollary gives an improvement of (4.1).
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COROLLARY 4.1 For 0 < x � 1, we have

F(x) :=
(

x− 1
2

)
logx− x+

1
2

log2π +(1− x) log

(
−1

2
+

√
1
4

+ x

)
< 0. (4.2)

Proof. The proof of (4.2) will be split up into two cases.
Case 1. 0 < x � 11/50. Some computation gives

F ′(x) =
2
(
2x−2x2

)
+
√

4x+1− (4x+1)
2x
(
4x+1−√

4x+1
) + log

2x√
4x+1−1

. (4.3)

Setting
√

4x+1 = u , (1 < u � u0 =
√

44/50+1 = 1.3711 . . .), we get from (4.3)

F1 (u) :=
−u3−u2 +u+5

2u3−2u
+ log

u+1
2

.

Differentiation yields

F ′
1 (u) =

2u5−u4−2u3−12u2 +5

2(u+1)2 (u2−u)2 .

Applying Lemma 2.10 we get F ′
1(u) < 0, i.e. F1 is strictly decreasing on (1,u0) .

Since F1(u0) = 0.9631 . . . > 0, we obtain F1(u) > 0, i.e. F ′(x) > 0, thus F is strictly
increasing. Since F (11/50) = −0.1908 . . . < 0, we have F(x) < 0.

Case 2. 11/50 < x � 1. Using the arithmetic-geometric mean inequality, we ob-
tain: −1/2+

√
1/4+ x � (1+4x)/8. This leads to the sharper relation

F(x) <

(
x− 1

2

)
logx− x+ log

√
2π+(1− x) log

4x+1
8

=: F2(x) say.

We will show that F2(x) < 0 holds. Next, we obtain

F ′
2(x) = −8x2−4x+1

8x2 +2x
+ log

8x
4x+1

.

It is obviously that for 11/50 < x � 1/4,F ′
2(x) < 0 holds. The same is valid also

for 1/4 < x � 1. In that interval we have – after setting in the right side of (2.1) t =
(4x−1)/(4x+1) – the following estimation:

F ′
2(x) < −8x2−4x+1

8x2 +2x
+

(4x−1)(28x+5)
2(4x+1) (20x+1)

=
−48x3 +64x2−21x−1

2x(4x+1)(20x+1)
.

According to the arithmetic-geometric mean inequality, the numerator is negative, thus
F2 is strictly decreasing on [11/50,1]. Since F2 (11/50) = −0.0066 . . . < 0, we infer
F2(x) < 0, which proves Corollary 4.1. �
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COROLLARY 4.2 For 0 < x � 1, we have

1− x
1+ x

e(1−γ)x

x
<

x2 +1
x(x+1)

.

Proof. Let G(x) := log(1− x)+ (1− γ)x− log
(
x2 +1

)
. Differentiation gives

G′(x) = 1− γ− −x2 +2x+1
(1− x)(x2 +1)

<
1
2
− −x2 +2x+1

(1− x)(x2 +1)

= −x3−3x2 +5x+1
2(1− x)(x2 +1)

< 0,

i.e. G is strictly decreasing on (0,1] . Since G(0) = 0, thus G(x) < 0. �

REMARK. We mention that the logarithmic version of (4.1) and Alzer’s inequality
on (0,1] are not comparable to each other. The same is also true for the right side of
(1.2) and the left side of (4.1).
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