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SOME CLASSES OF ANALYTIC FUNCTIONS RELATED

WITH FUNCTIONS OF BOUNDED RADIUS ROTATION

WITH RESPECT TO SYMMETRICAL POINTS

KHALIDA INAYAT NOOR AND SAIMA MUSTAFA

(Communicated by J. Pečarić)

Abstract. In this paper, we introduce a class Rs
k(γ) of analytic functions of bounded radius

rotation with respect to symmetrical points and study some of its basic properties. Using this
concept, two other classes T s

k (δ ,γ) , Ks
k (δ ,γ) are also defined. We study coefficient results,

arc-length and radius problems for these classes.

1. Introduction

Let A be the class of analytic functions f defined on the unit disc E = {z : |z| <
1}, normalized by f (0) = f ′(0)−1 = 0 and of the form

f (z) = z+
∞

∑
n=2

anz
n, (z ∈ E). (1.1)

Let S,K,S� and C denote the subclasses of A which are univalent, close-to-convex,
starlike and convex in E respectively. Let Pk(γ) be the class of functions p(z) analytic
in the unit disc E satisfying the properties p(0) = 1 and, for z = reiθ , k � 2,∫ 2π

0

∣∣∣∣Re
p(z)− γ
(1− γ)

∣∣∣∣dθ � kπ , (0 � γ < 1). (1.2)

This class has been introduced in [6]. We note that Pk(0) ≡ Pk, see [14] and P2(γ) ≡
P(γ) is the class of analytic function with positive real part greater than γ. With k = 2,
γ = 0, we have the class P of functions with positive real part.

We can write (1.2) as

p(z) =
1
2

∫ 2π

0

1+(1−2γ)ze−it

1− ze−it dμ(t), (1.3)

where μ(t) is a function with bounded variation on [0,2π ] such that∫ 2π

o
dμ(t) = 2 and

∫ 2π

o
|dμ(t) � k. (1.4)
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Also, for p ∈ Pk(γ), we can write from (1.2)

p(z) =
(

k
4

+
1
2

)
p1(z)−

(
k
4
− 1

2

)
p2(z), p1, p2 ∈ P2(γ), z ∈ E. (1.5)

It is known [5] that Pk(γ) is a convex set. Also p∈Pk(γ) is in P2(γ)≡P(γ) for |z|< r1,
where

r1 =
1
2

[
k−
√

k2−4
]
. (1.6)

The classes Vk(γ) of functions of bounded boundary rotation of order γ and Rk(γ)
of functions of bounded radius rotation of order γ are closely related with Pk(γ). A

function f : f (z) = z+∑∞
n=2 anzn, analytic in E, is in Vk(γ) if and only if

{
(z f ′(z))′

f ′(z)

}
∈

Pk(γ). Also

f ∈ Rk(γ) ⇐⇒
{

z f ′(z)
f (z)

}
∈ Pk(γ).

It is clear that

f ∈Vk(γ) ⇐⇒ z f ′(z) ∈ Rk(γ) (1.7)

When k = 2, γ = 0, V2(0) coincides with the class C and R2(0) ≡ S�. We now define
the following.

DEFINITION 1.1. Let f ∈ A and be given by (1.1). Then f is said to be of
bounded radius rotation of order γ with respect to symmetrical points if and only if, for
|z| = r < 1 (r → 1),{

2z f ′(z)
f (z)− f (−z)

}
∈ Pk(γ), for z ∈ E.

We shall denote the class of such functions as Rs
k(γ). We note that Rs

2(0) is the class S�
s

of univalent functions starlike with respect to symmetrical points defined by Sakaguchi
[7]. Also Rs

k(γ) ≡ Rk(γ).
We define the class Vs

k (γ) as follows.

DEFINITION 1.2.

f ∈Vs
k (γ) ⇐⇒ z f ′ ∈ Rs

k(γ), in E.

2. Basic Properties of Rs
k(γ)

THEOREM 2.1. Let f ∈ A . Then a necessary and sufficient condition for f to

belong to Rs
k(γ) is that

{
2z f ′(z)

f (z)− f (−z)

}
∈ Pk(γ) for z ∈ E.

Proof. Its proof is immediate when we follow essentially the same method given
in [7]. �
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THEOREM 2.2. Let f ∈ Rs
k(γ). Then the odd function

ψ(z) =
1
2

[ f (z)− f (−z)] (2.1)

belongs to Rk(γ) in E.

Proof. Differentiating (2.1) logarithmically, we have

zψ ′(z)
ψ(z)

=
z f ′(z)

f (z)− f (−z)
+

−z f ′(−z)
f (−z)− f (z)

=
1
2

[p1(z)+ p2(z)] , p1, p2 ∈ Pk(γ).

Since Pk(γ) is a convex set, we have zψ ′(z)
ψ(z) ∈ Pk(γ) for z ∈ E and hence ψ ∈ Rk(γ) in

E. �
We note that f ∈ Rs

k(γ) is close-to-convex for |z| < r1, where r1 is given by (1.6).

REMARK 2.1. Since ψ , defined in Theorem 2.2, is in Rk(γ) and is odd, we can
write

ψ(z) =
(s1(z))

( k
4+ 1

2 )(1−γ)

(s2(z))
( k

4− 1
2 )(1−γ) , (2.2)

where s1 and s2 are odd starlike functions, see [1,5].
From relation (2.1) and Remark 2.1, we can easily derive the following.

THEOREM 2.3. Let f ∈ Rs
k(0) ≡ Rs

k. Then with z = reiθ and θ1 < θ2,∫ θ2

θ1

Re

{
(z f ′(z))′

f ′(z)

}
dθ > −(k−1)π .

This is a necessary condition for a function f to belong to Rs
k. For k = 2 , Rs

2 is a
proper subclass of S and for k > 2 , f ∈ Rs

k need not even be finite-valent, see [2] .

REMARK 2.2. Let f ∈ Rs
k(γ), and be given by (1.1). It is known [5] that for

p ∈ Pk(γ) with p(z) = 1 +∑∞
n=1 cnzn, we have |cn| � k(1− γ) for all n. Using this

together with the fact that ψ(z) = 1
2 [ f (z)− f (−z)] is an odd function, we easily obtain

|a2|� k
2 (1−γ). Since, for f ∈ Rγ

k ⊂ Rs
k, the function w0 f (z)

w0− f (z) , f (z) 	= w0 is univalent in

E. For k = 2, we see that f ∈ Rs
2(γ) maps E onto a domain that contains the schlicht

disc |w| < 1
3−γ .

3. The Classes T s
k (γ) and Ks

k(γ)

DEFINITION 3.1. Let f ∈ A . Then f ∈ T s
k (γ,δ ) , 0 � γ,δ < 1, k � 2, if and

only if, there exists a g ∈ Rs
k(γ) such that{
2z f ′(z)

g(z)−g(−z)

}
∈ P(δ ), for z ∈ E.
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DEFINITION 3.2. Let f ∈ A . Then f ∈ Ks
k(γ,δ ) , 0 � γ,δ < 1, k � 2, if and

only if, there exists a φ ∈ Rs
2(γ) such that{
2z f ′(z)

φ(z)−φ(−z)

}
∈ Pk(δ ), for z ∈ E.

We note that the classes T s
k (γ) and Ks

k(γ) have same class of functions as a special
case when k = 2.

Let L(r, f ) denote the length of the image of the circle |z|= r under f and M(r) =
maxθ

∣∣ f (reiθ )
∣∣ . We prove the following.

THEOREM 3.1. Let f ∈ T s
k (0,γ). Then, for 0 < r < 1,

L(r, f ) � c(k)M(r) log
1

1− r
,

where c(k) is a constant.

Proof. With z = reiθ ,

L(r, f ) =
∫ 2π

0

∣∣z f ′(z)
∣∣dθ

=
∫ 2π

0
|ψ(z)h(z)|dθ , ψ(z) =

1
2

[g(z)−g(−z)] ∈ Rk(γ), h ∈ P(0) ≡ P

�
∫ r

0

∫ 2π

0

∣∣∣ψ ′(ρeiθ )h(ρeiθ )
∣∣∣dθdρ +

∫ r

0

∫ 2π

0

∣∣∣ψ(ρeiθ )h′(ρeiθ )
∣∣∣dθdρ

= J1(r)+ J2(r). (3.1)

Now

J1(r) =
∫ r

0

∫ 2π

0

∣∣∣ f ′(ρeiθ )H(ρeiθ )
∣∣∣dθdρ , H =

zψ ′

ψ
∈ Pk(γ)

� 2π
∫ r

0

[(
1
2π

∫ 2π

0

∣∣∣ f ′(ρeiθ )
∣∣∣2 dθ

) 1
2
(

1
2

∫ 2π

0

∣∣∣H(ρeiθ )
∣∣∣2 dθ

) 1
2
]

dρ .

Thus, with f (z) given by (1.1), H(z) = 1+∑∞
n=1 cnzn , |cn| � k(1− γ) and n � 1, we

have

J1(r) � 2π
∫ r

0

⎡
⎣( ∞

∑
n=1

n2|an|2ρ2n−2

) 1
2
(

∞

∑
n=0

|cn|2ρ2n

) 1
2
⎤
⎦dρ

�
√

2k(1− γ)π

(
∞

∑
n=1

n(an|2r2n−1

) 1
2 (

log
1+ r
1− r

) 1
2

.

But A(r) = π∑∞
n=1 n|an|2r2n is the area of the image of |z|< r by w = f (z), and, since

A(r) � πM2(r), we have

J1(r) �
√

2k(1− γ)πM(r)
(

1
r

log
1+ r
1− r

) 1
2

, (r → 1). (3.2)
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Next we estimate J2(r).
With h given by (1.3) and (1.4), γ = 0, k = 2, we have

h′(z) =
1
π

∫ 2π

0

e−it

(1− ze−it)2 dμ(t).

Since

Reh(z) =
1
2π

∫ 2π

0

(1−ρ2)

|1− z−it|2 dμ(t),

we have

J2(r) � 2
∫ r

0

∫ 2π

0

∣∣∣ψ(ρeiθ )Reh(ρeiθ )
∣∣∣dθ dρ

1−ρ2

= 2
∫ r

0

(∫ 2π

0
Re
[
(ρeiθ ) f ′(ρeiθ )e−iargψ

]
dθ
)

dρ
1−ρ2 .

Integration by parts gives

J2(r) � 4π
∫ r

0

M(ρ)
1−ρ2 dρ . (3.3)

from (3.1), (3.2) and (3.3), we obtain the required result. �
We note that, following the techniques of Theorem 3.1, we can prove similar arc

length problem for the class Ks
k(0,γ).

THEOREM 3.2. Let f ∈ T s
k (δ ,γ) and be given by (1.1) . Then

|an| � b(k,δ ,γ)n{( k
4 + 1

2 )(1−γ)}−1 (n � 1),

where b(k,δ ,γ) is a constant depending only on k,δ , and γ. The function f0 ∈T s
k (δ ,γ)

defined by

f ′0(z) =

(
1+ z2

)( k
4 + 1

2 )(1−γ)

(1− z2)(
k
4− 1

2 )(1−γ)

{
(1− δ )

1− z
1+ z

+ δ
}

(3.4)

shows that the exponential
{
( k

4 + 1
2 )(1− γ)−1

}
is best possible.

Proof. We set

F(z) =
(
z f ′(z)

)′ = ψ(z)
[
H(z)h(z)+ zH ′(z)

]
,

where h = zψ ′
ψ ∈ Pk(γ) , H ∈ P(δ ) and 2ψ(z) = [g(z)−g(−z)] , g is as defined in

Definition 3.1. Thus, for n � 1, z = reiθ , Cauchy’s Theorem gives us

n2|an| =
1

2πrn

∣∣∣∣
∫ 2π

0
F(z)e−inθdθ

∣∣∣∣
� 1

2πrn

∫ 2π

0
|ψ(z)||H(z)h(z)+ zH ′(z)|dθ

� 1
2πrn

(
2
r

)( k
4− 1

2 )(1−γ)( r
1−r2

)( k
4 + 1

2 )(1−γ) ∫ 2π

0

∣∣H(z)h(z)+zH ′(z)
∣∣dθ , (3.5)



272 K. I. NOOR AND S. MUSTAFA

where we have used (2.2) and the well-known distortion theorem for odd starlike func-
tions.

Now

∫ 2π

0

∣∣H(z)h(z)+zH ′(z)
∣∣dθ �

(∫ 2π

0
|h(z)|2dθ

) 1
2
(∫ 2π

0
|H(z)|2dθ

) 1
2

+
∫ 2π

0
|zH ′(z)|dθ

�
(

1+{k2(1− γ)2−1}r2

1− r2

) 1
2
(

1+{4(1− δ )2−1}r2

1− r2

) 1
2

+
2(1− δ )
1− r2 , (3.6)

by using a modified version of a Lemma proved in [5] for h , H ∈ Pk , k � 2.
From (3.5) and (3.6), we obtain

n2|an| � b(k,γ,δ )
(

1
1− r

){( k
4 + 1

2 (1−γ)}+1

, (r → 1).

Taking r = 1− 1
n , we have the required result. �

We note, as a special cases, that for k = 2, an = O(1)n−γ .
Using the similar techniques, we can prove the following coefficient result for the

class Ks
k(δ ,γ).

THEOREM 3.3. Let f ∈ Ks
k(δ ,γ) and be given by (1.1) . Then

|an| � B(k,δ ,γ)n2−γ , (n � 1)

and B(k,δ ,γ) is a constant which depends only on k,δ and γ. The function f1 ∈
Ks

k(δ ,γ) and defined by

f ′1(z)=
1

(1−z2)(1−γ)

{(
k
4
+

1
2

)[
(1−δ )

1−z
1+z

+δ
]
−
(

k
4
−1

2

)[
(1−δ )

1+ z
1− z

+δ
]}

(3.7)
shows that the exponent (2− γ) is best possible.

For our next result, we need the following lemmas.

LEMMA 3.1. Let g ∈ Rs
2(γ) and for m = 1,2,3, . . . , let G be defined by

G(z) =
m+1
2zm

∫ z

0
tm−1 {g(t)−g(−t)}dt. (3.8)

Then G is starlike for z ∈ E.

Proof. Let

J(z) =
∫ z

0
tm−1 [g(t)−g(−t)]

2
dt.



ANALYTIC FUNCTIONS RELATED WITH FUNCTIONS OF BOUNDED RADIUS ROTATION 273

Now, since g(z)−g(−z)
2 is starlike in E , J(z) is (m+ 1)-valently starlike in E. We can

write (3.8) as

zmG(z) = (m+1)J(z),

and differentiating logarithmically, we have

zG′(z)
G(z)

=
zJ′(z)−mJ(z)

J(z)
.

Setting N(z) = zJ′(z)−mJ(z) and D(z) = J(z), we see that N(0) = D(0) = 0. Also

N′(z)
D′(z)

=
1
2

[
2zg′(z)

g(z)−g(−z)
+

2zg′(−z)
g(z)−g(−z)

]
= p(z), p ∈ P(γ)

in E, since P(γ) is a convex set. Therefore, using a result from Libera [3], N(z)
D(z) ∈ P(γ)

for z ∈ E. �

LEMMA 3.2. Let N and D be analytic functions in E with N(0) = D(0) = 0 , D
maps E onto a many sheeted region which is starlike of order γ with respect to origin
and let N′

D′ ∈ P(δ ). Then N
D ∈ Pk(δ ). in E.

Proof. Let

N(z)
D(z)

= H(z) =
(

k
4

+
1
2

)
h1(z)−

(
k
4
− 1

2

)
h2(z),

where H is analytic in E, with H(0) = 1. Then

N′(z)
D′(z)

= H(z)+
zH ′(z)
H0(z)

, where H0(z) =
zD′(z)
D(z)

∈ P(γ) in E

=
(

k
4

+
1
2

)[
h1(z)+

zh′1(z)
H0(z)

]
−
(

k
4
− 1

2

)[
h2(z)+

zh′2(z)
H0(z)

]
.

Since N′(z)
D′(z) ∈ Pk(γ), it follows that

{
hi(z) =

zh′(z)
H0(z)

}
∈ P(δ ), Ho ∈ P(γ), i = 1,2.

With hi(z) = (1− δ )pi(z)+ δ , we have[
(1− δ )pi(z)+

(1− δ )zp′i(z)
H0(z)

]
∈ P in E.

We form the functional Ψ(u,v) by taking u = pi(z) , v = zp′i(z) with u = u1 + iu2 ,
v = v1 + iv2, and use a well-known Lemma due to Miller [4] to conclude that pi ∈ P ,
i = 1,2 and therefore hi ∈ P(δ ) , i = 1,2 for z ∈ E. Consequently H ∈ Pk(δ ) in E and
the proof is complete. �
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THEOREM 3.4. Let f ∈ Ks
k(δ ,γ). Then the function F defined by

F(z) =
m+1
2zm

∫ z

0
tm−1 [ f (t)− f (−t)]dt (3.9)

also belongs to Ks
k(δ ,γ) for z ∈ E and m = 1,2,3, . . . .

Proof. Since f ∈ Ks
2(δ ,γ), there is a function g∈ Rs

2(γ) such that
{

2z f ′(z)
g(z)−g(−z)

}
∈

Pk(δ ) in E. Now, by Lemma 3.1, G defined by (3.8) belongs to Rs
k(γ) in E, and by

definition it follows that there exists G1 ∈ Vs
2 (γ) such that G = zG′

1 in E. Thus, from
(3.9), we have with g = zg′1

2F ′(z)
(G1(z)−g1(−z))′

=
zm [ f (z)− f (−z)]−m

∫ z
0 tm−1 [ f (t)− f (−t)]dt

zm [g1(z)−g1(−z)]−m
∫ z
0 tm−1 [g1(t)−g1(−t)]dt

=
N(z)
D(z)

, say.

We note that N(0) = D(0) = 0 and for g1 ∈Vs
2 (γ),

(zD′(z))′

D′(z)
= m+

[z[g1(z)−g1(−z)]′]′

[g1(z)−g1(−z)]′
∈ P(γ1) ⊂ P(γ) in E.

This implies g1 is convex and hence starlike in E. Since

N′(z)
D′(z)

=
1
2

[
2z f ′(z)

(g1(z)−g1(−z))′
+

2z f ′(−z)
(g1(z)−g1(−z))′

]
∈ Pk(δ ), for z ∈ E,

we use Lemma 3.2 to have N(z)
D(z) ∈ Pk(δ ) in E. This completes the proof. �

THEOREM 3.5. Let f ∈ Ks
k(0,0) ≡ Ks

k and let

F1(z) =
1

1+m
z1−m [zm f (z)]′ , m = 1,2, . . . . (3.10)

Then F1 ∈ Ks
k for

|z| < r1 =
1+m

2+
√

3+m2
. (3.11)

Proof. Let

F1(z) =
1

1+m

[
mf (z)+ z f ′(z)

]
. (3.12)

Since, f ∈ Ks
k , there exists g ∈ Rs

2(0) ≡ Rs
2 such that{

2z f ′(z)
g(z)−g(−z)

}
∈ Pk, z ∈ E.
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Therefore, from (3.12), we can write

2zF ′
1(z)

g(z)−g(−z)
=

1
1+m

[
2mz f ′(z)

g(z)−g(−z)
+

2z(z f ′(z))′

g(z)−g(−z)

]

=
1

1+m

[
mp(z)+ zp′(z)+ p(z)h(z)

]
,

where p∈ Pk , h(z) = zψ ′(z)
ψ(z) ∈ P. with ψ = 1

2 [g(z)−g(−z)]. Since p∈ Pk, we use (1.5)
with γ = 0 to have

2zF ′
1(z)

g(z)−g(−z)
=
(

k
4

+
1
2

){
1

1+m

[
mp1(z)+ zp′1(z)+ p1(z)h(z)

]}

−
(

k
4
− 1

2

){
1

1+m

[
mp2(z)+ zp′2(z)+ p2(z)h(z)

]}
, p1, p2,h ∈ P.

Now

Re

{
1

1+m

[
mpi(z)+ zp′i(z)+ pi(z)h(z)

]}
� Re pi(z)

1+m

[
m+

1− r
1+ r

− 2r
1− r2

]

=
Re pi(z)
1+m

[
(1−m)r2−4r+(1+m)

1− r2

]
,

and the right hand side is positive for |z| < r1 and consequently F1 ∈ Ks
k for |z| < r1,

where r1 is given by (3.11). This completes the proof. �

THEOREM 3.6. Let f ∈ Ts
k (0,0) ≡ Ts

k and let F1 be defined by (3.10) . Then
F1 ∈ T s

k for |z| < r1, where r1 is given by (3.11) .

Proof. Since f ∈ T s
k , there exists g∈ Rs

k(0) = Rs
k such that

{
2z f ′(z)

g(z)−g(−z)

}
= p∈ P ,

z ∈ E. Now, from (3.12), we have

2zF ′
1(z)

g(z)−g(−z)
=

1
1+m

[
mp(z)+ zp′(z)+ p(z)h(z)

]
,

where p ∈ P and h = zψ ′(z)
ψ(z) ∈ Pk with ψ(z) = 1

2 [g(z)−g(−z)] . We use (1.5) to have

2zF ′
1(z)

g(z)−g(−z)
=
(

k
4

+
1
2

)[
1

1+m

{
mp(z)+ zp′(z)+ p(z)h1(z)

}]

−
(

k
4

+
1
2

)[
1

1+m

{
mp(z)+ zp′(z)+ p(z)h2(z)

}]
,

h1,h2 ∈ P for z ∈ E.

We note that

Re

[
1

1+m

{
mp(z)+ zp′(z)+ p(z)hi(z)

}]
� Re p(z)

1+m

[
m+

1− r
1+ r

− 2r
1− r2

]
, i = 1,2
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and the right hand side is positive for |z| < r1, where r1 is given by (3.11), �
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