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Abstract. The general idea of this paper is to study a differential calculus for multivariable func-
tions on time scales. Such a calculus can be used to develop a theory of partial dynamic equations
on time scales.

1. Introduction

The unification and extension of continuous calculus, discrete calculus, q -calculus,
and indeed arbitrary real-number calculus to time scale calculus was first accomplished
by Hilger in his PhD thesis [9]. This theory is very important and useful in the math-
ematical modelling of several important dynamic processes. As a result the theory of
dynamic systems on time scales is developed in ([1], [2], [4]–[8], [11]–[15]).

The present paper deals with the differential calculus for multivariable functions
on time scales and intends to prepare an instrument for introducing and investigating
partial dynamic equations on time scales.

There are a number of differences between the calculus one and of two variables.
The calculus for functions of three or more variables differs only slightly from that of
two variables. Bohner and Guseinov have published a paper about the partial differ-
entiation on time scale. Here, authors introduced partial delta and nabla derivatives
and the chain rule for multivariable functions on time scale and also the concept of the
directional derivative [7].

The contents of this paper are as follows. In Section 2, we give a brief account
of time scale calculus which will be used later. In Section 3, we introduce partial delta
and nabla derivatives for multivariable functions on time scales and offer several new
concepts related to differentiability. In Section 4, we give several useful mean value
theorems for derivatives. In Section 5, we extend the chain rule for multivariable func-
tions on time scales. Finally, in Section 6 we investigate some properties of directional
derivative on time scales.
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2. Preliminaries from Time Scales Calculus

The following definitions and theorems will serve as a short primer on time scale
calculus; they can be found in ([5], [6]). A time scale T is any nonempty closed subset
of R . Within that set, define the jump operators ρ ,σ : T → T by

ρ(t) = sup{s ∈ T : s < t} and σ(t) = inf{s ∈ T : s > t},
where inf /0 := supT and sup /0 := infT , where /0 denotes the empty set. If σ(t) > t ,
then we say that t is right-scattered. If σ(t) = t and t < supT , we say that t is right-
dense. The backward jump operator, left-scattered and left-dense points are defined in
similar way. If T has a right-scattered minimum m, define Tk := T−{m} ; otherwise,
set Tk = T . If T has a left-scattered maximum M, define T

k := T−{M} ; otherwise,
set T

k = T. The so-called graininess functions are μ(t) :=σ(t)−t and v(t) := t−ρ(t).
For f : T → R and t ∈ T

k , the delta derivative of f at t, denoted f Δ(t), is the
number (provided it exists) with the property that given any ε > 0, there is a neighbor-
hood U of t such that∣∣∣ f (σ(t))− f (s)− f Δ(t)[σ(t)− s]

∣∣∣� ε |σ(t)− s|

for all s ∈U . For T = R, f Δ = f ′, the usual derivative; for T = Z the delta derivative
is the forward difference operator, f Δ(t) = f (t +1)− f (t).

THEOREM 1. If f ,g : T → R are Δ−differentiable at t ∈ T
k , then

(i) f +g is Δ−differentiable at t and
( f +g)Δ (t) = f Δ(t)+gΔ(t).

(ii) For any constant c, c f is Δ−differentiable at t and
(c f )Δ (t) = c f Δ(t).

(iii) f .g is Δ−differentiable at t and
( f g)Δ (t) = f Δ(t)g(t)+ f (σ(t))gΔ(t)

= gΔ(t) f (t)+g(σ(t)) f Δ(t).

(iv) If g(t).g(σ(t)) �= 0 then
f
g

is Δ−differentiable at t and(
f
g

)Δ
(t) =

f Δ(t)g(t)− f (t)gΔ(t).
g(t).g(σ(t))

.

THEOREM 2. Let T be a time scale and ν : T → R be a strictly increasing func-
tion such that T = ν(T) is also a time scale. by σ we denote the jump function on T ,
and by Δ we denote the derivative on T. Then

ν ◦σ = σ ◦ν.

THEOREM 3. (Chain Rule) Assume ν : T → R is strictly increasing and T =
ν(T) is a time scale. Let w : T → R . If νΔ(t) and wΔ(ν(t)) exist for t ∈ T

k , then
(w◦ν)Δ exist at t and satisfies the chain rule

(w◦ν)Δ = (wΔ ◦ν)νΔ at t.
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Many other information concerning time scales and dynamic equations on time
scales can be found in the books ([5], [6]).

3. Partial Differentiation on time Scales

Let n ∈N be fixed and for each i ∈ {1,2, ...,n} , Ti denote a time scale. Let us set

∧n = T1 ×T2× ...×Tn = {(l1, l2, ..., ln) : li ∈ Ti for all i ∈ {1,2, ...,n}} .

We call ∧n an n -dimensional time scale. the set ∧n is a complete metric space with
the metric d defined by

d(t,s) =

(
n

∑
i=1

|ti − si|2
) 1

2

, ∀t,s ∈ ∧n.

Let f : ∧n → R be a function. The partial delta derivative of f with respect to ti ∈ T
k
i

is defined as the limit

lim
si→ti

si �=σi(ti)

f (t1, t2, ...,ti−1,σi (ti) ,ti+1, ...,tn)− f (t1,t2, ...,ti−1,si,ti+1, ...,tn)
σi (ti)− si

=
∂ f (t)
Δiti

.

Higher order partial delta derivatives are similarly defined.

DEFINITION 1. We say that a function f : ∧n → R is completely delta differen-
tiable at the point t0 ∈ T

k
1 ×T

k
2× ...×T

k
n if there exist numbers A1, ...,An independent

of t = (t1, ...,tn)∈∧n (but, generally, dependent on (t01 , ...,t0n )) such that all t ∈Uδ (t0),

f (t01 , t02 , ...,t0n )− f (t1,t2, ...,tn) =
n

∑
i=1

Ai(t0i − ti)+
n

∑
i=1

αi(t0i − ti) (3.1)

and, for j ∈ {1, ...,n} and all t ∈Uδ (t0),

f (t01 , ...,t0j−1,σ j(t0j ),t
0
j+1, ...,t

0
n )− f (t1, ...,ti−1,ti, ti+1, ...,tn)

= Aj

[
σ j(t0j )− t j

]
+

n
∑
i=1
i �= j

Ai
[
t0i − ti

]
+β j

[
σ j(t0j )− t j

]
+

n
∑
i=1
i �= j

βi
[
t0i − ti

]
,

(3.2)

where δ is a sufficiently small positive number, Uδ (t0) is the the δ−neighborhood of
t0 in ∧n, αi =αi(t0, t) and βi = βi(t0,t) are defined on Uδ (t0) such that they are equal
to zero at t = t0 and such that

lim
t→t0

αi(t0,t) = 0 and lim
t→t0

βi(t0,t) = 0 for all i ∈ {1, ...,n}.
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In the case T1 = ... = Tn = R , this definition coincides with the classical(total)
differentiability of functions of n−variables ([3], [10]).

It follows from Definition 1 that if the function f : ∧n → R is completely delta
differentiable at the point t0 ∈ T

k
1×T

k
2× ...×T

k
n , then it is continuous at that point and

has at t0 the first order partial delta derivatives equal, respectively, to A1, ...,An :

∂ f (t0)
Δ1t1

= A1, ...,
∂ f (t0)
Δntn

= An.

The continuity of f at t0 follows, in fact, from any one of (3.1) and (3.2) for
some j ∈ {1, ...,n}. Indeed, (3.1) obviously yields the continuity of f at t0 . Let now
(3.2) hold for some j ∈ {1, ...,n}. In the case σ j(t0j ) = t0j , (3.2) immediately gives the

continuity of f at t0 . Consider the case σ j(t0j ) > t0j . Except of f (t), each term in (3.2)

has a limit as t → t0 . Therefore f (t) also has a limit as t → t0, and passing to the limit
we get

f (t01 , ...,t0j−1,σ j(t0j ),t
0
j+1, ...,t

0
n )− lim

t→t0
f (t) = Aj[σ j(t0j )− t0j ].

Further, letting t = t0 in (3.2), we obtain

f (t01 , ...,t0j−1,σ j(t0j ),t
0
j+1, ...,t

0
n )− f (t0) = Aj[σ j(t0j )− t0j ].

Comparing the last two relations gives

lim
t→t0

f (t) = f (t0)

so that the continuity of f at t0 is shown. Next, setting in (3.2) ti = t0i for all i �= j and
then dividing both sides by σ j(t0j )− t j and passing to the limit as t j → t0j , we arrive

at ∂ f (t0)
∇ jt j

= Aj. This also shows the uniqueness of the numbers A1, ...,An presented in

(3.1), (3.2). Note also that due to the continuity of f at t0 we get from (3.2) in the case
σ j(t0j ) > t0j the formula

∂ f (t0)
Δ jt j

=
f (t0j1, ...,t

0
j−1,σ j(t0j ),t

0
j+1, ...,t

0
n )− f (t0)

σ j(t0j )− t j
.

DEFINITION 2. We say that a function f : T1×T2× ...×Tn →R is σ j -completely
delta differentiable at a point t0 = (t01 , ...,t0n ) ∈ T

k
1 ×T

k
2 × ...×T

k
n if it is completely

delta differentiable at that point in the sense of conditions (3.1), (3.2) and moreover,
along with the numbers A1, ...,An presented in (3.1) and (3.2) there exists also numbers
B1, ...,Bn independent of t = (t1, ...,tn) ∈ T1 ×T2 × ...×Tn (but, generally, dependent
on (t01 , ...,t0n )) such that for j ∈ {1, ...,n}

f (σ1(t01),σ2(t02 ), ...,σn(t0n ))− f (t1,t2, ...,tn)

= Aj

[
σ j(t0j )− t j

]
+

n
∑
i=1
i �= j

Bi
[
σi(t0i )− ti

]
+ γ j

[
σ j(t0j )− t j

]
+

n
∑
i=1
i �= j

γi
[
σi(t0i )− ti

]
(3.3)
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for all t = (t1, ...,tn) ∈ Vσ j (t01 , ...,t0n ), where Vσ j (t01 , ...,t0n ) is a union of some neigh-
borhoods of the points (t01 , ...,t0n ) and (σ1(t01), ...,t0i ...,σn(t0n)), and the functions γ j =
γ j(t0;t) and γi = γi(t0;ti) are equal to zero for (t1, ...,tn) = (t01 , ...,t0n ) and

lim
t→t0

γ j(t0;t) = 0 and lim
ti→t0

γi(t0; ti) = 0.

Note that in (3.3) the function γ ji depends only on the variable ti. Setting t1 =
σ1(t1), ..., ti−1 = σi−1(ti−1), ti �= σi(ti), ti+1 = σi+1(ti+1), ...,tn = σn(tn) in (3.3) yields

Bi =
∂ f (σ1(t01),σ2(t02), ...,ti, ...,σn(t0n))

Δiti
.

For j = 1, Definition 2 becomes the following: A function f : T1 ×T2× ...×Tn → R

is σ1 -completely delta differentiable at a point t0 = (t01 , ...,t0n ) ∈ T
k
1 ×T

k
2 × ...×T

k
n if

it is completely delta differentiable at that point in the sense of conditions (3.1), (3.2)
and moreover, along with the numbers A1, ...,An presented in (3.1) and (3.2) there
exists also numbers B1, ...,Bn independent of t = (t1, ...,tn) ∈ T1 ×T2 × ...×Tn (but,
generally, dependent on (t01 , ...,t0n )) such that

f (σ1(t01 ),σ2(t02 ), ...,σn(t0n))− f (t1,t2, ...,tn)

= A1
[
σ1(t01)− t1

]
+

n
∑
i=2

Bi
[
σi(t0i )− ti

]
+ γ1

[
σ1(t01 )− t1

]
+

n
∑
i=2

γi
[
σi(t0i )− ti

]
(3.4)

for all t = (t1, ...,tn)∈V σ1(t01 , ...,t0n). Here if we take n = 2, then we have i = 2 because
of j = 1. Therefore, equality (3.4) reduces:

f (σ1(t01 ),σ2(t02 ))− f (t1,t2) = A1
[
σ1(t01)− t1

]
+B2

[
σ2(t02 )− t2

]
+γ1

[
σ1(t01 )− t1

]
+ γ2

[
σ2(t02)− t2

] (3.5)

where A1 =
∂ f (t01 , t02 )
Δ1t1

and B2 =
∂ f (σ1(t01 ),t02 )

Δ2t2
.

Also, for j = 2 the equality (3.3) in Definition 2 becomes:

f (σ1(t01 ),σ2(t02 ), ...,σn(t0n))− f (t1,t2, ...,tn)

= A2
[
σ2(t02 )− t2

]
+

n
∑
i=1
i �=2

Bi
[
σi(t0i )− ti

]
+ γ2

[
σ2(t02 )− t2

]
+

n
∑
i=1
i �=2

γi
[
σi(t0i )− ti

]
.

(3.6)
Here if we take again n = 2, then we have i = 1 because of j = 2. Therefore, equality
(3.4) reduces to the following:

f (σ1(t01 ),σ2(t02 ))− f (t1,t2) = B1
[
σ1(t01 )− t1

]
+A2

[
σ2(t02 )− t2

]
+γ1

[
σ1(t01 )− t1

]
+ γ2

[
σ2(t02 )− t2

]
.

(3.7)
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where B1 =
∂ f (t01 ,σ2(t02 ))

Δ1t1
and A2 =

∂ f (t01 ,t02 )
Δ2t2

. Consequently, for n= 2 equality (3.4)

reduces equalities (3.5) and (3.7) which are given in Definition 2.3 and 2.4, respectively
by Bohner et. al. [7].

4. Mean Value Theorems

First we present mean value results in the single and two variables case ([7], [8]).

THEOREM 4. (Mean Value Theorem) Suppose that f is a continuous function on
[a,b] and has a delta derivative at each point of [a,b). Then there exist ξ ,ξ ′ ∈ [a,b)
such that

f Δ(ξ ′)(b−a) � f (b)− f (a) � f Δ(ξ )(b−a).

THEOREM 5. Let a and b be two arbitrary points in T and let us set α =
min{a,b} and β = max{a,b}. Let, further, f be a continuous function on [α,β ] that
has a delta derivative at each point of [α,β ) . Then there exist ξ ,ξ ′ ∈ [a,b) such that

f Δ(ξ ′)(b−a) � f (b)− f (a) � f Δ(ξ )(b−a).

THEOREM 6. (Mean Value Theorem) Let (a1,a2) and (b1,b2) be any two points
in T1 ×T2 and let us set

αi = min{ai,bi} and βi = max{ai,bi} for i ∈ {1,2}.

Let, further, f : T1×T2 →R be a continuous function on [α1,β1]× [α2,β2]⊂T1×T2

that has first order partial derivatives ∂ f (t,a2)
Δ1t

for each t ∈ [α1,β1) and ∂ f (b1,s)
Δ1s

for
each s ∈ [α2,β2) . Then there exist ξ ,ξ ′ ∈ [α1,β1) and η ,η ′ ∈ [α2,β2) such that

∂ f (ξ ′,a2)
Δ1t

(a1−b1)+
∂ f (b1,η ′)

Δ2s
(a2−b2) � f (a1,a2)− f (b1,b2)

� ∂ f (ξ ,a2)
Δ1t

(a1−b1)+
∂ f (b1,η)

Δ2s
(a2−b2).

Also, if f has first order partial derivatives ∂ f (t,b2)
Δ1t

for each t ∈ [α1,β1) and ∂ f (a1,s)
Δ1s

for each s ∈ [α2,β2), then there exist τ,τ ′ ∈ [α1,β1) and θ ,θ ′ ∈ [α2,β2) such that

∂ f (τ ′,b2)
Δ1t

(a1−b1)+
∂ f (a1,θ ′)

Δ2s
(a2−b2) � f (a1,a2)− f (b1,b2)

� ∂ f (τ,b2)
Δ1t

(a1−b1)+
∂ f (a1,θ )

Δ2s
(a2−b2).

Passing now to the n -variable case, we consider functions f : T1 × ...×Tn → R

of the variables (t1, ...,tn) ∈ T1 × ...×Tn.
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THEOREM 7. (Mean Value Theorem) Let (a1,a2, ...,an) and (b1,b2, ...,bn) be
any two points in T1× ...×Tn and let us set

αi = min{ai, bi} and βi = max{ai, bi} for i ∈ {1,2, ...,n}.
Let, further, f be a continuous function on [α1,β1]× ...× [αn,βn] ⊂ T1 × ...×Tn

that has first order partial derivatives ∂ f (b1,b2,...bi−1,ti ,ai+1,...,an)
Δiti

for each ti ∈ [αi,βi)
i = 1, ...,n. Then there exist ξi,ξ ′

i ∈ [αi,βi) i = 1, ...,n such that

∂ f (ξ ′
1,a2, ...,an)
Δ1t1

(a1−b1)+
∂ f (b1,ξ ′

2,a3, ...,an)
Δ2t2

(a2−b2)+ ...

+
∂ f (b1,b2, ...bi−1,ξ ′

i ,ai+1...,an)
Δiti

(ai −bi)+ ...+
∂ f (b1,b2, ...,ξ ′

n)
Δntn

(an−bn)

� f (a1, ...,an)− f (b1, ...,bn)

� ∂ f (ξ1,a2, ...,an)
Δ1t

(a1−b1)+
∂ f (b1,ξ2,a3, ...,an)

Δ2t2
(a2 −b2)+ ...

+
∂ f (b1,b2, ...bi−1,ξi,ai+1, ...,an)

Δiti
(ai−bi)+ ...+

∂ f (b1,b2, ...,ξn)
Δntn

(an−bn).

(4.1)

Also, if f has first order partial derivatives ∂ f (a1,a2,...ai−1,ti,bi+1,...,bn)
Δiti

for each ti ∈
[αi,βi) i = 1, ...,n. Then there exist ηi,η ′

i ∈ [αi,βi) i = 1, ...,n such that

∂ f (η ′
1,b2, ...,bn)
Δ1t

(a1 −b1)+
∂ f (a1,η ′

2,b3, ...,bn)
Δ2t2

(a2−b2)+ ...

+
∂ f (a1,a2, ...,ai−1,η ′

i ,bi+1, ...,bn)
Δiti

(ai−bi)+ ...+
∂ f (a1,a2, ...,η ′

n)
Δntn

(an−bn)

� f (a1, ...,an)− f (b1, ...,bn)

� ∂ f (η1,b2, ...,bn)
Δ1t

(a1−b1)+
∂ f (a1,η2,b3, ...,bn)

Δ2t2
(a2−b2)...

+
∂ f (a1,a2, ...,ai−1,ηi,bi+1...,bn)

Δiti
(ai−bi)+ ...+

∂ f (a1,a2, ...,ηn)
Δntn

(an−bn).

(4.2)

Proof. To prove (4.1) we consider the difference

f (a1, ...,an)− f (b1, ...,bn) = [ f (a1, ...,an)− f (b1,a2, ...,an)]
+ [ f (b1,a2, ...,an)− f (b1,b2,a3, ...,an)]
+ [ f (b1,b2,a3, ...,an)− f (b1,b2,b3,a4, ...,an)]

...

+[ f (b1, ...,bi,ai+1, ...,an)− f (b1, ...,bi,bi+1,ai+2, ...,an)]
...

+[ f (b1, ...,bn−1,an)− f (b1, ...,bn)] . (4.3)
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By Theorem 5 there exist ξi,ξ ′
i ∈ [αi,βi) i = 1, ...,n such that

∂ f (ξ ′1,a2,...,an)
Δ1t1

(a1−b1) � f (a1, ...,an)− f (b1,a2, ...,an) � ∂ f (ξ1,a2,...,an)
Δ1t1

(a1−b1)

∂ f (b1,ξ ′2,a3,...,an)
Δ2t2

(a2−b2) � f (a1, ...,an)− f (b1,a2, ...,an) � ∂ f (b1,ξ2,a3,...,an)
Δ2t2

(a2−b2)
...

∂ f (b1,b2,...bi−1,ξ ′i ,ai+1,...,an)
Δiti

(ai −bi) � f (b1, ...,bi,ai+1, ...,an)− f (b1, ...,bi,bi+1,ai+2, ...,an)

� ∂ f (b1,b2,...bi−1,ξi ,ai+1,...,an)
Δiti

(ai−bi)
...

∂ f (b1,b2,...,ξ ′n)
Δntn

(an−bn) � f (b1, ...,bn−1,an)− f (b1, ...,bn) � ∂ f (b1,b2,...,ξn)
Δntn

(an−bn).

Adding these inequalities side by side and taking into account (4.3), we obtain (4.1).
Using the relation

f (a1, ...,an)− f (b1, ...,bn) = [ f (a1,b2...,bn)− f (b1,b2, ...,bn)]

+[ f (a1,a2,b3, ...,bn)− f (a1,b2, ...,bn)]

+[ f (a1,a2,a3,b4, ...,an)− f (a1,a2,b3, ...,bn)]
...

+[ f (a1, ...,ai,bi+1, ...,bn)− f (a1, ...,ai−1,bi, ...,bn)]
...

+[ f (a1, ...,an−1,an)− f (a1, ...,an−1,bn)]

the inequalities (4.2) can be proved similarly. �

REMARK 1. If we take n = 2 in Theorem 7, then it reduces Theorem 4.2 proved
by Bohner et. al. [7]. So, our results are generalizations of the corresponding results of
Bohner et. al. and Guseinov et. al. ([7], [8]).

5. The Chain Rule

The chain rule for one-variable and two-variable functions on time scales have
been investigated in ([1], [5], [7]). To get an extension to n−variable functions on time
scales we start with a time scale T . Denote its forward jump operator by σi and its
delta differentiation operator by Δi for i = 1, ...,n. Let, further, n− functions

ϕi : T → R for i = 1, ...,n



PARTIAL Δ -DIFFERENTIATION 285

be given. Let us set
ϕi(T) = Ti for i = 1, ...,n.

We will assume that T1, ...,Tn are time scales. Denote by σ1,Δ1, ...,σn,Δn the forward
jump operators and delta operators for T1, ...,Tn, respectively. Take a point ξ 0 ∈ T

k

and put
t0i = ϕi(ξ 0) for i = 1, ...,n.

We will also assume that

ϕi(σ(ξ 0)) =σi(ϕi(ξ 0)) for i = 1, ...,n (5.1)

Under the above assumptions let a function f : T1 × ...×Tn → R be given.

THEOREM 8. Let the function f be σ j−completely delta differentiable at the
point (t01 , ...,t0n ). If the function ϕi ( i = 1, ...,n) has delta derivatives at the point ξ 0,
then the composite function

F(ξ ) = f (ϕ1(ξ ), ...,ϕn(ξ )) for ξ ∈ T (5.2)

has a delta derivative at that point which is given by the formula

FΔ(ξ 0) =
∂ f (t01 , ...,t0n)

Δ jt j
ϕΔ

j (ξ
0)+

n

∑
i=1
i �= j

∂ f (σ1(t01), ...,t0i , ...,σn(t0n ))
Δiti

ϕΔ
i (ξ 0) (5.3)

for each j ∈ {1, ...,n}.

Proof. Using (5.1) and (3.3) with

Aj =
∂ f (t01 , ...,t0n )

Δ jt j
and Bi =

∂ f (σ1(t01 ), ...,t0i , ...,σn(t0n ))
Δiti

,

we obtain

F(σ(ξ 0))−F(ξ ) = f (ϕ1(σ(ξ 0)), ...,ϕn(σ(ξ 0)))− f (ϕ1(ξ ), ...,ϕn(ξ ))

= f (σ1(ϕ1(ξ 0)), ...,σn(ϕn(ξ 0)))− f (ϕ1(ξ ), ...,ϕn(ξ ))

=
∂ f (σ1(ϕ1(ξ 0)), ...,σn(ϕn(ξ 0)))

Δ jt j

[
σ j(ϕ j(ξ 0))−ϕ j(ξ )

]
+

n

∑
i=1
i �= j

∂ f (σ1(ϕ1(ξ 0)), ...,ϕi(ξ 0), ...,σn(ϕn(ξ 0)))
Δiti

× [σi(ϕi(ξ 0))−ϕi(ξ )
]

+ γ j
[
σ j(ϕ j(ξ 0))−ϕ j(ξ )

]
+

n

∑
i=1
i �= j

γi
[
σi(ϕi(ξ 0))−ϕi(ξ )

]
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=
∂ f (t01 , ...,t0n )

Δ jt j

[
ϕ j(σ(ξ 0))−ϕ j(ξ )

]
+

n

∑
i=1
i �= j

∂ f (σ1(t01 ), ...,t0i , ...,σn(t0n))
Δiti

[
ϕi(σ(ξ 0))−ϕi(ξ )

]

+ γ j j
[
ϕ j(σ(ξ 0))−ϕ j(ξ )

]
+

n

∑
i=1
i �= j

γi
[
ϕi(σ(ξ 0))−ϕi(ξ )

]
.

Dividing both sides of this equality by σ(ξ 0)−ξ and passing to the limit as ξ → ξ 0, we
get the formula (5.3) because ξ → ξ 0 implies γ j → 0 and γi → 0 for i = 1,2, ..,n. �

REMARK 2. Let n = 2. Then, in the case j = 1 and i = 2 equality (5.3) in our
Theorem 8 reduces to equality (7.3) in Theorem 7.1. which is proved by Bohner et. al.
[7]. Further, in the case j = 2 and i = 1, equality (5.3) in our Theorem 8 reduces to
equality in Theorem 7.2. which is proved by Bohner et. al. [7]. Hence our results in
Theorem 8 are generalizations of the corresponding results of Bohner et. al. ([1], [5],
[7]).

REMARK 3. One or all of the functions ϕ1, ...,ϕn may be constant. In that case
one or all of T1, ...,Tn will be a single point time scale. For a single point time scale
Ti = {ti} we assume that σi(ti) = ti and for each function g : Ti → R we assume that
gΔi(ti) = 0.

Let now n -time scales T(1), ...,T(n) be given. Denote their forward jump operators
and delta differentiation operators by σ(1),Δ(1), ...,σ(n),Δ(n), respectively. Let, also,
m− functions

ϕi : T(1) × ...×T(n) → R, i = 1, ...,m

of n−variables (ξ1, ...,ξn) ∈ T(1) × ...×T(n), and a fixed point (ξ 0
1 , ...,ξ 0

n ) ∈ T
k
(1) ×

...×T
k
(n) be given. Let us set

Ti = Ti(ξ 0
1 , ...,ξ 0

i−1,ξ
0
i+1, ...,ξ

0
n ) = ϕi(ξ 0

1 , ...,ξ 0
i−1,T(i),ξ 0

i+1, ...,ξ
0
n )

and
t0i = ϕi(ξ 0

1 , ...,ξ 0
n ), for i = 1, ...,m.

We will assume that T1, ...,Tm are time scales. Denote their forward jump operators
and delta differentiation operators by σ1,Δ1, ...,σn,Δn, respectively. We will assume
for each k ∈ {1, ...,n}

ϕi(ξ 0
1 , ...,ξ 0

k−1,σ(k)(ξ 0
i ),ξ 0

k+1, ...,ξ
0
n ) = σi(ϕi(ξ 0

1 , ...,ξ 0
k−1,ξ

0
k ,ξ 0

k+1, ...,ξ
0
n )) (5.4)

for i = 1, ...,m. Under the above conditions let a function f : T1 × ...×Tm → R of
m−variables (t1, ...,tm) ∈ T1× ...×Tm be given.
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If we take n = 2, then k ∈ {1,2}. So, in the case k = 1 equality (5.4) becomes the
following form:

ϕi(σ(1)(ξ 0
1 ),ξ 0

2 ) = σi(ϕi(ξ 0
1 ,ξ 0

2 )), i = 1, ...,m.

Here, for m = 2 we have

ϕ1(σ(1)(ξ 0
1 ),ξ 0

2 ) = σ1(ϕ1(ξ 0
1 ,ξ 0

2 ))
ϕ2(σ(1)(ξ 0

1 ),ξ 0
2 ) = σ2(ϕ2(ξ 0

1 ,ξ 0
2 )). (5.5)

On the other hand, in the case k = 2 equality (5.4) becomes the following form:

ϕi(ξ 0
1 ,σ(2)(ξ 0

2 )) = σi(ϕi(ξ 0
1 ,ξ 0

2 )), i = 1, ...,m.

Again, for m = 2 we have

ϕ1(ξ 0
1 ,σ(2)(ξ 0

2 )) = σ1(ϕ1(ξ 0
1 ,ξ 0

2 ))
ϕ2(ξ 0

1 ,σ(2)(ξ 0
2 )) = σ2(ϕ2(ξ 0

1 ,ξ 0
2 )). (5.6)

So, for n = 2, m = 2 the equality (5.4) reduces equality (5.5) and (5.6) which is given
by Bohner et. al. [7].

THEOREM 9. Let the function f be σ j−completely delta differentiable at the
point (t01 , ...,t0n ). If the function ϕi ( i = 1, ...,n) has first order partial delta deriva-
tives at the point ξ 0 = (ξ 0

1 , ...,ξ 0
n ), then the composite function

F(ξ 0) = f (ϕ1(ξ 0), ...,ϕn(ξ 0)) for ξ 0 = (ξ 0
1 , ...,ξ 0

n ) ∈ T(1) × ...×T(n) (5.7)

has a delta derivative at that point which is expresses by the formula

∂F(ξ 0
1 , ...,ξ 0

n )
Δ(k)ξk

=
∂ f (t01 , ...,t0m)

Δ jt j

∂ϕ j(ξ 0
1 , ...,ξ 0

n )
Δ(k)ξk

+
m
∑
i=1
i �= j

∂ f (σ1(t01), ...,t0i , ...,σm(t0m))
Δiti

∂ϕi(ξ 0
1 , ...,ξ 0

n )
Δ(k)ξk

(5.8)

for each k ∈ {1, ...,n}.

Proof. For the sake of simplicity, we take ξ ′ = (ξ 0
1 , ...,ξ 0

k−1,ξk,ξ 0
k+1, ...,ξ

0
n ) and

ξ ′′ = (ξ 0
1 , ...,ξ 0

k−1,ξ
0
k ,ξ 0

k+1, ...,ξ
0
n ). Using (5.4) and (3.3) with Aj =

∂ f (t01 , ...,t0m)
Δ jt j

and

Bi =
∂ f (σ1(t01 ), ...,t0i , ...,σm(t0m))

Δiti
, we obtain

F(ξ 0
1 , ...,ξ 0

k−1,σ(k)(ξ 0
k ),ξ 0

k+1, ...,ξ
0
n )−F(ξ ′)

= f (ϕ1(ξ 0
1 , ...,ξ 0

k−1,σ(k)(ξ 0
k ),ξ 0

k+1, ...,ξ
0
n ), ...,ϕm(ξ 0

1 , ...,ξ 0
k−1,σ(k)(ξ 0

k ),ξ 0
k+1, ...,ξ

0
n ))
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− f (ϕ1(ξ ′), ...,ϕm(ξ ′))
= f (σ1(ϕ1(ξ ′′)), ...,σm(ϕm(ξ ′′)))− f (ϕ1(ξ ′), ...,ϕn(ξ ′)

=
∂ f (σ1(ϕ1(ξ 0)), ...,σm(ϕm(ξ 0)))

Δ jt j

[
σ j(ϕ j(ξ 0))−ϕ j(ξ ′)

]
+

m

∑
i=1
i �= j

∂ f (σ1(ϕ1(ξ 0)), ...,ϕi(ξ 0), ...,σm(ϕm(ξ 0)))
Δiti

[
σi(ϕi(ξ 0))−ϕi(ξ ′)

]

+ γ j
[
σ j(ϕ j(ξ 0))−ϕ j(ξ ′)

]
+

m

∑
i=1
i �= j

γi
[
σi(ϕi(ξ 0))−ϕi(ξ ′)

]

=
∂ f (t01 , ...,t0m)

Δ jt j

[
ϕ j(ξ 0

1 , ...,ξ 0
k−1,σ(k)(ξ 0

k ),ξ 0
k+1, ...,ξ

0
n )−ϕ j(ξ ′)

]

+
m

∑
i=1
i �= j

∂ f (σ1(t01 ), ...,t0i , ...,σm(t0m))
Δiti

[
ϕi(ξ 0

1 , ...,ξ 0
k−1,σ(k)(ξ 0

k ),ξ 0
k+1, ...,ξ

0
n )−ϕi(ξ ′)

]

+ γ j
[
ϕ j(ξ 0

1 , ...,ξ 0
k−1,σ(k)(ξ 0

k ),ξ 0
k+1, ...,ξ

0
n )−ϕ j(ξ ′)

]
+

m

∑
i=1
i �= j

γi
[
ϕi(ξ 0

1 , ...,ξ 0
k−1,σ(k)(ξ 0

k ),ξ 0
k+1, ...,ξ

0
n )−ϕi(ξ ′)

]
.

On dividing both sides of this equality by σ(k)(ξ 0
k )− ξk and passing to the limit as

ξ → ξ 0, we get the formula (5.7) because ξ → ξ 0 implies γ j → 0 and γi → 0 for
i = 1, ...,m. �

REMARK 4. Let n = 2. Then we have

∂F(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

=
∂ f (t01 , ...,t0m)

Δ jt j

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

+
m
∑
i=1
i �= j

∂ f (σ1(t01 ), ...,t0i , ...,σm(t0m))
Δiti

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

for k = 1

and

∂F(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

=
∂ f (t01 , ...,t0m)

Δ jt j

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

+
m
∑
i=1
i �= j

∂ f (σ1(t01), ...,t0i , ...,σm(t0m))
Δiti

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

for k = 2.
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Here, let m = 2. Then for j = 1, i = 2 we have the following equalities:

∂F(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

=
∂ f (t01 ,t02)
Δ1t1

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

+
∂ f (σ1(t01),t02 )

Δ2t2

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

for k = 1

(5.9)
and

∂F(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

=
∂ f (t01 ,t02 )
Δ1t1

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

+
∂ f (σ1(t01 ),t02 )

Δ2t2

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

for k = 2.

(5.10)
Similarly way, for j = 2, i = 1 we have

∂F(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

=
∂ f (σ1(t01 ),t02 )

Δ1t1

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

+
∂ f (t01 ,t02)
Δ2t2

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(1)ξ1

for k = 1

(5.11)
and

∂F(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

=
∂ f (σ1(t01),t02 )

Δ1t1

∂ϕ j(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

+
∂ f (t01 ,t02 )
Δ2t2

∂ϕi(ξ 0
1 ,ξ 0

2 )
Δ(2)ξ2

for k = 2.

(5.12)
Therefore, for n = 2, m = 2 the equality (5.7) reduces equality (5.9)–(5.10) in Theorem
7.4 and (5.11)–(5.12) in Theorem 7.5 which are given by Bohner et. al. [7].

6. The Directional Derivative

Let T be a time scale with the forward jump operator σ and the delta operator Δ.
We will assume that 0 ∈ T . Further, let ω = (ω1, ...,ωn) ∈ R

n be a unit vector and let
(t01 , ...,t0n) be a fixed point in R

n. Let us set

Ti= {ti = t0i + ξωi : ξ ∈ T}, i = 1, ...,n.

Then T1, ...,Tn are time scales and t0i ∈ Ti for i = 1, ...,n. Denote the forward jump
operators of Ti by σi, the delta operators by Δi for i = 1, ...,n.

DEFINITION 3. Let a function f : T1 × ...×Tn → R be given. The directional
delta derivative of the function f at the point (t01 , ...,t0n ) in the direction of the vector
ω (along ω ) is defined as the number

∂ f (t01 , ...,t0n )
Δω

= FΔ(0), (6.1)

provided it exists, where

F(ξ ) = f (t01 + ξω1, ...,t
0
n + ξωn) for ξ ∈ T. (6.2)
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THEOREM 10. Suppose that the function f is σ j−completely delta differentiable
at the point (t01 , ...,t0n ) . Then the directional delta derivative of f at (t01 , ...,t0n ) in the
direction of the vector ω exists and is expressed by the formula

∂ f (t01 , ...,t0n )
Δω

=
∂ f (t01 , ...,t0n )

Δ jt j
ω j +

n

∑
i=1
i �= j

∂ f (σ1(t01), ...,t0i , ...,σn(t0n ))
Δiti

ωi (6.3)

for each j ∈ {1, ...,n}.

Proof. The proof is obtained from the Definitions 3 and 10 by applying Theo-
rem 8. �

REMARK 5. For ω j = 1 and ωi = 0, (6.3) coincides with
∂ f (t01 ,...,t0n )

Δ jt j
, while for

ω j = 0 and ωi = 1 it coincides with
∂ f (t01 ,...,t0n )

Δiti
because then Ti = {t0i } and hence

σi(t0i ) = t0i (see Remark 3).

REMARK 6. Let n = 2. Then for j = 1, i = 2 we have

∂ f (t01 ,t02)
Δω

=
∂ f (t01 ,t02)
Δ1t1

ω1 +
∂ f (σ1(t01 ),t02 )

Δ2t2
ω2 (6.4)

and
∂ f (t01 ,t02 )

Δω
=

∂ f (t01 ,σ2(t02 ))
Δ1t1

ω1 +
∂ f (t01 ,t02 )
Δ2t2

ω2. (6.5)

Therefore, for n = 2 equality (6.3) yields (6.4) and (6.5) which are proved by Bohner
et. al. [7].
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[11] U. M. ÖZKAN AND H. YILDIRIM, Hardy-Knopp-type inequalities on time scales, Dyn. Syst. Appl.,
17 (2008), 477–486.
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