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ON SOME INEQUALITIES FOR CONVEX FUNCTIONS
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Abstract. In this paper we derive new inequalities for convex functions. The results presented
here are an extension of the inequalities obtained by S. S. Dragomir, J. Pecari¢ and L.-E. Persson.

1. Introduction

Let C be a convex subset of the real linear space X and f:C — R a convex

functionon C. If x; € C and p; € (0,1) with 2 pi = 1, then the following well-known
i=1
form of Jensen’s discrete inequality holds:

f (2171')61') < Y pif(xi). (1.1)
=1 =1

n [2] S.S. Dragomir, J. Pecari¢ and L.E. Persson proved the following refinement
of Jensen’s inequality in the general setting of linear spaces

En: pif(xi)—f (i pm)
= i=1

> max {pif(xi) +pif () = (pi+p))f (%) } . (1.2)
iTDj

In 2006 S.S. Dragomir ([1]) proved the following result:

lrgla<xn{ } [Zq,f xJ (2‘11x1>‘| = En:pjf(xj)_f<§n:pjxj>
- = =1

>1I21?n{_} [quf f(i qm)] (1.3)
j=1
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provided f : C — R is convex on the convex subset C of the linear space X and p;,q;,
i€{1,2,...,n} are probability sequences with ¢; > 0 foreach i € {1,2,...,n}.
In particular, from (1.3) the following result is obtained:

l n

n1n<11;1<xn{p,-} l% zn:f(x;)—f (; 2&/)] > zn‘,l’jf(xj) —f (i ijj>
SIS j=1 j=1 =1

j=1
ij)] . (1.4)
j=1

In this paper some new results in connection with the inequalities (1.2)-(1.4) are
given.

S| =

1<i

> n min {p;} l% zn', f(xj) —f<
< j=1

2. Main results

Let .% be a linear set of functions defined on the interval I, I CR and A be a
linear positive functional defined on .%#. We suppose that C(I) C % and for every
X C I the characteristic function of X denoted by hx belongs to .# and for every
continuous function f, hyx - f belongs to %, too. In the following we suppose that A
is a normalized functional. This means that

Afeg) =1,

where we denote by e;, i € N the monomial function, e; : I — R,

THEOREM 2.1. Let X be a subset of I such that A(hx) > 0, and f a convex
function defined on 1. Then for every linear positive normalized functional we have:

AP = a) > A() = Al (4520, e
where a; = A(ey).
Proof. From the equality
f=rhx+ fhi-x
we get
AP = ) = ) + A~ A (A2 — pa)
FA(hy)f (Aﬁ}f; >> . 2.2)
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Let B: C(I) — R be the linear functional defined by

A(erh
Mﬁ:AUmXH%wﬂf<(lxv. 23)
A(hx)
We note that B is a linear positive functional.
We have
B(eg) =A(hj—x)+A(hx) =A(ep) =
B(el) :A(elh]_x) +A(€1hx) :A(el) =daj.
So, B is a normalized functional and B(e;) = a; .
If f is a convex function on 7, by Jensen’s inequality we obtain:
B(f) = f(a1)
or
A(erh
A(fhl—x)+A(hx)f< (1")) ~ flar) 0. 2.4
A(hx)

From (2.2) and (2.4) we get inequality (2.1). O

REMARK 2.2. Let A be the linear positive normalized functional defined by:

Alf) = jzlpiﬂxi)

n
where p; € (0,1), i=T,nand Y p;i=1.
i=1
For a given convex function f, let k and s be the natural number, k,s € {0,1,2,...,n}
for which:

max {Pif(xi) +pif(x) = (pitpj)f (M)}

pit+pj
= pafon)  pufo) — (et poy (L),
Pk +ps
Let us consider X = {x,xs}.
Then
A(hx) = pi+ ps
and
A(erhx) = xkpk + psxy. (2.5)

From (2.1) and (2.5) we get (1.2).
Let I be an interval of the real axis R and {X;}} , a partition of the interval I.
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THEOREM 2 2. Let f be a continuous convex function defined on I and p;,q; €

), 2 pi= 2 gi = 1. Then for every partition {X;}"_, of the interval I such that

i= i=1
A(hx,) >0, i=1,...,n the following inequalities hold:

1 th 1 _A(eth,-)
S (m )

i

. " Aleriy)
f“?’i lz (21" Alhx,) )] 20
z z ‘A(elhxl.)
1211 <i§:1pl A(hxi) )
mm{ } Z (gq;Ajaﬁf)’)>] . (2.7)

Proof. Let k be a natural number, k € {1,...,n} such that

&:max{&}.
9k i=1n L 4i

Inequality (2.6) is equivalent with the following inequality:
n
Pk A(fhx,) A(eihx;)
qi— —Di +f
,;( qx ) A(hx;) Z{ A(hy;)

f (2 /ii;i’?) . 2.8)

i=1

The last inequality can be written in the following form:
5 (3-2) 4251529
i—1 dr  dqi A (hXi) A (hXi)
- (Pc P A(elhx,-)) - Aleihy;)
== + i
2‘ ( qk 61z>f< A(hy;) ! g‘lp A(hx;)

Pk - A(elhxi)
>§f<2qi A ) 2.9)

i=1 Xi

Since A is a linear positive functional we have

A(fhx;,) Aleyhy,) -
A(hx,) _f< Alhx,) )20’ i=L...n. (2.10)
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From (2.10) we obtain:

Seamling el en

i=1 i

Now, inequality (2.9) follows from (2.11) and from Jensen’s inequality:

n+1 n+1
N Aif(xi) = f (2 ﬂm)
i=1 i=1

where

Pk qk Alethy) .
Do 1) b A(hy,)

elhx
)Ln-'rl pk, Xp+1 = sz X) .

Let us prove inequality (2.7).
Let s be a natural number, s € {1,2,...,n} for which we have

Ps _ tnin {p ’ }
qs i=I,n n qi
Inequality (2.7) is equivalent with the inequality:

i ps \AUhx)  ps (s Alethy)
2( ) A(hx;) +‘lsf<'21ql A(hx;) )

i=1 4

. _A(ethi)
>f<l_21pz Al) ) (2.12)
or
. _bs A(fhxi)_ (A(elhxi)>:|
i=zl<pl qsql> [A(hxi) f A(hXi)
(P A(él’%)) Ps [ <, Aleihy)
+i21<pl qsql)f AU) +qsf<i21ql Al )
o A(elhxi)
>f<i§:1pi Al ) 2.13)
We note that ;
Ps Ds
i——qi | +—=1
z=zl<p qs >+qx
and
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Jensen’s inequality leads to the inequality:

B (o 2o (450 (352

>f (Zpﬁiif"f) . (2.14)

i=1 Xi

From (2.14), and using the fact that

A(fhx) (Aleihy;)
Al (A(hx,.>>>°

we obtain inequality (2.13).
The proof of the theorem is finished. [

COROLLARY 2.3. Let (X;)!_, be a partition of the interval I and A be a linear
positive normalized functional, such that A(hy,) > 0, for every i € {1,...,n}. If q; €

(0,1), i=1,n and 2 qi = 1, then for every convex function f, f € C(I) we have:
i=1

Al) | [$ AU (3 Aleihy)
A(f)—f(al)égl?f;{Tf} 2 () ‘f@q" Alin) )]
(2.15)
AU [& ) AGR) Aleihy)
A(f)—f(a1)>i=${ ql.X } ;q" Alhy,) _f<21 A(;’XB )]

Proof. Let p; (i=1,n) be positive numbers defined by:
pi:A(hX,')7 l:17n

We note that
Ypi= (2 hx) =A(eg) = 1.
i=1
Now, the inequalities from Corollary 2.3 follow by Theorem 2.2. [J

COROLLARY 2.4. Let (X;)}_, be a partition of the interval I and A be a linear
positive normalized functional such that A(hx,) > 0 for every i € {1,2,...,n}. Then
for every convex function f the following inequalities are true:

A(f)— f(a1) < nmax{A(hx,)}

A(f) = f(a1) = nmin{A(hy;) }
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