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Abstract. There are two classes of functions called Superquadratic Functions. In some cases
these classes coincide but not always. In this paper this subject is discussed.

Our definition of a superquadratic function is: A function ϕ : [0.∞)→R is superquadratic
provided that for all x � 0 there is a constant C (x) ∈ R such that

ϕ (y) � ϕ (x)+C (x) (y− x)+ϕ (|y− x|)
for all y � 0 .

This definition was used in many papers since 2004.
On the other hand, Kominek and Troczka (2006) used W. Smajdor (1987) definition of

superquadracity, and in particular, for functions defined on R their definition is as follows:
The function ϕ : R → R is superquadratic if

ϕ (x+ y)+ϕ (x− y) � 2ϕ (x)+2ϕ (y) ,

is satisfied for all x,y ∈ R .
After discussing the differences and similarities of these definitions, we show that the class

of superquadratic functions as we defined, lead to many applications. Some of these applications
we show here.

1. Introduction

There are two classes of functions called Superquadratic Functions. In some cases
these classes coincide but not always. In this paper this subject is discussed.

A sample of papers dedicated to superquadracity, as defined in Definition 1, and
published in the recent years are listed in the references of this paper. As we show, there
are many applications of superquadracity and we encourage interested researchers to
continue the investigation of this subject.

Our definition of a superquadratic function is:

DEFINITION 1. [1] A function ϕ : [0,∞) → R is superquadratic provided that
for all x � 0 there is a constant C (x) ∈ R such that

ϕ (y) � ϕ (x)+C (x) (y− x)+ϕ (|y− x|) (1.1)

for all y � 0.
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It was proved in [1], that iff ϕ is superquadratic, the inequality

ϕ
(∫

f dμ
)

�
∫
ϕ ( f (s))−ϕ

(∣∣∣∣ f (s)−
∫

f dμ
∣∣∣∣
)

dμ (1.2)

holds for all probability measures μ and all non-negative, μ -integrable functions f .
The equivalent discrete version of (1.2) is

ϕ

(
n

∑
i=1

λixi

)
�

n

∑
i=1

λiϕ (xi)−
n

∑
i=1

λiϕ

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)

(1.3)

for xi,λi � 0, i = 1, ...,n, ∑n
i=1λi = 1, which in case n = 2 λ1,λ2 � 0, λ1 +λ2 = 1

is

ϕ (λ1x1 +λ2x2) � λ1 (ϕ (x1)−ϕ (λ2 |x1− x2|))+λ2 (ϕ (x2)−ϕ (λ1 |x1 − x2|)) ,
x1,x2 � 0. (1.4)

In [1] and in [9] it is shown that (1.4) holds for all x1,x2,λ1,λ2 � 0 such that
λ1 +λ2 = 1, if and only if ϕ is superquadratic according to Definition 1. Therefore we
may use (1.4) instead of (1.1) as the definition of superquadratic functions.

In the special case that λ1 = λ2 = 1/2, we get that a superquadratic function
satisfies

ϕ
(

x1 + x2

2

)
+ϕ

( |x1− x2|
2

)
� ϕ (x1)+ϕ (x2)

2
, x1,x2 � 0. (1.5)

If ϕ (x) = x2, the condition (1.1) reduces to identity where C (x) = 2x. Also, if ϕ (x) is
superquadratic and a,b � 0 then ϕ (x)−(ax+b) is also superquadratic . Any function
ϕ (x) satisfying −2 � ϕ (x) � −1 for all x � 0 is superquadratic.

However non negative superquadratic functions are much better behaved as we see
in the following lemma.

LEMMA 1. [1, Lemma 2.1] Let ϕ be a superquadratic function with C (x) as in
(1.1),

(i) Then ϕ (0) � 0
(ii) If ϕ (0)=ϕ ′ (0)=0 , then C (x)=ϕ ′ (x) whenever ϕ is differentiable at x>0.
(iii) If ϕ � 0, then ϕ is convex and ϕ (0) = ϕ ′ (0) = 0.

In [11] and [12] the following scale of convexity was introduced for continuously
differentiable function ϕ satisfying ϕ (0) = ϕ ′ (0) = 0 :

k1: ϕ ′ (x) convex
k2: ϕ (x)/x convex
k3: ϕ ′ (x)/x non-decreasing
k4: ϕ ′ (x) superadditive (ϕ ′ (x+ y) � ϕ ′ (x)+ϕ ′ (y))
k5: ϕ (x)/x2 non-decreasing
k6: ϕ (x)/x superadditive.
There it was proved that k1⇒k2⇒k3⇒k4⇒k5⇒k6.
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Among continuously differential functions ϕ satisfying ϕ (0) = ϕ ′ (0) = 0, it is
shown in [1, Lemma 3.1, Lemma 3.2] that the superquadratic functions fall between
k4 and k5, and the following examples [1, Example 3.3, Example 3.4] ensure that
superquadratic functions satisfying ϕ (0) = ϕ ′ (0) = 0, fall strictly between k4 and k5:

The function ϕ where ϕ (0) = 0 and

ϕ ′ (x) =
{

0, x � 1
1+(x−2)3 , x � 1

does not satisfy k4 but is superquadratic.
The function

ϕ (x) =
{(

3x− x3
)
x2, x � 1

2x2, x > 1

satisfies k5 but is not superquadratic.

2. Equivalence problem

The definition of superquadracity as stated here appeared first in 2004 in papers
[1] and [2] and since then this terminology was used by several authors in many papers
and journals.

The users of this definition were not aware that the term Superquadracity appeared
in a different context in [16] (2006) by Kominek and Troczka, who used W. Smajdor’s
[15] (1987) definition of superquadracity.

In [16] it is stated:

DEFINITION 2. Let X be a real linear space and R be the set of all reals. Then
every function ϕ : X −→ R satisfying the inequality

ϕ (x+ y)+ϕ (x− y) � 2ϕ (x)+2ϕ (y) , x,y ∈ X

is called superquadratic.

If we extend our superquadratic function according to Definition 1 to −∞< x <∞
as an even function, (1.5), which is a special case of (1.4) for λ = 1/2, is equivalent to

ϕ (x+ y)+ϕ (x− y) � 2ϕ (x)+2ϕ (y) , −∞< x,y < ∞. (2.1)

On the other hand, inequality (2.1) is the definition of superquadracity according to
[15] and [16] for the special case ϕ : R → R .

It is of interest to clarify the relations and the differences between the classes
of functions satisfying these definitions. Lately, A. Gilányi [13] raised the question
whether inequality (1.5) is equivalent to inequality (1.4) for x1,x2 � 0, in other words,
are the two definitions of superquadratic functions equivalent?

In general the answer to this question is negative, even for continuous functions, as
we show in the following first example. The second example deals with non-continuous
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functions and again we show that (1.5) and (1.4) are not equivalent. The third exam-
ple shows that an even extension of superquadratic function (satisfying (1.4) on R

+ )
satisfies (2.1) but not (1.4) on R.

The first two examples are of superquadratic functions which are non-positive on
x � 0. However as many interesting superquadratic functions (satisfying (1.4)) are non-
negative for x � 0 the following question is still unresolved: Does a non-negative func-
tion ϕ which satisfy (1.5), satisfy also (1.4) and therefore (1.1) and (1.2) too? In other
words, it is not known yet if every function ϕ : R

+ −→ R
+ which is superquadratic

according to Definition 2 is also superquadratic according to our Definition 1.

EXAMPLE 1. Let f : R −→ R
− be

f (x) =
{

2 |x|−3, −1 � x � 1
−1, |x| > 1

.

This is an example of an even continuous function f : R−→R
− that satisfies inequality

(2.1) and therefore is superquadratic according to Definition 2 but f does not satisfy
the inequality

λ f (a)+ (1−λ ) f (b) � f (λa+(1−λ )b)+λ f ((1−λ )(b−a))+(1−λ ) f (λ (b−a))
(2.2)

for all 0 � λ � 1, a , b , b− a > 0, and therefore is not superquadratic according to
Definition 1.

Proof. A. First we show that f does not satisfy (2.2) (which is a consequence of
(1.4)) for all 0 � λ � 1, a,b,b−a � 0:

For a = 0, b , λb , (1−λ )b > 1 we get that for (2.2) to be satisfied, the inequality

λ (−3)+ (1−λ )(−1) � (−1)+λ (−1)+ (1−λ )(−1) = −2

needs to hold. But it holds only for λ � 1
2 . Therefore (2.2) is not satisfied for every

0 � λ � 1, and f is not superquadratic according to Definition 1.
B. In order to show that f satisfies (2.1) for all x,y ∈ R

+, x � y. We choose
a = x− y, b = x+ y. It is sufficient to check the following cases for a,b, b−a

2 , b+a
2 � 0:

(i) a, b, b−a
2 , b+a

2 � 1
(ii) a � 1, b, b−a

2 , b+a
2 � 1

(iii) b−a
2 � 1, a, b, b+a

2 � 1
(iv) a, b−a

2 � 1, b, b+a
2 � 1

(v) a, b−a
2 , b+a

2 � 1, b � 1
(vi) a, b, b−a

2 , b+a
2 � 1.

By simple calculations that we omit here we get that indeed f satisfies (2.1) –
Definition 2 of superquadracity.

This is an example of a continuous function that satisfies only (2.1) but not (2.2).
Therefore it is not superquadratic according to Definition 1, but it is superquadratic
according to Definition 2.
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EXAMPLE 2. Let g : R −→ R
− be

g(x) =
{−3, x = 0
−1, x �= 0

.

This is an example of a noncontinuous function satisfying (2.1) and therefore Definition
2 but not (2.2) and therefore not Definition 1. The proof is trivial.

As said before, in [16] superquadracity is defined by (2.1). There it is proved that
if a function f : X → R, where X is a real linear space, satisfies (2.1), and if f (0) = 0
then f is even.

The following Example 3 shows that a superquadratic function that satisfies (1.4)
on R

+, when extended as an even function on R satisfies (2.1) but not necessarily (1.4)
on R :

EXAMPLE 3. Let f (x)= |x|3 , −∞< x<∞. This is a non-negative superquadratic
function for x � 0 according to (1.4) and according to the fact that it satisfies k3 for
x � 0 (which guaranties its superquadracity). It also satisfies (2.1) for every x and y in
R .

But if we choose λ = 1
3 , x = 1

2 , y = − 1
3 we see that

λ f (x)+(1−λ ) f (y) � f (λx+(1−λ )y)+λ f ((1−λ ) |x− y|)+(1−λ ) f (λ |x− y|)
(2.3)

does not hold for f (x) = |x|3 .
This is an example of an even extension of a superquadratic function that satisfies

(2.1) but not (2.3) which is an extension of (1.4) on the whole real line.

For superquadratic functions according to Definition 2, Z. Kominek and K. Troczka
proved in [16, Theorem 8], the following theorem:

THEOREM 1. Let f : [0,∞) → [0,∞) be a non-decreasing and convex function
satisfying f (0) = 0. If ϕ : R → [0,∞) satisfies (2.1) then f ◦ϕ satisfies (2.1) too.

When we replace everywhere (2.1) with (1.4) in this theorem, we do not succeed in
proving or disproving an analogous theorem, except for a subclass of our superquadratic
functions as shown here.

As mentioned before, acording to [1], superquadratic functions ϕ satisfying ϕ (0)
= ϕ ′ (0) = 0 fall strictly between the class k4 and the class k5.

These properties of superquadratic functions lead to the next partial answer about
superquadratic functions ϕ for which f ◦ϕ is superquadratic too:

THEOREM 2. Let ϕ (x) � 0 be of class k3 and ϕ”(x) � 0 on x � 0 . If f (x) � 0 ,
f ′ (x) � 0 , f ”(x) � 0 on x � 0 , and f (0) = 0 then ψ = f ◦ϕ is of class k3 too.

Proof. Using all the conditions of the theorem and taking into consideration that
ϕ ′ (x) � 0 and ϕ (0) = 0 as a result from Lemma 2.1 [1], we get that (ψ ′(x)/x)′ � 0
and therefore ψ is of class k3 too.
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COROLLARY 1. Under the same conditions as of Theorem 2, ψ = f ◦ϕ is su-
perquadratic according to our Definition 1. This follows as a result of the scale of
convexity: As ϕ satisfies k3 it is also superquadratic and as we showed in Theorem 2
that ψ is of class k3 therefore it is also superquadratric according to our Definition 1.

THEOREM 3. Let ϕ (x) � 0 be superquadratic and continuously differentiable.
If f (x) � 0 , f ′ (x) � 0 , on x � 0 , and f (0) = 0 then ψ = f ◦ϕ is of class k5.

Proof. The proof is by showing that
(
ψ/x2

)′ � 0 under the conditions of the the-
orem and by using Lemma 2.1 [1].

Another theorem proved in [16] is Theorem 9 there: Let ϕ : R → R
+ satisfy (2.1)

and assume that x → ϕ ◦√x is a convex function. Then there exists a non-decreasing
and convex function f : R

+ → R
+ fulfilling the condition f (0) = 0 such that ϕ (x) =

f
(
x2
)
, x ∈ R. Conversely, if f : R

+ → R
+ is a non-decreasing and convex function

satisfying f (0) = 0, then the function ϕ : R → R
+ given by ϕ (x) = f

(
x2
)
, x ∈ R

satisfies (2.1).
However it is easy to see that in order for ϕ (x) = f

(
x2
)
, to be satisfied, when f

is convex and ϕ : R → R
+ is superquadratic according to Definition 1 and therefore

also convex, ϕ (x) has to be of class k3. But we have already shown in the introduction
a function which is superquadratic but not of class k3. Therefore, not every positive
superquadratic function can be represented by ϕ (x) = f

(
x2
)
, where f (0) = 0.

Another partial result obtained by simple computation is the following:
Let ϕ (x) � 0 be superquadratic and continuously differentiable according to Def-

inition 1. Then (ϕ (x))n is superquadratic too when n � 3/2.

As we have already shown, there are continuous functions that satisfy (2.1) but
not (1.4). However we could not prove or disprove yet, a theorem that shows that all
non-negative functions ϕ , ϕ (0) = 0 which satisfy (2.1) on R, satisfy (1.4) on R

+ too.
Interested researchers are encouraged to continue investigating this subject.

3. A selection of applications

Based on the properties shown above, we present in the sequel few of the many
applications obtained in the last several years for superquadratic functions as defined
in (1.4). The results are either analogies or refinements of results related to convex
functions.

3.1. Inequalities for averages

In [2] it was proved: If f is superquadratic and non-negative, then for n � 3 :

1
n

n

∑
r=1

f

(
r

n+1

)
− 1

n−1

n−1

∑
r=1

f
( r

n

)
� f

(
1
3n

)
+ f

(
16

81(n+3)

)
,
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and for n � 2 :

1
n

n−1

∑
r=0

f

(
r

n−1

)
− 1

n+1

n

∑
r=1

f
( r

n

)
� f

(
1
3n

)
+ f

(
16
81n

)
.

There, many more results concerning generalized versions of averages were obtained
for a superquadratic function.

3.2. Fejer and Hermite-Hadamard type inequalities

In [4] Fejer and Hermite-Hadamard type inequalities for superquadratic functions
were discussed.

Here are two results presented there: Let f be a superquadratic integrable function
on [a,b] and let p be non-negative integrable and symmetric about x = a+b

2 , 0 � a < b.
Let P(t) be

P(t) =
∫ b

a
f

(
tx+(1− t)

a+b
2

)
p(x)dx, t ∈ [0,1] ,

and let Q(t) be

Q(t) =
∫ b

a

1
2
[ f
(

1+ t
2

a+
1− t

2
x

)
p

(
x+a

2

)

+ f

(
1+ t

2
b+

1− t
2

x

)
p

(
x+b

2

)
]dx, t ∈ [0,1] ,

then for 0 � s � t � 1, t > 0

P(s) � P(t)−
∫ b

a

t + s
2t

f

(
(t− s)

(∣∣∣∣a+b
2

− x

∣∣∣∣
))

p(x)dx

−
∫ b

a

t− s
2t

f

(
(t + s)

(∣∣∣∣a+b
2

− x

∣∣∣∣
))

p(x)dx.

And, if 0 � s � t � 1, we get that

Q(s)−Q(t) � −
∫ b

a

(
1− t+s

2

) |2x−a−b|+ t+s
2 (b−a)

(1− t) |2x−a−b|+ t (b−a)

× f

(
t− s
2

(b−a−|a+b−2x|)
)

p(x)dx

−
∫ b

a

t−s
2 (b−a−|a+b−2x|)

(1− t)|2x−a−b|+ t (b−a)

× f

((
1− t + s

2

)
|2x−a−b|+ t + s

2
(b−a)

)
p(x)dx.
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3.3. Refinements of some classical Inequalities

In [10] the authors obtained a sequence of inequalities for superquadratic func-
tions. Especially, when the superquadratic function is convex too, then refinements of
classical known results are obtained.

Here we demonstrate two of their results:
In Theorem 1 there, a converse of Jensen’s inequality for superquadratic functions

is proved: Let (Ω,A,μ) be a measure space with 0 < μ (Ω) < ∞ and let ϕ be a su-
perquadratic function. If f : Ω ⊆ [m,μ ] → [0,∞) is such that f ,ϕ ◦ f ∈ L1 (μ) , then
we have

1
μ (Ω)

∫
r
(ϕ ◦ f )dμ +Δc � M− f

M−m
ϕ (m)+

f −m
M−m

ϕ (μ)

where f = 1
μ(Ω)

∫
Ω f dμ and

Δc =
1

μ (Ω)
1

M−m

∫
Ω

[(M− f )ϕ ( f −m)+ ( f −m)ϕ (M− f )]dμ .

In Theorem 4 there, the integral version of the Reversal of Jensen’s inequality
is proved : Let (Ω,A,μ) be a measure space with 0 < μ (Ω) < ∞ and let ϕ be a
superquadratic function. If p,g : Ω → [0,∞) are functions and a,u ∈ [0,∞) are real
numbers such that

p, pg, pϕ (g) , pϕ
(∣∣∣∣
∫
Ω pgdμ∫
Ω pdμ

−g

∣∣∣∣
)
∈ L1 (μ) , 0 <

∫
Ω

pdμ < u

and ua− ∫Ω pgdμ � 0, then

ϕ
(

ua− ∫Ω pgdμ
u− ∫Ω pdμ

)
� uϕ (a)− ∫Ω pϕ (g)dμ

u− ∫Ω pdμ
+ΔRJ,

where

ΔRJ =
1

u− ∫Ω pdμ

[∫
Ω

pϕ
(∣∣∣∣
∫
Ω pgdμ∫
Ω pdμ

−g

∣∣∣∣
)

dμ+
(∫

Ω
pdμ

)
ϕ
(∣∣∣∣
∫
Ω pgdμ∫
Ω pdμ

−a

∣∣∣∣
)

+
(

u−
∫
Ω

pdμ
)
ϕ
( ∫

Ω pdμ
u− ∫Ω pdμ

∣∣∣∣
∫
Ω pgdμ∫
Ω pdμ

−a

∣∣∣∣
)]

.

3.4. Jensen-Steffensen’s and Slater-Pečarić inequalities

In [6] the authors dealt with refinements of Jensen-Steffensen’s inequality and
Slater-Pečarić inequality for superquadratic functions. Two of the results are as follows:

Let ϕ : [0,∞) → R be differentiable superquadratic and nonnegative, let ζ be a
nonnegative monotonic n -tuple in R

n, and ρ a real n -tuple satisfying Steffensen’s
coefficients, that is

0 � Pj � Pn , j = 1, ...,n , Pn > 0 , (3.1)

Pj =
j

∑
i=1

ρi , Pj =
n

∑
i= j

ρi , j = 1, ...,n .
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Let ζ be defined by

ζ =
1
Pn

n

∑
i=1

ρiζi . (3.2)

Then

n

∑
i=1

ρiϕ (ζi)−Pnϕ
(
ζ
)

�
k−1

∑
j=1

Pjϕ
(
ζ j+1− ζ j

)
+Pkϕ

(
ζ − ζk

)

+Pk+1ϕ
(
ζk+1− ζ

)
+

n

∑
j=k+2

Pjϕ
(
ζ j − ζ j−1

)

�
(

k

∑
i=1

Pi +
n

∑
i=k+1

Pi

)
ϕ

⎛
⎝ ∑n

i=1ρi

(∣∣∣ζi− ζ
∣∣∣)

∑k
i=1 Pi +∑n

i=k+1 Pi

⎞
⎠

� ((n−1)Pn)ϕ

⎛
⎝∑n

i=1ρi

(∣∣∣ζi − ζ
∣∣∣)

(n−1)Pn

⎞
⎠ ,

where k ∈ {1, ...,n−1} satisfies ζk � ζ � ζk+1.

If also ∑n
i=1ρiϕ ′ (ζi) �= 0, and we define M = ∑n

i=1 ρiζiϕ ′(ζi)
∑n

i=1 ρiϕ ′(ζi)
, then, for s satisfying

ζs � M � ζs+1, s+1 � n,

n

∑
i=1

ρiϕ (ζi) � Pnϕ (M)−
(

s−1

∑
j=1

Pjϕ
(
ζ j+1− ζ j

)
+Psϕ (M− ζs)

+Ps+1ρ (ζs+1−M)+
n

∑
j=s+2

Pjϕ
(
ζ j − ζ j−1

))

� Pnϕ (M)−
(

s

∑
j=1

Pj +
n

∑
j=s+1

Pj

)
ϕ

(
∑n

i=1ρi |ζi−M|
∑s

j=1 Pj +∑n
j=s+1 Pj

)

� Pnϕ (M)− ((n−1)Pn)ϕ
(
∑n

i=1ρi |ζi−M|
(n−1)Pn

)
.

3.5. Normalized Jensen functional

In [7] the authors consider the normalized Jensen functional

Jn ( f ,x,p) =
n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
,

where ∑n
i=1 pi = 1, f : I −→ R, and I is an interval in R.

We quote here only one of the theorems there: Let x = (x1, ...,xn) ∈ In, p =
(p1, ..., pn) , q = (q1, ...,qn) be nonnegative n-tuples satisfying ∑n

i=1 pi = 1, ∑n
i=1 qi =
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1, qi > 0, i = 1, ...,n . Let

m = min
1�i�n

(
pi

qi

)
, M = max

1�i�n

(
pi

qi

)

If I is [0,a) or [0,∞) and f is a superquadratic function on I , then

Jn ( f ,x,p)−mJn ( f ,x,q) � mf

(∣∣∣∣∣
n

∑
i=1

(qi− pi)xi

∣∣∣∣∣
)

+
n

∑
i=1

(pi −mqi) f

(∣∣∣∣∣xi −
n

∑
j=1

p jx j

∣∣∣∣∣
)

and

Jn ( f ,x,p)−MJn ( f ,x,q) �−
n

∑
i=1

(Mqi − pi) f

(∣∣∣∣∣xi −
n

∑
j=1

q jx j

∣∣∣∣∣
)
− f

(∣∣∣∣∣
n

∑
i=1

(pi−qi)xi

∣∣∣∣∣
)

.

3.6. Refinement of Hardy’s inequality

I finish this paper with a very interesting applications of the properties of su-
perquadratic functions dealt by Oguntuase and Persson in [14]. They considered several
Hardy’s inequalities, for instance:

∫ ∞

0
x−k
(∫ x

0
f (t)dt

)p

dx �
(

p
|k−1|

)p∫ ∞

0
xp−k f p (x)dx, k > 1, p � 1.

One of their refinements is as follows: Let p > 1, k > 1, 0 < b � ∞, and let the
function f be locally integrable on (0,b) such that 0 <

∫ b
0 xp−k f p (x)dx <∞.

(i) If p � 2 then,

∫ b

0
x−k
(∫ x

0
f (t)dt

)p

dx+
k−1

p

∫ b

0

∫ b

t

∣∣∣∣∣ p
k−1

( t
x

)1− k−1
p

f (t)− 1
x

∫ x

0
f (t)dt

∣∣∣∣∣
p

×xp−k− k−1
p dxt

k−1
p −1dt

�
(

p
k−1

)p∫ b

0

(
1−
(x

b

) k−1
p
)

xp−k f p (x)dx.

(ii) If 1 < p � 2, then the inequality holds in the reversed direction.
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