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Abstract. Some recent results on a general summability method, the so-called θ -summability,
are summarized for one-dimensional Fourier series. Natural choices of θ are investigated, i.e.,
if θ is in Wiener amalgam spaces, Feichtinger’s algebra or modulation spaces. Sufficient and
necessary conditions are given for the uniform and L1 norm and a.e. convergence of the θ -
means σθ

n f to the function f . The maximal operator of the θ -means is investigated and it is
proved that it is bounded on Lp spaces and on Hardy spaces.

1. Introduction

It was proved by Fejér [7] that the (C,1) or Fejér means of the one-dimensional
Fourier series of a continuous function converge uniformly to the function. The same
problem for integrable functions was investigated by Lebesgue [10]. He proved that for
every integrable function f ,

1
n

n−1

∑
k=0

sk f (x) → f (x) as n → ∞

at each Lebesgue point of f , where sk f denotes the k th partial sum of the Fourier
series of f . Almost every point is a Lebesgue point of f .

In this paper we consider a more general method of summation, the so called θ -
summation, which is generated by a single function θ . This method is intensively
studied in the literature (see e.g. Butzer and Nessel [2], Trigub and Belinsky [14] and
Feichtinger and Weisz [4, 5, 16] and the references therein). A natural choice of θ is
a function from the Wiener algebra W (C, �1)(R) . All concrete summability methods
investigated in the literature satisfy this condition.

We shall investigate some not so standard function spaces in this topic, but known
from other parts of analysis, for example Wiener amalgam spaces, Feichtinger’s algebra
M1(R) , modulation spaces, Hardy and Herz spaces. Feichtinger’s algebra and modu-
lation spaces are very intensively investigated in Gabor analysis (see e.g. Feichtinger
and Zimmermann [6] and Gröchenig [8]). M1(R) is the minimal (non-trivial) Banach
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space which is isometrically invariant under translation, modulation and Fourier trans-
form. Hardy spaces extend in a natural way the Lp spaces. Our investigations were
made in two directions. On the one hand we give some conditions on the summability
function θ , such that the θ -means σθ

n f converge to f a.e. and in Lp norm, and such
that the maximal operator σθ∗ of the θ -means is bounded on the Lp spaces. On the
other hand, for a fixed θ we extend these convergence and boundedness results to the
Hardy spaces.

In Sections 2 and 3 we introduce the function spaces and the basic definitions
about summability. In Section 4 we deal with norm convergence of the θ -means σθ

n f
of the Fourier series of f . We show that σθ

n f → f uniformly (resp. at each point)
for all f ∈ C(T) if and only if σθ

n f → f in L1 norm for all f ∈ L1(T) if and only if
θ̂ ∈ L1(R) . If B is a homogeneous Banach space on T and θ̂ ∈ L1(R) then σθ

n f → f
in B norm for all f ∈ B . If θ is in the Feichtinger’s algebra M1(R) or in the Sobolev-
type space V 2

1 (R) , then these convergence results hold.
In Section 5 the a.e. convergence of the θ -means is considered. If θ̂ is in the Herz

space K1(R) then the maximal operator σθ∗ f of the θ -means of f can be estimated
by the Hardy-Littlewood maximal function M f . Since M is of weak type (1,1) we
obtain σθ

n f → f a.e. as n → ∞ for all f ∈ L1(T) . The set of convergence is also
characterized and the condition θ̂ ∈ K1(R) is sufficient and necessary. In other words,
the convergence holds at every Lebesgue point of f ∈ L1(T) if and only if θ̂ ∈ K1(R) .

In Section 6 we give some sufficient conditions for θ such that θ̂ is in the Herz
space. More exactly, if θ is in a weighted modulation space or in the Sobolev-type
space then θ̂ ∈ K1(R) .

In Section 7 our results are extended to Hardy spaces. Under some conditions
on θ the boundedness of σθ∗ is proved from the Hardy space Hp(T) to Lp(T) , when
(1 >)p0 < p � 1. Moreover, σθ

n f converge to f in Hp norm. In the last section some
well known summability methods are listed as special cases of the θ -summability.

Most of the proofs of the results of this paper can be found in Feichtinger and
Weisz [4, 5, 17]. This paper was the base of my talk given at the conference “Mathe-
matical Inequalities and Applications”, Trogir - Split, Croatia, 2008.

2. Wiener amalgams and Feichtinger’s algebra

We briefly write Lp instead of Lp(T,λ ) space equipped with the norm (or quasi-
norm) ‖ f‖p := (

∫
T
| f |p dλ )1/p (0 < p �∞) , where T is the torus and λ is the Lebesgue

measure. We use the notation |I| for the Lebesgue measure of the set I .
The weak Lp space, Lp,∞(T) (0 < p < ∞) consists of all measurable functions f

for which

‖ f‖Lp,∞ := sup
ρ>0

ρλ (| f | > ρ)1/p < ∞.

Note that Lp,∞(T) is a quasi-normed space (see Bergh and Löfström [1]). It is easy to
see that for each 0 < p < ∞ , Lp(T) ⊂ Lp,∞(T) and ‖ · ‖Lp,∞ � ‖ · ‖p .

A measurable function f belongs to the Wiener amalgam space W (Lp, �
vs
q )(R)
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(1 � p,q � ∞) if

‖ f‖W (Lp,�
vs
q ) :=

(
∑
k∈Z

‖ f (·+ k)‖q
Lp[0,1)vs(k)q

)1/q
< ∞

with the obvious modification for q = ∞ , where the weight function vs is defined by
vs(ω) := (1+ |ω |)s (ω ∈ R) . If s = 0 then we write simply W (Lp, �q)(R) . The closed
subspace of W (L∞, �q)(R) containing continuous functions is denoted by W (C, �q)(R)
(1 � q � ∞) . The space W (C, �1)(R) is called Wiener algebra. It is used quite often in
Gabor analysis, because it provides a convenient and general class of windows. It plays
an important rule in summability theory, too (see Feichtinger and Weisz [4, 5]).

A Banach space B consisting of Lebesgue measurable functions on T is called a
homogeneous Banach space, if

(a) for all f ∈ B and x ∈ T , Tx f ∈ B and ‖Tx f‖B = ‖ f‖B ,

(b) the function x �→ Tx f from T to B is continuous for all f ∈ B ,

(c) ‖ f‖1 � C‖ f‖B ( f ∈ B).

For an introduction to homogeneous Banach spaces see Katznelson [9].
The Fourier transform and the short-time Fourier transform (STFT) with respect

to a window function g are defined by

f̂ (ω) :=
∫

R

f (t)e−2π ıωt dt, Sg f (x,ω) :=
∫

R

f (t)g(t − x)e−2π ıωt dt,

(x,ω ∈ R) . Let g0(x) := e−π |x|2 , vs(x,ω) := (1 + |ω |)s . The modulation spaces
Mvs

1 (R) consists of all f ∈ L2(R) functions for which

‖ f‖Mvs
1

:= ‖Sg0 f · vs‖L1(R2) < ∞.

If s = 0 then M1(R) is called Feichtinger’s algebra. Any other non-zero Schwartz
function defines the same space and an equivalent norm. It is known that M1(R) is iso-
metrically invariant under translation, modulation and Fourier transform. Furthermore,
the embedding M1(R) ↪→ W (C, �1)(R) is dense and continuous (see Feichtinger and
Zimmermann [6] and Gröchenig [8]).

3. θ -summability of Fourier series

The θ -summation was considered in a great number of papers and books, such
as Butzer and Nessel [2], Trigub and Belinsky [14], Natanson and Zuk [12] and Fe-
ichtinger and Weisz [4, 5, 15, 16]. In these investigations usually it was supposed that
θ ∈ L1(R) is an even continuous function satisfying

∞

∑
k=−∞

∣∣∣θ( k
n+1

)∣∣∣ < ∞, (n ∈ N). (1)
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Now we omit the condition that θ is even and, on the other hand, we require a
little bit more on θ , to be more precise we assume that the function θ is from the
Wiener algebra W (C, �1)(R) . We have seen in Feichtinger and Weisz [4, 5] that this is
a natural choice of θ and all summability methods considered in Butzer and Nessel [2]
and Weisz [16] satisfy this condition. It is easy to see that

∞

∑
k=−∞

∣∣∣θ( k
n+1

)∣∣∣ � ∑
l∈Z

(n+1) sup
x∈[0,1)

|θ (x+ l)|= (n+1)‖θ‖W(C,�1) < ∞, (2)

which shows (1).
The n th partial sum of a distribution f over T is denoted by

sn f (x) :=
n

∑
k=−n

f̂ (k)e2π ıkx,

where f̂ (k) :=
∫
T

f (t)e−2π ıkt dt (k ∈Z) are the Fourier coefficients. One of the deepest
results in harmonic analysis (see Carleson [3]) says that for all f ∈ Lp(T) (1 < p <∞)

sn f → f a.e. and in Lp -norm as n → ∞

and
‖s∗ f‖p � Cp‖ f‖p where s∗ f := sup

n∈N

|sn f |.

These results are not true for p = 1. However, considering a suitable summability
method, we can extend the results. The Fejér means are given with

σn f (x) :=
1

n+1

n

∑
k=0

sk f (x) =
n

∑
k=−n

(
1− |k|

n+1

)
f̂ (k)e2π ıkx.

We generalize the Fejér means and introduce the θ -means of a distribution f by

σθ
n f (x) :=

∞

∑
k=−∞

θ
( −k

n+1

)
f̂ (k)e2π ıkx =

∫
T

f (x− t)Kθ
n (t)dt,

where θ ∈W (C, �1)(R) is a fixed function and the θ -kernels Kθ
n are given by

Kθ
n (t) =

∞

∑
k=−∞

θ
( −k

n+1

)
e2π ıkt .

This function is well defined and integrable because of (2). If θ (x) := (1−|x|)∨0 then
we get back the Fejér means. Another well known summability method is the Riesz
method with θ (x) := (1−|x|γ)α ∨0 (0 < α � 1 � γ) .
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4. Norm convergence of θ -means

In this section we present some results about the norm convergence of σθ
n f .

THEOREM 1. If θ ∈W (C, �1)(R) and θ (0) = 1 then σθ
n f → f in L2(T) norm

for all f ∈ L2(T) as n → ∞ .

If the Fourier transform of θ is integrable then the θ -means can be written as a
singular integral of f and the Fourier transform of θ in the following way.

THEOREM 2. If θ ∈W (C, �1)(R) and θ̂ ∈ L1(R) then

σθ
n f (x) = (n+1)

∫
R

f (x− t)θ̂
(
(n+1)t

)
dt

for all x ∈ T , n ∈ N and f ∈ L1(T) .

For the uniform and L1 norm convergence of the θ -means a sufficient and neces-
sary condition can be given.

THEOREM 3. If θ ∈W (C, �1)(R) and θ (0) = 1 then the following conditions are
equivalent:

(i) θ̂ ∈ L1(R) ,

(ii) σθ
n f → f uniformly for all f ∈C(T) as n → ∞ ,

(iii) σθ
n f (x) → f (x) for all x ∈ T and f ∈C(T) as n → ∞ ,

(iv) σθ
n f → f in L1(T) norm for all f ∈ L1(T) as n → ∞ .

One part of the preceding result is generalized for homogeneous Banach spaces.

THEOREM 4. Assume that B is a homogeneous Banach space on T . If θ ∈
W (C, �1)(R) , θ̂ ∈ L1(R) and θ (0) = 1 then σθ

n f → f in B norm for all f ∈ B as
n → ∞ .

Note that Lp(T) (1 � p < ∞) , C(T) , Lorentz spaces Lp,q(T) (1 < p < ∞,1 �
q < ∞) and Hardy space H1(T) are all homogeneous Banach spaces.

Since θ ∈ M1(R) implies θ ∈ W (C, �1)(R) and θ̂ ∈ M1(R) ⊂ L1(R) , the next
corollary follows from Theorems 3 and 4.

COROLLARY 1. If θ ∈ M1(R) and θ (0) = 1 then

(i) σθ
n f → f uniformly for all f ∈C(T) as n → ∞ ,

(ii) σθ
n f → f in L1(T) norm for all f ∈ L1(T) as n → ∞ ,

(iii) σθ
n f → f in B norm for all f ∈ B as n→∞ if B is a homogeneous Banach

space.
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COROLLARY 2. If θ ∈C(R) has compact support and θ (0) = 1 then the follow-
ing conditions are equivalent:

(i) θ ∈ M1(R) ,

(ii) σθ
n f → f uniformly for all f ∈C(T) as n → ∞ ,

(iii) σθ
n f (x) → f (x) for all x ∈ T and f ∈C(T) as n → ∞ ,

(iv) σθ
n f → f in L1(T) norm for all f ∈ L1(T) as n → ∞ .

Next we give a sufficient result for θ to be in M1(R) . A function θ is in the
Sobolev-type space Vk

1 (R) , if there are numbers −∞= a0 < a1 < .. . < an < an+1 =∞
such that n = n(θ ) is depending on θ and

θ ∈Ck−2(R), θ ∈Ck(ai,ai+1), θ ( j) ∈ L1(R)

for all i = 0, . . . ,n and j = 0, . . . ,k . Here Ck denotes the set of k -times continuously
differentiable functions. The norm of this space is introduced by

‖θ‖Vk
1

:=
k

∑
j=0

‖θ ( j)‖1 +
n

∑
i=1

|θ (k−1)(ai +0)−θ (k−1)(ai−0)|,

where θ (k−1)(ai ± 0) denote the right and left limits of θ (k−1) . It is easy to see that
these limits do exist and are finite.

THEOREM 5. If θ ∈V 2
1 (R) then θ ∈ M1(R) ,

‖θ‖M1 � ‖θ‖V2
1

( f ∈V 2
1 (R))

and Corollary 1 holds.

5. A.e. convergence of θ -means

First we define the Hardy-Littlewood maximal function by

M f (x) := sup
x∈I

1
|I|

∫
I
| f |dλ ,

where the supremum is taken over all intervals. It is known (see Stein [13] or Weisz
[16]) that the maximal function M is of weak type (1,1) and bounded on Lp(T) (1 <
p � ∞) , i.e.,

‖M f‖L1,∞ = sup
ρ>0

ρλ (M f > ρ) � C‖ f‖1, ( f ∈ L1(T)) (3)

and, for all 1 < p � ∞

‖M f‖p � Cp‖ f‖p, ( f ∈ Lp(T),1 < p � ∞). (4)
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Next we introduce the special Herz spaces Kp(R) with the norm

‖ f‖Kp :=
( ∞

∑
k=−∞

2k‖ f1Pk‖p
∞

)1/p
< ∞ (0 < p � ∞),

where Pk := (−2k,2k)\ (−2k−1,2k−1) (k ∈ Z) . Of course K1(R) ⊂ L1(R) , since

‖ f‖1 =
∞

∑
k=−∞

‖ f1Pk‖1 �
∞

∑
k=−∞

2k‖ f1Pk‖∞ = ‖ f‖K1 .

In the next theorem we give an equivalent norm on the Herz spaces.

THEOREM 6. For θ ∈ L1(R) let η(x) := sup|t|�|x| |θ̂ (t)| . Then θ̂ ∈ Kp(R) if and
only if η ∈ Lp(R) and

C−1
p ‖η‖p � ‖θ̂‖Kp � Cp‖η‖p (0 < p < ∞).

To prove pointwise convergence of the θ -means we will investigate the maximal
operator σθ∗ given by

σθ
∗ f := sup

n∈N

|σθ
n f |.

It is easy to see that if θ̂ ∈ L1(R) then

‖σθ
∗ f‖∞ � ‖θ̂‖1‖ f‖∞, ( f ∈ L∞(T)).

THEOREM 7. If θ ∈W (C, �1)(R) and θ̂ ∈ K1(R) then

σθ
∗ f (x) � C‖θ̂‖K1M f (x) a.e.

The inequalities in (3) and (4) imply

THEOREM 8. If θ ∈W (C, �1)(R) and θ̂ ∈ K1(R) then

‖σθ
∗ f‖L1,∞ � C‖θ̂‖K1‖ f‖1 ( f ∈ L1(T)).

Moreover, for every 1 < p � ∞ ,

‖σθ
∗ f‖p � Cp‖θ̂‖K1‖ f‖p ( f ∈ Lp(T)).

The next result follows from the usual density argument due to Marcinkiewicz and
Zygmund [11].

COROLLARY 3. If θ ∈W (C, �1)(R) , θ (0) = 1 , θ̂ ∈ K1(R) and f ∈ L1(T) then

lim
n→∞

σθ
n f = f a.e.
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We will characterize the points of convergence. To this end we generalize the
concept of Lebesgue points. Lebesgue differentiation theorem says that

lim
h→0

1
h

∫ h

0
f (x+u)du = f (x)

for a.e. x∈T , where f ∈ L1(T) . A point x∈T is called a Lebesgue point of f ∈ L1(T)
if

lim
h→0

1
h

∫ h

0
| f (x+u)− f (x)|du = 0.

It is known that almost every point is a Lebesgue point of f ∈ L1(T) . We can prove
the next sufficient and necessary condition for the convergence of the θ -means at every
Lebesgue point.

THEOREM 9. Suppose that θ ∈W (C, �1)(R) , θ (0) = 1 and θ̂ ∈ L1(R) . Then

lim
n→∞

σθ
n f (x) = f (x)

for all Lebesgue points of f ∈ L1(T) if and only if θ̂ ∈ K1(R) .

If f is continuous at a point x then x is a Lebesgue point of f .

COROLLARY 4. Let θ ∈W (C, �1)(R) , θ (0) = 1 and θ̂ ∈ K1(R) . If f ∈ L1(T)
is continuous at a point x then

lim
n→∞

σθ
n f (x) = f (x).

6. Modulation and Sobolev-type spaces

In this section we present some sufficient conditions for θ such that θ̂ ∈ K1(R) .

THEOREM 10. If θ ∈ Mv1
1 (R) then θ̂ ∈ K1(R) and

‖θ̂‖K1 � C‖θ‖M
v1
1

( f ∈ Mv1
1 (R)).

The next result is an easy consequence of Theorems 8 and 9.

THEOREM 11. If θ ∈ Mv1
1 (R) then

lim
n→∞

σθ
n f (x) = f (x)

for all Lebesgue points of f ∈ L1(T) . Moreover,

sup
ρ>0

ρ λ (σθ
∗ f > ρ) � C‖θ‖M

v1
1
‖ f‖1 ( f ∈ L1(T)),

and, for every 1 < p � ∞ ,

‖σθ
∗ f‖p � Cp‖θ‖M

v1
1
‖ f‖p ( f ∈ Lp(T)).
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THEOREM 12. If θ ∈Vk
1 (R) for some k > 2 then θ ∈ Mv1

1 (R) ,

‖θ‖M
v1
1

� C‖θ‖Vk
1

( f ∈Vk
1 (R))

and Theorem 11 holds.

This result is not true for k = 2, however, we have

THEOREM 13. If θ ∈V 2
1 (R) then θ̂ ∈ K1(R) and

lim
n→∞

σθ
n f (x) = f (x)

for all Lebesgue points of f ∈ L1(T) . Moreover,

sup
ρ>0

ρ λ (σθ
∗ f > ρ) � C‖θ̂‖K1‖ f‖1 ( f ∈ L1(T)),

and, for every 1 < p � ∞ ,

‖σθ
∗ f‖p � Cp‖θ̂‖K1‖ f‖p ( f ∈ Lp(T)).

7. Summability and Hardy spaces

If we suppose a little bit more on θ then we can obtain the extensions of the
previous results to Hardy spaces. A distribution f is in the Hardy space Hp(T) if

‖ f‖Hp := ‖sup
t>0

| f ∗Pt|‖p < ∞,

where ∗ denotes the convolution and

Pt(x) := ∑
m∈Z

e−t|m|e2π ımx =
1− r2

1+ r2−2rcos(2πx)

is the usual Poisson kernel. It is known that Hp(T) is equivalent to Lp(T) if 1 < p <∞
and H1(T) ⊂ L1(T) (see e.g. Stein [13] or Weisz [16]).

To prove the boundedness of σθ∗ on Hardy spaces we will estimate θ̂ by an even
non-increasing function η , i.e.

|θ̂ | � η ,
η is even and non-increasing on R+.

}
(5)

Of course the smallest such function is defined by η(x) := sup|t|�|x| |θ̂ (t)| .

THEOREM 14. Suppose that θ ∈W (C, �v1
1 )(R) and η ∈ L1(R+ \ (0,1/4)) satis-

fies (5). If the function s �→ sη(s) is non-increasing on R+ then

‖σθ
∗ f‖1 � C‖ f‖H1 ( f ∈ H1(T)).
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Note that η ∈ Lp(R+ \ (0,1/4)) implies θ̂ ∈ Kp(R) . Theorem 11 says that if θ ∈
Mv1

1 (R)⊂W (C, �1)(R) then the maximal θ -operator is of weak type (1,1) and of type
(p, p) (1 < p �∞) . As we will see in the next theorem, if θ ∈W (C, �v1

1 )(R)∩Mvs
1 (R)

for some s > 1, then it is bounded from H1(T) to L1(R) .

THEOREM 15. If θ ∈W (C, �v1
1 )(R)∩Mvs

1 (R) for some s > 1 , then

‖σθ
∗ f‖1 � C‖ f‖H1 ( f ∈ H1(T)).

THEOREM 16. If θ ∈Vk
1 (R) then θ ∈ Mvs

1 (R) for all 0 � s < k−1 and

‖θ‖M
v1
1

� C‖θ‖Vk
1

( f ∈Vk
1 (R)).

The next result extends Theorem 13.

THEOREM 17. If θ ∈W (C, �v1
1 )(R)∩V 2

1 (R) , then

‖σθ
∗ f‖1 � C‖ f‖H1 ( f ∈ H1(T)).

If we know some information about the derivatives of θ̂ then we can state a
stronger result. Similarly to (5) assume that θ̂ (m) can be estimated by a non-increasing
even function ηm , i.e.

|θ̂ (m)| � ηm,
ηm is even and non-increasing on R+.

}
(6)

THEOREM 18. Let 0 < p � 1 , θ ∈ W (C, �1)(R) and θ̂ ∈ L1(R) be (N + 1)-
times differentiable (N ∈ N) . Suppose that ηm ∈ Lp(R+ \ (0,1)) satisfies (6) for m =
N,N +1 . If s �→ sN+1ηN(s) is non-increasing and s �→ sN+2ηN+1(s) is non-decreasing
on R+ then

‖σθ
∗ f‖p � Cp‖ f‖Hp ( f ∈ Hp(T)).

Moreover, for all p < r < ∞ ,

‖σθ
∗ f‖r � Cr,θ‖ f‖Hr ( f ∈ Hr(T)).

If p < 1 then

‖σθ
∗ f‖L1,∞ � Cθ‖ f‖1 ( f ∈ L1(T)).

If ηm ∈ Lp,∞(R)\Lp(R+ \ (0,1)) (m = N,N +1, p 
= 1) then

‖σθ
∗ f‖Lp,∞ � Cp‖ f‖Hp ( f ∈ Hp(T)).
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COROLLARY 5. Let θ ∈W (C, �1)(R) and θ̂ ∈ L1(R) be (N +1)-times differen-
tiable (N ∈ N) . Assume that there exists N +1 < β � N +2 such that

|θ̂ (m)(x)| � C|x|−β (x 
= 0)

whenever m = N or m = N +1 . Then

‖σθ
∗ f‖r � Cr,θ‖ f‖Hr ( f ∈ Hr(T)),

‖σθ
∗ f‖L1,∞ � Cθ‖ f‖1 ( f ∈ L1(T))

hold for all 1/β < r < ∞ and

‖σθ
∗ f‖L1/β ,∞ � C‖ f‖H1/β ( f ∈ H1/β (T)).

COROLLARY 6. Under the conditions of Theorem 18 or Corollary 5

lim
n→∞

σθ
n f = f in Hp(T) norm

for all f ∈ Hp(T) .

8. Some summability methods

In this section we consider some well-known summability methods as special
cases of the θ -summation. All theorems above hold for the next summability meth-
ods. For more examples see [5] or [17].

EXAMPLE 1. (Fejér summation) Let θ (x) = (1−|x|)∨0. Then θ̂ (x) = ( sinx/2
x/2 )2.

EXAMPLE 2. (Riesz summation) For 0 <α <∞,1 � γ <∞ let θ (x) = (1−|x|γ )α
∨0. It is known that

|θ̂ (m)(x)| � C|x|−1−α (x 
= 0)

for all m ∈ N . Then Corollary 5 holds with 1/(1+α) < r < ∞ .

EXAMPLE 3. (Weierstrass summation) θ (x) = e−|x|γ (1 � γ < ∞) .

EXAMPLE 4. (Picard and Bessel summations) θ (x) = (1+ |x|γ)−α (0 < α <∞ ,
1 � γ < ∞ , αγ > 1).

EXAMPLE 5. (de La Vallée-Poussin summation) Let

θ (x) =

⎧⎪⎨
⎪⎩

1, if |x| � 1/2

−2|x|+2, if 1/2 < |x| � 1

0, if |x| > 1.
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[1] J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces, an Introduction, Springer, Berlin, 1976.
[2] P. L. BUTZER AND R. J. NESSEL, Fourier Analysis and Approximation, Birkhäuser Verlag, Basel,
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