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Abstract. The performance of the Young integral inequality is investigated for bounding the
Lorenz curve and the Gini index. The study relies on a comparison of reverse Young type integral
inequalities. The resulting approximation and bounds for the Lorenz curve and the Gini index
are compared with previous results.

1. Introduction

Let f : R →[0,∞) be a probability density function (pdf), meaning that f is inte-
grable on R and

∫ ∞
−∞ f (t)dt = 1, and define

F (x) :=
∫ x

−∞
f (t)dt, x ∈ R and E ( f ) :=

∫ ∞

−∞
x f (x)dx, (1.1)

to be its cumulative function or distribution and the expectation provided that the inte-
grals exist and are finite.

The mean difference

RG ( f ) :=
1
2

∫ ∞

−∞

∫ ∞

−∞
|x− y|dF (x)dF (y) (1.2)

was proposed by Gini in 1912 [11], after whom it is usually named, but it was discussed
by Helmert and other German writers in the 1870’s (cf. H.A. David [8], see also [15, p.
48]). The mean difference has a certain theoretical attraction, being dependent on the
spread of the variate values among themselves rather than on the deviations from some
central value ([15, p. 48]). Further, its defining integral (1.2) may converge when the
variance σ2 ( f ) ,

σ2 ( f ) :=
∫ ∞

−∞
(x−E ( f ))2 dF (x) , (1.3)

does not. It can, however, be more difficult to compute than (1.3).
Another useful concept is the mean deviation MD ( f ) , defined by [15, p. 48]

MD ( f ) :=
∫ ∞

−∞
|x−E ( f )|dF (x) = 2

∫ ∞

μ
(x− μ)dF (x) . (1.4)
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As G.M. Giorgi noted in [12], some of the many reasons for the success and the
relevance of the Gini mean difference or Gini index IG ( f ) ,

IG ( f ) =
RG ( f )
E ( f )

, (1.5)

are their simplicity, certain interesting properties and useful decomposition possibili-
ties, and these attributes have been analysed in an earlier work by Giorgi [13]. For a
bibliographic portrait of the Gini index, see [12] where numerous references are given.

The Gini index given by (1.5) is a measure of relative inequality since it is a ratio
of the Gini mean difference, a measure of dispersion, to the average value μ = E ( f ) .
Other measures are the coefficient of variation V = σ

μ and half the relative mean devi-

ation MD( f )
2μ where MD ( f ) is as defined in (1.4).

From (1.1), F (x) is assumed to increase on its support and its mean μ = E ( f )
exist. These assumptions imply that F−1 (p) is well defined and is the population’s pth

quantile. The theoretical Lorenz curve (Gastwirth [10]) corresponding to a given F (x)
is defined by

L(p) =
1
μ

∫ p

0
F−1 (x)dx, 0 � p � 1. (1.6)

Now F−1 (x) is nondecreasing and so from (1.6) L(p) is convex and L′ (p) = 1 at
p = F (μ) .

The area between the Lorenz curve and the line p, is known as the area of con-
centration.

The most common measure of inequality is the Gini index defined by (1.5) which
may be shown to be equivalent to twice the area of concentration ([10])

C =
∫ 1

0
c(p)dp, c(p) = p−L(p) . (1.7)

c(p) vanishes at p = 0 or 1 and is concave since L(p) is convex. Further, there is a
point of maximum discrepancy p∗ between the Lorenz curve and the line of equality
which satisfies

c(p∗) � c(p) for all p ∈ [0,1] . (1.8)

The point p∗ = F (μ) and c(p∗) = MD( f )
2μ where MD ( f ) is given by (1.4).

In a sequence of four papers, Cerone and Dragomir ([3] – [6]) developed approx-
imation and bounds from identities involving the Gini mean difference RG ( f ) . Some
of these results involved using the well known Sonin and Korkine identities. Cerone
[2] procured some approximations and bounds utilising the Steffensen and Karamata
inequalities.

It is the intention of the current article to utilise characteristics of the Lorenz curve,
L(p) and its connection to the Gini index via (1.7) to obtain upper and lower bounds for
both L(p) and IG ( f ) . This will be accomplished by utilising the well known Young’s
integral inequality and some less well known reverse inequalities. These will be dis-
cussed in Section 2 and applied in Section 3.
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2. Young’s Integral Inequality and Reverses

The famous Young’s integral inequality states that:

THEOREM 1. If h : [0,A] → R is continuous and a strictly increasing function
satisfying h(0) = 0, then for every positive 0 < a � A and 0 < b � h(A)

Y (h;a,b) :=
∫ a

0
h(t)dt +

∫ b

0
h−1 (t)dt � ab (2.1)

holds with equality if and only if b = h(a) .

In the 1912 paper in fact Young [21] proved (2.1) assuming differentiability of the
functions. The inequality (2.1) has a geometric interpretation involving the areas of the
two functions and the rectangular area. There has been much work on different proofs
and generalisations of (2.1) (see for example, Diaz and Metcalf [9], Bullen [1], Páles
[19] and Mitrinović et al. [18]).

We notice that in (2.1), ab is a lower bound for the Young functional Y (h;a,b) .
In 1974, Merkle [17] showed that there cannot be an upper bound to Y (h;a,b) which is
independent of h. He proves the following theorem which provides a reverse inequality.

THEOREM 2. Suppose the conditions of Theorem 1 hold. Then

Y (h;a,b) � max
{
ah(a) ,bh−1 (b)

}
. (2.2)

REMARK 1. The proof of Merkle uses the fact that for h(a) � b , Y (h;a,b) �
Y (h;a,h(a)) = ah(a) and for h(a) � b and interchanging a and b and, h and h−1

gives Y (h;a,b) � Y
(
h;h−1 (b) ,b

)
= bh−1 (b) .

In 2007, Witkowski [20] gave two simple proofs for Theorem 1. The first utitlises
the fact that since h is strictly increasing, then its anti-derivative is strictly convex. The
second uses the Mean Value Theorem. The second proof will be replicated here to
highlight the fact that this approach does not just provide a proof for Young’s inequality
(2.1) but it also gives its reverse.

THEOREM 3. Let the conditions of Theorem 1 hold. Then

ab � Y (h;a,b) � ah(a)+h−1 (b)(b−h(a)) (2.3)

with equality if and only if b = h(a) .

Proof. Since h is strictly increasing, we have by the Mean Value Theorem that for
a < h−1 (b) (h(a) < b)

h(a) <

∫ h−1(b)
0 h(t)dt− ∫ a

0 h(t)dt

h−1 (b)−a
< h

(
h−1 (b)

)
= b. (2.4)
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That is, on noting that

∫ h−1(b)

0
h(t)dt = bh−1 (b)−

∫ b

0
h−1 (t)dt (2.5)

then since h−1 (b)−a > 0, from (2.4) we obtain

h(a)
(
h−1 (b)−a

)
< bh−1 (b)−Y (h;a,b) < b

(
h−1 (b)−a

)
,

which upon simplification gives (2.3) for a < h−1 (b) . A similar argument follows for
a > h−1 (b) (h(a) > b) . �

REMARK 2. We note that the upper bound in (2.3) provides a reverse of Young’s
integral inequality (2.1). Equation (2.3) can be written in the appealing form

ab � Y (h;a,b) � ab+(b−h(a))
(
h−1 (b)−a

)
(2.6)

or
0 � Y (h;a,b)−ab � (b−h(a))

(
h−1 (b)−a

)
(2.7)

We notice that (b−h(a))
(
h−1 (b)−a

)
� 0 with equality holding only for b = h(a)

(equivalently, a = h−1 (b)).

THEOREM 4. Let the conditions of Theorem 1 persist. Then the inequality

α (a,b)
∫ a

0
h(t)dt +β (a,b)

∫ b

0
h−1 (t)dt � ab (2.8)

holds, where

α (a,b) = min

{
1,

b
h(a)

}
and β (a,b) = min

{
1,

a
h−1 (b)

}
(2.9)

with equality holding if and only if b = h(a) .

REMARK 3. Witkowski uses strict convexity arguments of H (x) =
∫ x
0 h(t)dt for

a < h−1 (b) to produce

∫ a

0
h(t)dt +

a
h−1 (b)

∫ b

0
h−1 (t)dt < ab

and of G(x) =
∫ x
0 h−1 (t)dt for a > h−1 (b) to get

b
h(a)

∫ a

0
h(t)dt +

∫ b

0
h−1 (t)dt < ab.

Witkowski sees (2.8) as a reverse of (2.1). In a sense the upper bound for (2.8) is
Y (h;a,b) . He did not highlight the fact that the upper bound in (2.3) is a reverse of
(2.1).
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LEMMA 1. The upper bound obtained by Witkowski

UW = ah(a)+h−1 (b)(b−h(a)) (2.10)

given in (2.3) is always better than that of Merkle

UM =

{
ah(a) , b < h(a) ;

bh−1 (b) , b > h(a)
(2.11)

which is equivalent to the upper bound in (2.2) . That is, the reverse Young’s inequality
of Theorem 4 is always tighter than that of Theorem 2.

Proof. Obvious and is thus omitted. �
It is instructive to compare the upper bounds for

∫ b
0 h−1 (t)dt provided from the

results of Witkowski from (2.3) and (2.8)–(2.9). These will be utilised to examine the
bounds for L(p) via (1.6) in the next section.

LEMMA 2. From Theorems 2 and 4, the following upper bounds are tighter. Namely,

∫ b

0
h−1(t)dt <

{
b

h(a) [ah(a)− ∫ a
0 h(t)dt] for Δ> 0, b < h(a) ;

ab+
(
h−1 (b)−a

)
(b−h(a))− ∫ a

0 h(t)dt for Δ< 0 or b > h(a) ,
(2.12)

where Δ := ah(a)− ∫ a
0 h(t)dt−h(a)h−1 (b) .

Proof. From (2.3) and (2.6), we have∫ b

0
h−1 (t)dt < ah(a)+h−1 (b)(b−h(a))−

∫ a

0
h(t)dt (2.13)

= ab+
(
h−1 (b)−a

)
(b−h(a))−

∫ a

0
h(t)dt =: UW .

From (2.9) we have

α (a,b) =

{
b

h(a) , b < h(a) ;

1, b > h(a)
and β (a,b) =

{
1, b < h(a) ;

a
h−1(b) , b > h(a)

so that from (2.8)

∫ b

0
h−1 (t)dt <

{
ab− b

h(a)
∫ a
0 h(t)dt =: UW1 b < h(a) ;

bh−1 (b)− h−1(b)
a

∫ a
0 h(t)dt =: UW2 b > h(a) .

(2.14)

For b > h(a) consider from (2.13) and (2.14)

UW −UW2 = ah(a)+h−1 (b)(b−h(a))−
∫ a

0
h(t)dt−bh−1 (b)+

h−1 (b)
a

∫ a

0
h(t)dt

=
1
a

(
h−1 (b)−a

)[∫ a

0
h(t)dt−ah(a)

]
< 0.
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This indicates that UW is a tighter upper bound than UW2 for b > h(a) .
Now, for b < h(a) , we consider from (2.13) and (2.14)

UW −UW1 =
(
h−1 (b)−a

)
(b−h(a))−

(
1− b

h(a)

)∫ a

0
h(t)dt

= (h(a)−b)
[
a−h−1 (b)− 1

h(a)

∫ a

0
h(t)dt

]

so that for b < h(a)

UW −UW1 is:

{
> 0 for Δ> 0;

< 0 for Δ< 0,

where Δ is as given by (2.12). That is, for b < h(a) and Δ > 0, then UW1 is tighter
than UW and vice versa for Δ< 0. �

3. Bounds for the Lorenz Curve and Gini Index

Some identities for the Gini Mean Difference, RG ( f ) through which results for
the Gini index IG ( f ) may be procured via the relationship (1.5) will be stated here.
These have been used in [3] – [7] to obtain approximations and bounds. The reader is
referred to the book [15], Exercise 2.9, p. 94 or [3].

The following result holds (see for instance [15, p. 54] or [3]).

THEOREM 5. With the above notation, the identities

RG ( f )=
∫ ∞

−∞
(1−F (y))F (y)dy=2

∫ ∞

−∞
x f (x)F (x)dx−E ( f ) (3.1)

hold.

The following result was obtained in [4] using the well known Sonin identity (see
[18, p. 246]) for the case of univariate real functions.

THEOREM 6. With the above assumptions for f and F, we have the identity:

RG ( f ) = 2
∫ ∞

−∞
(x−E ( f ))(F (x)− γ) f (x)dx (3.2)

= 2
∫ ∞

−∞
(x− δ )

(
F (x)− 1

2

)
f (x)dx

for any γ,δ ∈ R .

The following result was developed in [5] using the Korkine identity (see [18, p.
242]) for the case of univariate real functions.
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THEOREM 7. With the above assumptions for f and F, we have the following
representation for the Gini mean difference:

RG ( f ) =
∫ ∞

−∞

∫ ∞

−∞
(x− y)(F (x)−F (y)) f (x) f (y)dxdy. (3.3)

The following lemma will be proven here since it will be crucial for the current
work in bounding the Gini index via the Lorenz curve and the area of concentration C.
The identity is also proven in [15, p. 49] in a different way.

LEMMA 3. The following identity holds

RG ( f ) = μIG ( f ) = 2μC, (3.4)

where the quantities are defined by (1.2) , (1.5) , (1.6)–(1.7) .

Proof. From (1.6) and (1.7) we have

2μC = 2
∫ 1

0

[
pμ−

∫ p

0
F−1 (x)dx

]
dp = 2

∫ 1

0

∫ p

0

[
E ( f )−F−1 (x)

]
dxdp.

An interchange of the order of integration and a substitution x = F (t) produces

2μC = 2
∫ ∞

−∞
(t−E ( f ))F (t)dF. (3.5)

Now (3.5) is equivalent to identity (3.2) with γ = 0 and so 2μC = RG ( f ) and hence
the identity (3.4) is proved. �

We are now in a position to investigate bounds for both the Lorenz curve and
through the relationship (3.4) for the Gini index using the results of Section 2 based
on Young type inequalities. Firstly, however, we state a result of Gastwirth [10] for
bounding the Lorenz curve.

THEOREM 8. Let F (x) be a distribution function with mean μ and support (a,b) .
Then its Lorenz curve, L(p) satisfies

B(p) � L(p) � p (3.6)

where

B(p) =

{ ap
μ , p < r;
ar
μ + b

μ (p− r) , p > r
(3.7)

and r is determined by the relation ra + (1− r)b = μ . Here the random variable X
generating the Lorenz curve B(p) takes on the value a with probability r and b with
probability (1− r) .

The following technical lemma will prove useful subsequently.
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LEMMA 4. Let F (·) be a distribution function defined on (0,A] and its inverse
F−1 (·) exists, then for a ∈ (0,A]∫ 1

0
(p−F (a))

(
F−1 (p)−a

)
dp=

1
2

[
A−a−

∫ A

0
F2 (t)dt

]
+(a− μ)F (a) . (3.8)

Proof. Firstly, we note that for h(0) = 0,

∫ A

0
h(t)dt = Ah(A)−

∫ A

0
th′ (t)dt = Ah(A)−

∫ h(A)

0
h−1 (t)dt. (3.9)

If we associate h(·) with F (·) , noting that F (A) = 1, then from (3.9):

μL(1) =
∫ 1

0
F−1 (p)dp = A−

∫ A

0
F (t)dt = μ (3.10)

since L(1) = 1.
Further, a substitution of p = F (t) and integration by parts gives∫ 1

0
pF−1 (p)dp =

∫ A

0
tF (t)F ′ (t)dt =

A
2
− 1

2

∫ A

0
F2 (t)dt. (3.11)

Now,

∫ 1

0
(p−F (a))

(
F−1 (p)−a

)
dp

=
∫ 1

0
pF−1 (p)dp+aF (a)−F (a)

∫ 1

0
F−1 (p)dp− a

2
. (3.12)

Substitution of (3.10) and (3.11) into (3.12) gives the stated result (3.8). �
The following theorem uses the results of Witkowski [20] as given by (2.3) to

procure bounds for the Lorenz curve.

THEOREM 9. Let L(p) be the Lorenz curve defined by (1.6) corresponding to a
given distribution (cumulative) function F (a) with F (0) = 0, 0 < a � A and 0 < p �
F (A) = 1. Then

1
μ

[
ap−

∫ a

0
F (t)dt

]
�L(p)� 1

μ

[
ap−

∫ a

0
F (t)dt

]
+

1
μ

(p−F (a))
(
F−1 (p)−a

)
(3.13)

with equality if and only if p = F (a) .

Proof. From Theorem 3, if we associate h(t) with F (t) , then the conditions of
the theorem are satisfied and so from (2.4) ,

ap−
∫ a

0
F (t)dt �

∫ p

0
F−1 (p)dp � ap−

∫ a

0
F (t)dt +(p−F (a))

(
F−1 (p)−a

)
and the result follows from (1.6). Equality is obvious from (2.5). �
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REMARK 4. The lower bound is only useful for p > 1
a

∫ a
0 F (t)dt since zero is a

lower bound for L(p) . The upper bound is useful if it is less than p.

COROLLARY 1. Let the condition of Theorem 9 hold. Then

l (p) � L(p) � u(p) , (3.14)

where

l (p) =
{

0, p < 1− μ
A ;

A
μ

[
p− (

1− μ
A

)]
, p > 1− μ

A
(3.15)

and

u(p) =

{
p, 0 < p < p∗;
1+ F−1(p)

μ (p−1) , p∗ < p < 1,
(3.16)

where p∗ = F (μ) is the point of maximum discrepancy satisfying (1.8) .

Proof. Taking a = A in (3.13) and noting that F (A) = 1 and
∫ A
0 F (t)dt = A− μ

produces upon simplification

1+
A
μ

(p−1) � L(p) � 1+
F−1 (p)

μ
(p−1). (3.17)

Now, it is well known that 0 � L(p) � p for 0 � p � 1.
Consider

p−
[
1+

F−1 (p)
μ

(p−1)
]

= (1− p)
[
F−1 (p)

μ
−1

]
> 0

for p∗=F (μ)<p<1 and negative otherwise. This gives the upper bound in (3.16).
Now the lower bound in (3.17) is useful for 1+ A

μ (p−1) > 0, that is, for p >(
1− μ

A

)
. The lower bound given by (3.15) is thus procured. �

REMARK 5. It may be noticed that by taking a = 0 and b = A in Theorem 8 we
have r = 1− μ

A and so Corollary 1 recaptures the lower bound obtained by Gastwirth
[10]. The upper bound obtained in (3.16) gives a refinement of that given in (3.6).

THEOREM 10. Let the conditions of Theorem 9 hold. Then the Gini index defined
by (1.5) or equivalently, (1.7) satisfies

(
1− a

μ

)
+

2
μ

∫ a

0
F (t)dt +2

(
1− a

μ

)
F (a)− 1

μ

[
A−a−

∫ A

0
F2 (t)dt

]

� IG ( f ) �
(

1− a
μ

)
+

2
μ

∫ a

0
F (t)dt. (3.18)
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Proof. From (3.13) we have, since, as shown in Lemma 3, the Gini index, IG ( f )
of (1.5) is equivalent to twice the area of concentration, namely, 2C. Now, (3.13) gives

(
1− a

μ

)
p+

1
μ

∫ a

0
F (t)dt− 1

μ
(p−F (a))

(
F−1 (p)−a

)
� p−L(p) �

(
1− a

μ

)
p+

1
μ

∫ a

0
F (t)dt

so that from (3.4) and (1.7)

(
1− a

μ

)
+

2
μ

∫ a

0
F (t)dt− 2

μ

∫ 1

0
(p−F (a))

(
F−1 (p)−a

)
dp

� IG ( f ) �
(

1− a
μ

)
+

2
μ

∫ a

0
F (t)dt.

Using (3.8) from Lemma 4 produces the inequality as stated in (3.18). �

COROLLARY 2. Let the conditions of Theorems 9 and 10 hold. Then the Gini
index bounds from (3.18) are the tightest bounds on (0,A] at a = μ and a = m for the
lower and upper bounds, respectively. These are given by:

1
μ

∫ μ

0
F (t)dt < IG ( f ) <

(
1− m

μ

)
+

2
μ

∫ m

0
F (t)dt, (3.19)

where m = F−1
(

1
2

)
is the median and μ is the mean.

Proof. Since F (t) is defined for t ∈ [0,A] and F (0) = 0, we have from (3.1) that

IG ( f ) =
1
μ

∫ A

0
F (t) (1−F (t))dt. (3.20)

We notice that the lower bound in (3.18) approaches IG ( f ) as a → 0+ and the upper
bound tends to 1. Further, if we denote the lower bound in (3.18) by κ (a) , then

κ ′ (a) = 2

(
1− a

μ

)
f (a)

{
> 0, 0 < a < μ

< 0, μ < a < A.

The maximum occurs at a = μ so that

sup
a∈(0,A)

κ (a) = κ (μ) =
2
μ

∫ μ

0
F (t)dt− 1

μ

[
A− μ−

∫ a

0
F2 (t)dt

]
(3.21)

=
2
μ

∫ μ

0
F (t)dt− 1

μ

∫ A

0
F (t)(1−F (t))dt
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since from (3.10) A−μ=
∫ A
0F (t)dt. We now have from (3.21) and using (3.20) that

sup
a∈(0,A)

κ (a) = κ (μ) =
2
μ

∫ μ

0
F (t)dt− IG ( f ) , (3.22)

as the best choice for the lower bounds in (3.18) from which the lower bound in (3.19)
results.

Further, the minimum upper bound in (3.18) occurs when 2F (a)−1 = 0, namely,
at a = m = F−1

( 1
2

)
producing the upper bound in (3.19) from (3.18). �

REMARK 6. In Cerone [2, Theorem 13] the Steffensen inequality was utilised
together with the property that F (x) is nondecreasing to obtain

1
μ

∫ a+λ

a
F (x)dx � IG ( f ) � 1

μ

∫ b

b−λ
F (x)dx,

where λ = μ − a and f is supported on [a,b] . That is, taking a = 0 and b = A, we
have

1
μ

∫ μ

0
F (x)dx � IG ( f ) � 1

μ

∫ A

A−μ
F (x)dx. (3.23)

We notice that the lower bound here is recaptured by (3.19), however, the upper bounds
differ.

COROLLARY 3. Let the conditions of Theorem 9 hold. The Gini index, IG ( f )
satisfies

1
2μ

∫ μ

0
F (x) (2−F (x))dx � IG ( f ) � 1− μ

A
. (3.24)

Proof. From (3.14) we have p−u(p) � p−L(p) � p− �(p) so that from (3.15)
and (3.16)

�̂(p) � p−L(p) � û(p) , (3.25)

where with p∗ = F (μ)

�̂(p) =

{
0, 0 < p < p∗

(p−1)
[
1− F−1(p)

μ

]
, p∗ < p < 1

(3.26)

and

û(p) =

{
p, 0 < p < 1− μ

A ;(
A
μ −1

)
(1− p), 1− μ

A < p < 1.
(3.27)

Now, from (3.25) we have

∫ 1

0
�̂(p)dp �

∫ 1

0
(p−L(p))dp �

∫ 1

0
û(p)dp
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and so from Lemma 3 and equation (1.7) we have

2
∫ 1

0
�̂(p)dp � IG ( f ) � 2

∫ 1

0
û(p)dp. (3.28)

That is, from (3.26)

∫ 1

0
�̂(p)dp =

∫ 1

p∗
(p−1)

[
1− F−1 (p)

μ

]
dp =

∫ A

μ

(
1− x

μ

)
(F (x)−1) f (x)dx,

where the substitution p = F (x) has been made and noting that p∗ = F (μ) . Also,
integration by parts gives

∫ 1
0 �̂(p)dp = 1

2μ
∫ A
μ (F (x)−1)2 dx. Now,

∫ A

μ
(F (x)−1)2 dx =

∫ A

μ
F (x)(F (x)−1)dx−

∫ A

μ
F (x)dx+A− μ

=
∫ A

0
F (x)(F (x)−1)dx−

∫ μ

0
F (x)(F (x)−1)dx+

∫ μ

0
F (x)dx

= −μIG ( f )−
∫ μ

0
F2 (x)dx+2

∫ μ

0
F (x)dx

and so ∫ 1

0
�̂(p)dp = −1

2
IG ( f )− 1

2μ

∫ μ

0
F2 (x)dx+

1
μ

∫ μ

0
F (x)dx. (3.29)

Further, from (3.27)

∫ 1

0
û(p)dp =

∫ 1− μ
A

0
p dp+

(
A
μ
−1

)∫ 1

1− μ
A

(1− p)dp (3.30)

=
1
2

(
1− μ

A

)2
+

(
A
μ
−1

)
· 1
2

(μ
A

)2
=

1
2

(
1− μ

A

)
.

Substitution of (3.29) and (3.30) into (3.28) produces (3.24). �

REMARK 7. The upper bound given in (3.24) was also obtained in Gastwirth [10]
using a result from Hardy et al. [14]. The lower bound obtained in [10] was zero which
is smaller than that given in (3.24).
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