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Abstract. For the functional A[f] = ¥", arf(zx), we give necessary and sufficient conditions
over the real numbers zi, such that, the inequality A[f] > 0, holds for some classes of convex
functions. Then, we deduce an inequality related to Alzer’s inequality and a weighted majoriza-
tion inequality.

1. Introduction

n [3], J.-Ch. Kuang proved the following inequality

() g () ) s

where f is a strictly increasing convex (or concave) function in (0, 1].
In [6], it was proved that for (a,),en, a positive increasing sequence of real num-

bers such that < 1 )) is increasing ( (n (“”—“ — 1)) is increasing), we
1 ) ) peN n neN

ay 1 il ( ay )
2f< n) n+1k§:1f An+1
for every increasing convex (concave) function f: [0,1] — R.
In [2], using positive linear operators of Bernstein-Stancu type, I. Gavrea obtained

the inequality

have

1 & n+1
- 3 f (Kk—1n-1) — Zf(xk 1) =0, (1
k=1
for an increasing convex function f and for the nodes x;,, i =0,1,...,n from [0,1],

which satisfy the properties

0<x0,n gxl,n <... <xn,n < 1
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Xk S Xk—1n—1 < Xk
X0,n—1 = X0,n and Xn—1.n—1 = Xnn
(n—k) (x;m,l - xk,n) P k(xk,n - kal,nq),

forn > 1 andevery k=1,2,...,n

For related inequalities see [1], [2], [4], [5]. In [1], the authors presented, in a
chronological order, these inequalities and some recent results related to them.

In this paper, we want to prove an inequality for a discrete linear operator and ob-
tain necessary and sufficient conditions over the points x;, in order to obtain inequality
(1). We deduce, also, a weighted majorization inequality.

2. Main result

Let m > 3 be an integer and let ,, = {1,2,...,m}. Consider (z;)ies, @ strictly
decreasing sequence of real numbers from [0, 1]. Let A be the linear functional defined
by

= Y af @), @)

k=1

where g are real numbers and f is a real function defined on [0, 1]. We want to find
necessary and sufficient conditions over z;, such that

A[f] =0, 3)

holds for some classes of convex functions. Let ¢; be the functions defined by e;(t) =1'.
Then we have the following result

THEOREM 1. Consider the following conditions

Aleo] =0 C))
Ale] >0 &)
Ale1] <0 (6)
k
zai(Zi —zk41) 20, foreveryk € I,_». @)
i=1
Zal Zi— 1) 20, foreverykeI,\{1,2}. (8)
Then
a) holds for every increasing convex function f iff (4), (5) and (7) hold;

(3)

(3) holds for every decreasing convex function f iff (4), ( ) and (7) hold;
(3) holds for every convex function f iff (4), (5), (6) and (7) hold;

(3) holds for every increasing concave function f iff (4 ) (5) and (8) hold;
(3) holds for every decreasing concave function f iff (4), (6) and (8) hold;
f) (3) holds for every concave function f iff (4), (5), (6) and (8) hold.
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Proof. a) Suppose that (4), (5) and (7) hold.
We set So =0 and Sy =a; +az+ ...+ a, for k € I,,. We define also Ty = 0 and for

kel,
k

Ti =Y Si(zi —zi+1)-
i=1

Because S, = Aleg] and Aleo] =0, we obtain S, = 0. Using Abel summation formula
and the notation [x,y; f] = [f(x) — f(¥)]/(x— ), for the divided difference, we have

(Sk —Sk—1)f(zx)

=
=

I
NgE

T
L

S 151/ (z0) — Secf )] + 3 Set [ aeer) — ()]

I
L

k=1 k=1
m—1 m—1
=Suf(zm)+ Y, Sklf (@) = faee)] = Y Selzk — zer1) [z 21 f-
k=1 k=1
In the same way, we deduce
m—1 m—1
Alfl =Y (=T Dz 1= Y, (Tlzo a1 = T lae- 1,z 1)
k=1 k=1
m—1
+ Y, Tt ([zr—1, 2 f] — [z 2rs1:.£])
k=1
m—2
= T t1[zm-1:2m: F1+ Y, T2k — 2r42) 2 215 k25 £
k=1
Computing 7; we obtain
k k k
To= Si(zi—zi1) = 2,(Sizi— Sip1ziv1) + 2 (Siv1 — Si)zis1
i=1 i=1 i-1
k1 ktl

= 8121 — Sk+1%k+1 + Eaz+121+1 =a121 — 241 D, A+ D, AiZi
i=1 i=1 =2

k+1 k+1

k k
= Y izi— ka1 Y, A= ), AiZi— sl Y di = Zaz 2= 2y1)-
i=1 i=1 i=1 i=1

So, the conditions (7) are equivalent with the inequalities 7; > 0, for all k € I,,,_5.
Computing T,,—1 = Ale1] — zmAleo] = Ale1] > 0, we deduce that

m—2

Alf) =Aled)[zm—1,zm: f1+ Y, Telzk — zs2) [Tk s 15 223 f- )
k=1

Because the divided differences which appear in the last equality are all non-negative
for an increasing convex function f, we deduce A[f] > 0.
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For the necessity part, we apply the inequality A[f] > O for the increasing convex func-
tions ¢y and —ey and we deduce A[eg] = 0. The inequality Ale;] > 0 is true since
e; is increasing and convex. For the functions f;(x) = max(0,x — zx+1), which are
increasing and convex for every k € I, , we obtain

Zal Zi Zk+l [fk])o

b) Let f be a decreasing and convex function. Then

[Zm—1,2m3 f] < O0and [zx, 2511, 24425 f] = 0, fork € I, _».

Because Ale;] <0 and T; > 0, we deduce by the equality (9) that (3) holds.
For the part of necessity take ey and —ep and obtain Aleg) = 0. If we take —e; in
(3) we obtain A[—e;] > 0 which is equivalent with Ale;] < 0. The inequalities (7)
can be obtained from the relations Ty = A[gx] > 0, for the decreasing convex functions
8k(x) = max(0,zx+1 —x).

¢) The sufficiency can be proved using the equality (9) with Ale;] = 0. The ne-
cessity of inequalities (7) and the equality (4) can be obtained using the same argument
asin a) orin b). The equality A[e;] =0 can be obtained from the inequality A[f] >0,
for the convex functions e; and —e; .

d), e), f) can be obtained from b), a), and c) replacing f by —f and a; by
—ay and using the following relation for every k € I, \ {1,2 }

m m m
Dailzi—zu-1)= Y, azi—zu-1 Y, a
i—k

i=k—1 i=k—1

k—2
2 aizi — -1 (A eo) — Y ai)

i=1
—2
= Aley] — zx—14]e0] — 2 Zi—2—1). O

REMARK 2. If we look at the equality (9) in the proof of the theorem, we must
have zx — zx4+2 = 0, in order to prove the sufficiency of the conditions in the theorem.
This condition is guaranteed by z; > z, which was given as a property of (zx)iey,, -
This weaker condition (z; — 742 > 0) is equivalent with the property that (z2;); and
(z2k+1)x are decreasing.

REMARK 3. In [4], it is presented the case c) from the Theorem 1. The author,
also, generalizes the result to the class of convex functions of order n.
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3. Applications

COROLLARY 4. Let n> 1 be an integer and let x;, i €I, and yj, j € L1 be two
increasing sequences of points from [0,1]. Let A be the linear functional defined by

1& 1 n+l1
Al =, X 70w) =g 270w, (10)
If
X1 21,
Xn 2)’n+1;

(n—0)(Xiv1 = Yir1) = i(yie1 — Xi), fori € 1,
(n+ I i)(xi_Yz) > l(yi+1 — i)7 foriel,,

then A[f] > 0, for every increasing convex or concave function f :[0,1] — R.

Proof. We apply Theorem 1 and Remark 2 for m =2n+1, zp; = X1 and ay, =
1/n,with k€1l,, 2ok 1 =Yni2—k and a1 = —1/(n+1), with k € I, | . Because (x;)
and (y;) are increasing sequences, we obtain zx — zx42 > 0. Computing T; we have
Ty = (Xn—Yutr1)/(n+1)>0,and for k# 1, k€ I,

k k=1
Tok—1 = 3, Sai1(z2i-1 —22i) + Y, S2i(22i — 22i41)
i=1 i=1

~

k=1
=CY —(n+1=))(Yns2-i—Xns1-) +C X, i(Xn1-i = Yns1-i)

i=1

||
l
+M=

[(n =) (xix1 — Yir1) = i(Vir1 — )] + Cn(x, — yns1) =0,
where C = [n(n+1)]7!. For k€ I,

k k
T = Y Sai-1(z2i-1 — 221) + 3, Sai(22i — 22i1)
P =i

=~

k

=CY —(n+1—=1)ns2—i— Xns1-i) + C D i(Xns1—i — Yns1-i)
i=1 i=1

=C 2 [(n4+1—10)(xi—yi) —i(yig1 —xi)] = 0.
i=n+1—k

Because T > 0, we deduce A[f] > 0, for every increasing convex function f. Deno-
ting by Oy the sum Y, Pi(zi —zi—1), for every k € I,, k > 2, where P is the sum
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> ai, we have

m mn
O = Z(PiZi —P1zi1)+ Z(Pifl —P)zi-

i=k i=k

m m
= Puzm — Pec1zk—1 + Y, ai1zio1 = Aleolim+ Y, aizi—z Y, ai

i=k i=k—1 i=k—1
= Zal i — Tk— 1

In order to use Theorem 1 we have to prove that Q; > 0. For every k € I,

2n+1 n n
O =Y Plzi—zi1) = Y, Prilzai — 22i-1) + Y, Pris1(22i41 — 22)
i=2k i=k i=k

= CZ[(” + 1 —0) (Xt 1—i — Ynt2—i) — i(Vntr1—i — Xnp1-i)]
i—k
n+l1—k
=C 2 [(I’l+ 1— i)(x,-—y,-) — i(y,url —xi)} 2 0.
-1

We have Q2,11 = (x1 —y1)/(n+1) >0 and for every k € I,,_4

2n+1 n n
Onr1= D, Pi—zic1)= Y, Pulzi—2i-1)+ Y, Pris1(z2ir1 — 22i)
i=2k+1 i=k+1 i=k
n—1
=C Y [(n—=i)(n—i—=Yns1-1) = iOnp1-i = Xns1-0)] + Cnlx1 — y1)
i—k

n—k
=C Y [(n—i)(xip1 —yir1) —i(vir1 —xi)] +Cn(x; —y1) > 0.
i=1

Because Oy > 0 we deduce A[f] > 0 for every increasing concave function f. O

COROLLARY 5. Let n > 1 be an integer and let x;, i €I, and y;, j € I,11 be
two increasing sequences of points from [0, 1] such that x; > y; for k € I,. Let A be
the linear functional defined by

n 1 n+1

Alfl= % X S0 = oy XS0 (11)

a) If xp = yny1 and

(n_l)(xz+1_)’t+l) (yl+1 xi),forieln_l,

then A[f] > 0, for every increasing convex function f : [0,1] — R.
b) If
(n+1—=0)(xi—yi) = i(yis1 —xi), fori € I,

then A[f] = 0, for every increasing concave function f:[0,1] — R.
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Proof. a) Using the arguments from the previous corollary we have

n—1

Ty1=C Y, [(n—i)(xip1—yir1) —i(yir1 — X))+ Cn(xy — yuy1) = 0.
i=n+1-k

Tox = Tog—1 + Ci(Xpr1—k — Ynr1-k) = 0. We deduce that A[f] > 0 for every increasing
convex function f.
b) We have

n+1—k
CZ [(n+1—1i)(xi—yi) — i(yis1 —xi)] = 0.

O2—1 =00 +C(k—1)(Xy12—k — Ynt2—k) = 0. We obtain A[f] > 0 for every increasing
concave function f. [

COROLLARY 6. Let (ay)nen be a positive increasing sequence of real numbers
such that (n (1 — “—”)) is increasing ( (n (“"—“ — 1)) is increasing). Then
neN neN

An+1 dap

. Ay 1 il Ay
; <n>>n+12f<an+l>

forevery f:]0,1] — R increasing convex (concave) function.

:l'—‘

Proof. Letting x; = Z—’; and y; = a“i - we apply the result of the previous corol-

lary. O
REMARK 7. The result of the Corrolary 6 was obtained in [6].

COROLLARY 8. Let n > 1 be an integer and let x;, i € I, and yj, j € I,41 be
two strictly increasing sequences of points from [0, 1], with the property

0 <x1<»m<...<Vp<Xp<yp+1 < 1L (12)

Let A be the linear functional defined by

n n+l1
Alfl=a Y fox) =B, f), (13)
k=1 k=1

where o and B are positive real numbers. Then A[f] > 0 for every increasing convex
or concave function f :[0,1] — R, if and only if

azgandﬁzL,wheVec>O,
n n+1

(n+1)(xi+x2+...+x;) —n(yr+...+yx) = kyey, foreveryk € I,
+ 1) (x4 oA xn) —n(Vkr1 oA Ynr1) = (n+1—k)xy, fork € 1,.

1
(n+1
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Proof. The condition Aleg] =0 is equivalent with & =c¢/n and f =c¢/(n+1), for
some ¢ > 0. We apply Theorem 1 for m = 2n+ 1, zp4 = x,41— and ay = 1/n, with
kel,, 2ok—1 = ynio—x and a1 = —1/(n+ 1), with k € I,;1, in the case x, < y,41.-
Using T = 25-‘21 aizi — Zg+1 Zf-; L ai, we obtain for every k € I,

(n+ 1)yt g+ +x0) =n(Vn2x+ -+ Vur1) = kXnp1 2

T _ =
2kt nn+1)

Because Tor—1 = Tox — Sox(zor — zor+1) < Tox, we deduce that T > 0, for k € b, if
and only if Ty;_; > 0, for k € I,,, which is equivalent with

(n+ 1)+ ... +x0) —n(yge1+ .-+ ynr1) = (n+ 1 —k)xy, forevery k € I,.

Using Q1 = 37! aizi — 2 27| ai, we obtain for every k € I,

(n+ 1)+ X1 8) =1+ A1) =+ L =k)y 0 ¢
n(n+1) '

O =

Because Qar1 = Qor — Po (2o — 22k—1) = Qok, we deduce that Oy > 0, for k € I,
if and only if Qy; = 0, for k € I,,, which is equivalent with

(m+D)(x1+...+x) —n(y1+...+yx) = kyrt1, forevery k € I,.

If x, = y,+1 we apply Theorem 1 for the same points z; like above and with a; =0,
a =1/n—1/(n+1) and the others a; like above. We obtain 7} =0. [

REMARK 9. Let n > 1 be an integer and let x;, i € I, and y;, j € I, be two
strictly increasing sequences of points from [0, 1], with the property

0 <X1 <M< .. <Y <Xp<yp+1 < 1L
The condition
(m+D)(xe+...+x0) =01+ FYnp1) = (n+ 1 —k)xg, fork € I,

is equivalent with
n—1
N [(n—i)(xie1 = yir1) — i(yig1 —x;)] > 0, forevery k € I,y and X, = yn i1,
i=k

and the condition

(m+D)(x1+x2+...+xx) —n(yi+...+yx) = kyrg, forevery k € I,

is equivalent with

k

N [(n+1—i)(xi—yi) — i(yis1 —xi)] = 0, for every k € I,.
i1
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Proof. Indeed, from T} > 0 we deduce x, =y, ;1. Forkel,, k#1

n—1
Tu1=C Y, [(n—i)(xit1—yir1) —i(ir1 —x)],
i=n+1—k

where C = 1/[n(n+ 1)] and for k € I, we have the formula

n+1—k
0 =C Y [(n+1-i)(xi—y) —i(yis1 —x)]. O
i=1

REMARK 10. Using Corollary 8 and Remark 9 we deduce the result obtained in
[2], the one presented in the introduction.

REMARK 11. If y; <ys <... < yuy1 are the roots of a polynomial P of degree
n+1 and x; < x» < ... < x, the roots of the derivative of the polynomial P, then we
have the inequalities

(n+1)(x1+x2+ ... +x0) —n(y1+ ... +yx) = kyir1, foreverykel,_;.

See [4], for details.

COROLLARY 12. Let n > 1 be an integer and let x;,y;, i € I, be two decreasing
sequences of points from [0,1] and pi,qi, i € I, be real numbers such that (p;) ma-
jorizes (qi) (i.e. p1+...+pr=qi+...+qy forevery k€l,_y and p1+...+ p, =
q1+ ...+ qu). If the following conditions are satisfied:

k k
Y aixi =Y, qivifor every k € Iy,
i=1 i=1
k k
N pixi = Y, pivi, for everyk € I,
i=1 i=1
and

n n
2 DiXi = Z qiyi
i=1 i=1

then, for every convex function f :[0,1] — R, we have

Y pef() = Y, qef (e)-
k=1 k=1

Proof. We apply Theorem 1 ¢) and Remark 2 for the functional

Alf] = En', pif () — i arf (k)
k=1 k=1
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and for the points zp;_; = x; and zp; = yi, for every k € I,. We can notice that
n
2 PiXk — 2 qiyk =

52k=P1—611+~~~+Pk—61k/0.

Aleo]

~
) HM:

So

k

Ty = 2 [S2i-1(22i—1 — 22i) + S2i(22i — 22i41)]
i=1

Il
™M=

[(S2i +qi) (xi — yi) + S2i(yi — Xi1)]

Il
—_

|
M-

Il
—_

Szl-(x,- —x,-H) + Zqi(xi _yi) >0, forevery k € I,_;.
i=1
k-1
Tor—1 = S1(z1 — 22) + D, [S2i(z2i — 22i41) + S2i+1(22i41 — 22i42))]
i=1
k—1
= p1(xr—y1) + X [S2i(yi = Xi1) + (S2i+ pir1) (i1 —yir1)]
i=1

—2521 —Yit1 —i—Zp, xi—yi) =0, foreverykel,. O
i=1

COROLLARY 13. If (x;) and (y;) are two decreasing sequences of points from
[0,1] and p;, i € I, are real numbers such that

Zk'ipixi > zk‘ipiyi, Jorevery k € I, (14)
i= i=
and . .
;pm = ;piyi, (15)
then, for every convex function f :I[IL 1] — R?we have
S0 > 5 puso) (16)

REMARK 14. If we suppose that p; are positive real numbers, then also the con-
verse of Corollary 13 is true. Indeed, applying inequality (16) to the convex functions
Si(x) = max(0,x — x;) we obtain

n

k k
Y pixi—x ), pk = Y, pifi(i)-
P i=1

i=1
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Because fi(x) >0 and fi(x) > x — x; we obtain

n k k
N pif(vi) = Y, pivi—x Y, pi-
i=1 i=1

i=1

So, we have obtained the relations (14). The equality (15) can be obtained from in-
equality (16) for the convex functions e; and —e; .

REMARK 15. For p; =1 this is the inequality of Hardy-Littlewood-Pélya, which
is named also Karamata inequality or the majorization inequality.
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