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HERMITE–HADAMARD–TYPE INEQUALITIES
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Abstract. Hermite-Hadamard-type inequalities are given for Radau-type quadrature rules and
k -convex functions (where k = 2,3,5). Furthermore, the best possible error estimates for the
Radau-type quadrature rules and functions with low degree of smoothness are obtained.

1. Introduction

The well-known Hermite-Hadamard inequality states that for any convex function
f : [−1,1] → R , the following pair of inequalities holds:

f (0) � 1
2

∫ 1

−1
f (t)dt � f (−1)+ f (1)

2
. (1.1)

If f is concave, the inequalities in (1.1) are reversed.
The aim of this paper is to give this type of inequalities for the Radau-type quadra-

tures, i.e. quadrature formulas which involve one end of the interval as a node (cf.
[4]): ∫ 1

−1
f (t)dt ≈ (2−w(x)) f (−1)+w(x) f (x)

and ∫ 1

−1
f (t)dt ≈ w(x) f (x)+ (2−w(x)) f (1).

The main tool used is the extended Euler formula, obtained in [5]: if f : [a,b]→R
is such that f (n−1) is continuous and of bounded variation on [a,b] for some n � 1,
then for every y ∈ [a,b] we have

1
b−a

∫ b

a
f (t)dt = f (y)−

n−1

∑
k=1

(b−a)k−1

k!
Bk

(
y−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]

+
(b−a)n−1

n!

∫ b

a

(
B∗

n

(
y− t
b−a

)
−Bn

(
y−a
b−a

))
d f (n−1)(t) (1.2)
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396 IVA FRANJIĆ

where Bk(t) is the k -th Bernoulli polynomial and B∗
k(t) = Bk(t−�t�), t ∈ R .

For the reader’s convenience, let us recall some basic properties of Bernoulli poly-
nomials. Bernoulli polynomials Bk(t) are uniquely determined by

B′
k(x) = kBk−1(x), Bk(t +1)−Bk(t) = ktk−1, k � 0, B0(t) = 1.

For the k th Bernoulli polynomial we have

Bk(1− x) = (−1)kBk(x), x ∈ R, k � 1. (1.3)

The k th Bernoulli number Bk is defined by Bk = Bk(0) . From (1.3) it follows
that for k � 2, we have Bk(1) = Bk(0) = Bk. Note that B2k−1 = 0, k � 2 and B1(1) =
−B1(0) = 1/2.

B∗
k(x) are periodic functions of period 1 and are related to Bernoulli polynomials

as B∗
k(x) = Bk(x), 0 � x < 1. B∗

0(x) is a constant equal to 1, while B∗
1(x) is a discon-

tinuous function with a jump of −1 at each integer. For k � 2, B∗
k(t) is a continuous

function. For further details on Bernoulli polynomials see [1] and [6].

2. Main results

Let x ∈ (−1,1] and f : [−1,1] → R be such that f (n−1) is continuous and of
bounded variation on [−1,1] for some n � 1. Take y =−1 and y = x in (1.2), multiply
by 2−w(x), w(x) respectively and add. The following formula is produced:

∫ 1

−1
f (t)dt−Q(−1,x)+Tn−1(x) =

2n−1

n!

∫ 1

−1
Fn(x,t)d f (n−1)(t), (2.1)

where

Q(−1,x) = (2−w(x)) f (−1)+w(x) f (x) (2.2)

Tn−1(x) =
n−1

∑
k=1

2k−1

k!
Gk(x,1) [ f (k−1)(1)− f (k−1)(−1)], T0(x) = 0 (2.3)

Gn(x, t) = (2−w(x))B∗
n

(
1− t

2

)
+w(x)B∗

n

(
x− t

2

)
, (2.4)

Fn(x, t) = Gn(x,t)−Gn(x,1). (2.5)

Note that

∂ kGn(x, t)
∂ tk

=
n!

(−2)k(n− k)!
Gn−k(x,t) and Gn(x,−1) = Gn(x,1).

The following theorem gives the best possible estimate of error for this type of
quadrature formulas.
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THEOREM 1. Let p,q ∈ R be such that 1 � p, q � ∞ and 1/p + 1/q = 1 . If
f : [−1,1] → R is such that f (n) ∈ Lp[−1,1] for some n � 1 , then

∣∣∣∣
∫ 1

−1
f (t)dt −Q(−1,x)+Tn−1(x)

∣∣∣∣� 2n−1

n!

[∫ 1

−1
|Fn(x,t)|q dt

] 1
q

‖ f (n)‖p . (2.6)

The inequality is sharp for 1 < p � ∞ and the best possible for p = 1 .

Proof. Inequality (2.6) follows immediately after applying Hölder’s inequality to
the remainder in (2.1). To prove the inequality is sharp, take

f (n)(t) = sgnFn(x,t) · |Fn(x,t)|1/(p−1) for 1 < p < ∞
and f (n)(t) = sgnFn(x,t) for p = ∞ ;

then

∣∣∣∣
∫ 1

−1
Fn(x, t) f (n)(t)dt

∣∣∣∣=
∫ 1

−1
|Fn(x,t) f (n)(t)|dt =

(∫ 1

−1
|Fn(x, t)|q dt

) 1
q

‖ f (n)‖p . To

prove the inequality is the best possible for p = 1 and n � 2, first assume |Fn(x,t)|
achieves its maximal value at t0 ∈ (−1,1) and Fn(x,t0) > 0. For a small enough ε
define function fε such that

f (n−1)
ε (t) =

⎧⎨
⎩

0, t � t0
1
ε (t− t0), t0 � t � t0 + ε
1, t � t0 + ε

(2.7)

Then∣∣∣∣
∫ 1

−1
Fn(x, t) f (n)

ε (t)dt

∣∣∣∣= 1
ε

∫ t0+ε

t0
Fn(x,t)dt � Fn(x,t0)

ε

∫ t0+ε

t0
dt = max

t∈(−1,1)
|Fn(x,t)|

and since limε→0
1
ε
∫ t0+ε
t0

Fn(x,t)dt = Fn(x,t0) , the statement follows. If Fn(x,t0) < 0,

take gε such that g(n−1)
ε (t) = 1− f (n−1)

ε (t) .
As for the case n = 1, note that F1(x,t) is a piecewise decreasing and piecewise

linear function in t , with a jump at −1 and x on [−1,1] . So we have

sup
t∈[−1,1]

|F1(x,t)| = max{ |2−w(x)|, |1− x−w(x)|, 1− x}.

Assume supt∈[−1,1] |F1(x,t)| = |1− x−w(x)|. If 1− x−w(x) > 0, define fε such that

f (n−1)
ε (t) =

⎧⎨
⎩

0, t � x− ε
1
ε (t − x+ ε), x− ε � t � x
1, t � x

The claim now follows analogously as above. If 1− x−w(x) < 0, take gε such that

g(n−1)
ε (t) = 1− f (n−1)

ε (t) . If supt∈[−1,1] |F1(x,t)| = |2−w(x)| , take f (n−1)
ε as in (2.7)

with t0 = −1, and finally, if supt∈[−1,1] |F1(x,t)| = 1− x , take f (n−1)
ε as in (2.7) with

t0 = x . �
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2.1. Hermite-Hadamard-Type Inequality For 2-Convex Functions

As the coefficient w(x) is arbitrary, it can be chosen so that G1(x,1) = 0, and then

G1(x,1) = 0 ⇔ w(x) =
2

x+1
. (2.8)

This coefficient removes the values of the function at the end points of the interval
out of Tn−1(x) and thus provides the highest possible degree of exactness (namely,
such a quadrature rule is exact for all first degree polynomials), without the values of
the derivatives being included in the quadrature. To emphasize the coefficient we are
working with, we denote expressions (2.2)–(2.5) by QR1(−1,x), TR1

n−1(x), GR1
n (x,t) and

FR1
n (x, t) .

LEMMA 1 For x ∈ (−1,0]∪{1} , FR1
2 (x,t) has no zeros in the variable t on (−1,1) .

The sign of the function is determined by:

FR1
2 (x,t) > 0 for x ∈ (−1,0] and FR1

2 (1,t) < 0.

Proof. We have:

FR1
2 (x, t) =

2x
x+1

[
B2

(
1− t

2

)
− 1

6

]
+

2
x+1

[
B∗

2

(
x− t

2

)
−B2

(
x+1

2

)]
.

It is obvious that FR1
2 (x,−1) = FR1

2 (x,1) = 0. Assume: −1 < t � x � 1. Then:

FR1
2 (x, t) =

1+ t
2(1+ x)

(t(1+ x)−3x+1)= 0 ⇔ t∗ =
3x−1
x+1

.

It is elementary to see that t∗ � x , but t∗ > −1 ⇔ x > 0. Also, x = 1 ⇔ t∗ = 1. If
−1 < x � t < 1, FR1

2 (x,t) = 1
2 (1− t)2 > 0 , so the assertion is proved. �

THEOREM 2. Let f : [−1,1] → R be such that f ′′ is continuous on [−1,1] and
let x ∈ (−1,0]∪{1} . Then there exists ξ ∈ [−1,1] such that

∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x) =

1
3
(1−3x) f ′′(ξ ) (2.9)

and ∫ 1

−1
f (t)dt− 2

x+1
f (−x)− 2x

x+1
f (1) =

1
3
(1−3x) f ′′(−ξ ). (2.10)

Proof. (2.9) follows after applying the Mean Value Theorem for integrals and
Lemma 1 to the remainder in (2.1) for n = 2, with the coefficient as in (2.8). Note

that
∫ 1
−1 FR1

2 (x, t)dt = − 2
3

∫ 1
−1

∂GR1
3 (x,t)
∂ t dt − 2GR1

2 (x,1) = −2GR1
2 (x,1) . (2.10) follows

analogously for f (−x) . �
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REMARK 1. When considering the limit process x→−1, we obtain the following
quadrature rules: ∫ 1

−1
f (t)dt −2 f (−1)−2 f ′(−1) =

4
3

f ′′(ξ )

and ∫ 1

−1
f (t)dt −2 f (1)+2 f ′(1) =

4
3

f ′′(−ξ ).

THEOREM 3. If f : [−1,1]→ R is such that f ′ ∈ L∞[−1,1] , then for x ∈ (−1,0]∣∣∣∣
∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣� (1− x)2‖ f ′‖∞ (2.11)

while for x ∈ [0,1]∣∣∣∣
∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣�
(

1+ x2

1+ x

)2

‖ f ′‖∞ (2.12)

The node which provides the smallest error here is x =
√

2−1 ≈ 0.4142 and we have∣∣∣∣
∫ 1

−1
f (t)dt− (2−

√
2) f (−1)−

√
2 f (

√
2−1)

∣∣∣∣� (12−8
√

2) ‖ f ′‖∞

(12−8
√

2 ≈ 0.6863) .
Furthermore, if f : [−1,1]→R is such that f ′′ ∈ L∞[−1,1] , then for x ∈ (−1,0]∪

{1} we have ∣∣∣∣
∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣� 1
3
|1−3x| · ‖ f ′′‖∞ (2.13)

while for x ∈ (0,1)∣∣∣∣
∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣� 1−6x2 +24x3−3x4

3(1+ x)3 ‖ f ′′‖∞ (2.14)

The node which provides the smallest error in this case is x∗ := 2
√

2−1−2
√

2−√
2≈

0.2977 and we have:∣∣∣∣
∫ 1

−1
f (t)dt −0.4588 · f (−1)−1.5412 · f (x∗)

∣∣∣∣� 0.1644 · ‖ f ′′‖∞

Proof. (2.11) and (2.12) follow after taking p = ∞ and n = 1 in (2.6) with the
coefficient from (2.8). (2.13) and (2.14) follow similarly, for n = 2.

In order to find the nodes which provide the smallest error, the functions on the
right-hand sides of all four inequalities have to be minimized. Routine calculation
confirms the claims. When trying to minimize the function on the right-hand side of
(2.14), note that x4 +4x3−26x2 +4x+1 = (x+1)4−32x2 , so the zeros can be found
analytically. �
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THEOREM 4. Let f : [−1,1]→R be 2 -convex and such that f ′′ is continuous on
[−1,1] . Let x ∈ (−1,0] . Then

x
x+1

f (−1)+
1

x+1
f (x) � 1

2

∫ 1

−1
f (t)dt � f (−1)+ f (1)

2
. (2.15)

If f is 2 -concave, the inequalities in (2.15) are reversed.

Proof. For a 2-convex function f we have f ′′ � 0, while for a 2-concave function
f we have f ′′ � 0, so the statement follows easily from (2.9). �

As a special case, we now obtain the classical Hermite-Hadamard inequality.

COROLLARY 1 If f : [−1,1] → R is 2 -convex and such that f ′′ is continuous on
[−1,1] , then

f (0) � 1
2

∫ 1

−1
f (t)dt � f (−1)+ f (1)

2
.

If f is 2 -concave, the inequalities are reversed.

Proof. Take x = 0 in (2.15). �

REMARK 2. All the results obtained here easily follow for the quadrature rule
with the right-end of the interval as the preassigned node, therefore we do not state
them explicitly.

2.2. Hermite-Hadamard-Type Inequality For 3-Convex Functions

Suppose we want to obtain a quadrature rule exact for all polynomials of order
� 2, instead of � 1, as were (2.9) and (2.10). Observe (2.1) again. We considered the
case when G1(x,1) = 0. Now, impose another condition and choose the coefficient so
that G2(x,1) = 0:

G2(x,1) = 0 ⇔ w(x) =
4

3(1− x2)
(2.16)

This will produce a quadrature rule with the desired degree of exactness. However,
as a downside, the value of the function at the right end of the interval will now also
be included in the quadrature. To emphasize the coefficient we are working with, we
denote expressions (2.2)–(2.5) by QR2(−1,x), TR2

n−1(x), GR2
n (x,t) and FR2

n (x,t) for this
specific coefficient.

LEMMA 2 For x ∈ (−1,−1/3]∪ [1/3,1) , FR2
3 (x,t) has no zeros in t on (−1,1) . The

sign of this function is determined by:

FR2
3 (x,t) > 0 for x ∈ [1/3,1)

FR2
3 (x,t) < 0 for x ∈ (−1,−1/3].
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Proof. For −1 < t � x < 1, we have

FR2
3 (x,t) = (1+ t)2

(
2x

1+ x
− t

)
= 0 ⇔ t∗ =

2x
1+ x

,

and −1 < t∗ � x ⇔ −1/3 < x � 0. If −1 < x � t < 1,

FR2
3 (x,t) =

(1− t)2

4

(
2x

1− x
− t

)
= 0 ⇔ t∗∗ =

2x
1− x

.

Now, x � t∗∗ < 1 ⇔ 0 � x < 1/3. Therefore, the claim follows. �

THEOREM 5. Let f : [−1,1] → R be such that f ′′′ is continuous on [−1,1] and
let x ∈ (−1,−1/3]∪ [1/3,1) . Then there exists ξ ∈ [−1,1] such that

∫ 1

−1
f (t)dt− 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1) =

2x
9

f ′′′(ξ ). (2.17)

Proof. Analogous to the proof of Theorem 2. �

REMARK 3. For x = 1/3 and x = −1/3, from (2.17) we get the Radau 2-point
formulas: ∫ 1

−1
f (t)dt − 1

2
f (−1)− 3

2
f

(
1
3

)
=

2
27

f ′′′(ξ )

and ∫ 1

−1
f (t)dt− 3

2
f

(
−1

3

)
− 1

2
f (1) = − 2

27
f ′′′(−ξ )

REMARK 4. When considering the limit processes x → 1 and x → −1, the fol-
lowing quadrature rules are produced:

∫ 1

−1
f (t)dt− 2

3
f (−1)− 4

3
f (1)+

2
3

f ′(1) =
2
9

f ′′′(ξ )

and ∫ 1

−1
f (t)dt − 4

3
f (−1)− 2

3
f (1)− 2

3
f ′(−1) = −2

9
f ′′′(−ξ ).

Next, we consider the error estimates for this type of quadrature rules.

THEOREM 6. If f : [−1,1]→R is such that f ′′ ∈L∞[−1,1] , then for x∈ (−1,−1/3]
∪ [1/3,1) ∣∣∣∣

∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
� 4

81

(
1+3|x|
1+ |x|

)3

‖ f ′′‖∞ (2.18)
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while for x ∈ (−1/3,1/3)∣∣∣∣
∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
� 8(1−3x2)(1+3x2)2

81(1− x2)3 ‖ f ′′‖∞ (2.19)

Further, if f : [−1,1]→R is such that f ′′′ ∈ L∞[−1,1] , then for x ∈ (−1,−1/3]∪
[1/3,1) ,∣∣∣∣
∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣� 2|x|
9

‖ f ′′′‖∞ (2.20)

while for x ∈ (−1/3,1/3)∣∣∣∣
∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
� 8|x|5 +49x4−60|x|3 +22x2−4|x|+1

36(1−|x|)4 ‖ f ′′′‖∞ (2.21)

In both cases, the node which provides the smallest error is x = 0 . The quadrature
rule thus obtained is the classical Simpson’s rule. More precisely, we have:∣∣∣∣

∫ 1

−1
f (t)dt − 1

3
f (−1)− 4

3
f (0)− 1

3
f (1)

∣∣∣∣� 8
81

‖ f ′′‖∞

and ∣∣∣∣
∫ 1

−1
f (t)dt − 1

3
f (−1)− 4

3
f (0)− 1

3
f (1)

∣∣∣∣� 1
36

‖ f ′′′‖∞

Proof. (2.18) and (2.19) follow after taking p = ∞ and n = 2 in (2.6) with the
coefficient from (2.16). (2.20) and (2.21) follow similarly, for n = 3.

As for finding the node which provides the smallest error, the functions on the
right-hand sides of all four inequalities have to be minimized. The claim follows after
somewhat lengthy but routine calculation. �

COROLLARY 2 Let f : [−1,1] → R be such that f (n) ∈ L∞[−1,1] for n = 1,2 or 3 .
Then we have:∣∣∣∣

∫ 1

−1
f (t)dt − 1

2
f (−1)− 3

2
f

(
1
3

)∣∣∣∣� C∞
n ‖ f (n)‖∞, n = 1,2,3 (2.22)

where

C∞
1 =

25
36

, C∞
2 =

1
6
, C∞

3 =
2
27

.
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Proof. For n = 2 and n = 3 the assertions follow directly after taking x = 1/3 in
(2.18) and (2.20). As for n = 1, take n = 1 and p = ∞ in (2.6). �

COROLLARY 3 Let f : [−1,1] → R be such that f (n) ∈ L1[−1,1] for n = 1,2 or 3 .
Then we have:∣∣∣∣

∫ 1

−1
f (t)dt − 1

2
f (−1)− 3

2
f

(
1
3

)∣∣∣∣� C1
n ‖ f (n)‖1, n = 1,2,3 (2.23)

where

C1
1 =

5
6
, C1

2 =
2
9
, C1

3 =
1
12

.

Proof. Take p = 1 and n = 1,2,3, respectively, in (2.6) and then find
sup

t∈[−1,1]
|Fn(1/3, t)| . �

THEOREM 7. Let f : [−1,1] → R be 3 -convex and such that f ′′′ is continuous
on [−1,1] . Let x ∈ (−1,1/3] and y ∈ [1/3,1) . Then

1+3y
3(1+ y)

f (−1)+
4

3(1− y2)
f (y)+

1−3y
3(1− y)

f (1) (2.24)

�
∫ 1

−1
f (t)dt � 1+3x

3(1+ x)
f (−1)+

4
3(1− x2)

f (x)+
1−3x

3(1− x)
f (1)

If f is 3 -concave, the inequalities in (2.24) are reversed.

Proof. Analogous to the proof of Theorem 4. �

COROLLARY 4 If f : [−1,1]→ R is 3 -convex and f ′′′ is continuous on [−1,1] , then

1
2

f (−1)+
3
2

f

(
1
3

)
�
∫ 1

−1
f (t)dt � 3

2
f

(
−1

3

)
+

1
2

f (1) (2.25)

If f is 3 -concave, the inequalities in (2.25) are reversed.

Proof. Take x = −1/3 and y = 1/3 in (2.24). �

REMARK 5. Using another, more general approach, the inequality (2.25) was also
obtained in [2], i.e. [3].
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2.3. Hermite-Hadamard-Type Inequality and Radau 3-point Formulas

Since we have obtained the Radau 2-point formula as a special case in the previous
section, it is natural to consider if similar results can be derived for Radau 3-point
formula.

Let x1,x2 ∈ (−1,1] and x1 < x2 , and suppose f : [−1,1]→ R is such that f (n−1)

is continuous and of bounded variation on [−1,1] for some n � 1. Take y = −1, y =
x1 and y = x2 in (1.2), multiply by 2−w1(x1,x2)−w2(x1,x2), w1(x1,x2), w2(x1,x2)
respectively and add. The following formula is produced:

∫ 1

−1
f (t)dt −Q(−1,x1,x2)+Tn−1(x1,x2) =

2n−1

n!

∫ 1

−1
Fn(x1,x2,t)d f (n−1)(t), (2.26)

where

Q(−1,x1,x2) = (2−w1(x1,x2)−w2(x1,x2)) f (−1) (2.27)

+w1(x1,x2) f (x1)+ w2(x1,x2) f (x2)

Tn−1(x1,x2) =
n−1

∑
k=1

2k−1

k!
Gk(x1,x2,1) [ f (k−1)(1)− f (k−1)(−1)], (2.28)

Gn(x1,x2, t) = (2−w1(x1,x2)−w2(x1,x2))B∗
n

(
1− t

2

)
(2.29)

+w1(x1,x2)B∗
n

(
x1− t

2

)
+ w2(x1,x2)B∗

n

(
x2− t

2

)
Fn(x1,x2, t) = Gn(x1,x2,t)−Gn(x1,x2,1). (2.30)

Now, impose conditions:

G1(x1,x2,1) = G2(x1,x2,1) = G3(x1,x2,1) = G4(x1,x2,1) = 0.

The unique solution of this system

x1 =
1−√

6
5

, x2 =
1+

√
6

5
, w1(x1,x2) =

16+
√

6
18

, w2(x1,x2) =
16−√

6
18

(2.31)

are the nodes and the coefficients of the Radau 3-point formula.
To emphasize the nodes and the coefficients we are going to be working with in

this subsection, denote expressions (2.28)–(2.30) by TR3
n−1, GR3

n (t), FR3
n (t) and

QR3 =
2
9

f (−1)+
16+

√
6

18
f

(
1−√

6
5

)
+

16−√
6

18
f

(
1+

√
6

5

)
.

LEMMA 3 FR3
5 (t) has no zeros in (−1,1) and its sign is determined by FR3

5 (t) > 0 .

Proof. For −1 � t � (1−√
6)/5, we have FR3

5 (t) = 1
144(1 + t)4(1− 9t) so the

claim is obvious. As is for (1+
√

6)/5 � t < 1, since then FR3
5 (t) = 1

16 (1− t)5 . For
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(1−√
6)/5 � t � (1+

√
6)/5, the function is a bit more complicated:

FR3
5 (t) =

1
288

k(t)

where

k(t)=−18t5+5(
√

6+2)t4+20(3
√

6−7)t3−30(
√

6−2)t2+10(2
√

6−5)t+10−3
√

6.

We have to prove that k(t)> 0. From k′′′(t)=−1080t2+120(
√

6+2)t+120(3
√

6−7)
we conclude that k′′ increases on (t1,t2) and decreases on [ 1−√

6
5 ,t1)∪(t2, 1+

√
6

5 ] , where

t1 ≈ −0.068755 and t2 ≈ 0.563143 . This, together with the fact that k′′( 1−√
6

5 ) <

0, k′′(t1) < 0, k′′(t2) > 0, k′′( 1+
√

6
5 ) > 0, shows that k′′ has only one zero t∗∗ ∈

(t1,t2) . This means k′ is decreasing on [ 1−√
6

5 ,t∗∗) and increasing on (t∗∗, 1+
√

6
5 ] . Since

k′( 1−√
6

5 ) > 0 and k′( 1+
√

6
5 ) < 0, it follows that k′ has only one zero t∗ ∈ ( 1−√

6
5 ,t∗∗) .

From there we conclude that k increases on [ 1−√
6

5 ,t∗) and decreases on (t∗, 1+
√

6
5 ] .

Since k( 1−√
6

5 ) > 0 and k( 1+
√

6
5 ) > 0, the claim follows. �

THEOREM 8. If f : [−1,1] → R is such that f (5) is continuous on [−1,1] , then
there exists ξ ∈ [−1,1] such that

∫ 1

−1
f (t)dt −QR3 =

1
1125

f (5)(ξ )

and

∫ 1

−1
f (t)dt − 16−√

6
18

f

(
−1+

√
6

5

)
− 16+

√
6

18
f

(
−1−√

6
5

)
− 2

9
f (1)

= − 1
1125

f (5)(−ξ ).

Proof. Analogous to the proof of Theorem 2. �

THEOREM 9. If f : [−1,1] → R is 5-convex on [−1,1] and such that f (5) is
continuous on [−1,1] , then

2
9

f (−1)+
16+

√
6

18
f

(
1−√

6
5

)
+

16−√
6

18
f

(
1+

√
6

5

)

�
∫ 1

−1
f (t)dt � 16−√

6
18

f

(
−1+

√
6

5

)
+

16+
√

6
18

f

(
−1−√

6
5

)
+

2
9

f (1)

Proof. Follows immediately from Theorem 8. �
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THEOREM 10. Let p,q ∈ R be such that 1 � p, q � ∞ and 1/p + 1/q = 1 . If
f : [−1,1] → R is such that f (n) ∈ Lp[−1,1] for some n � 1 , then

∣∣∣∣
∫ 1

−1
f (t)dt−QR3 +TR3

n−1

∣∣∣∣� 2n−1

n!

[∫ 1

−1

∣∣FR3
n (t)

∣∣q dt

] 1
q

‖ f (n)‖p . (2.32)

The inequality is sharp for 1 < p � ∞ and the best possible for p = 1 .

Proof. Analogous to the proof of Theorem 1. �

COROLLARY 5 Let f : [−1,1] → R be such that f (k) ∈ L∞[−1,1] for k = 1,2,3,4 or
5 . Then we have ∣∣∣∣

∫ 1

−1
f (t)dt −QR3

∣∣∣∣� C∞
k ‖ f (k)‖∞

where

C∞
1 ≈ 0.434014, C∞

2 ≈ 0.0566841, C∞
3 ≈ 0.0106218,

C∞
4 ≈ 0.00247235, C∞

5 =
1

1125
≈ 0.000888889.

Proof. Take p = ∞ and n = 1,2,3,4,5 in (2.32). �

COROLLARY 6 Let f : [−1,1] → R be such that f (k) ∈ L1[−1,1] for k = 1,2,3,4 or
5 . Then we have ∣∣∣∣

∫ 1

−1
f (t)dt −QR3

∣∣∣∣� C1
k ‖ f (k)‖1

where

C1
1 =

∣∣∣FR3
1

(
(1−

√
6)/5

)∣∣∣≈ 0.537092, C1
2 =

∣∣∣FR3
2

(
(1−

√
6)/5

)∣∣∣≈ 0.094322,

C1
3 ≈ 0.0131784, C1

4 =
∣∣FR3

4 (−1/3)
∣∣≈ 0.00274348, C1

5 ≈ 0.00123618.

Proof. Take p = 1 and n = 1,2,3,4,5 in (2.32). �
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