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MORE ON THE TWO-POINT OSTROWSKI INEQUALITY
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Abstract. We improve the previous results of [7] on the L, -version of an inequality similar to
the two-point Ostrowski inequality of Mati¢ and Pecari¢ [3].

1. Introduction

Given a function f: [a,b] — R satisfying the Lipschitz condition with constant
M >0, and a < ¢ < d < b, Mati¢ and Pecari¢ [3] proved the following two-point
Ostrowski inequality:

bia/ahf( dt——/ £()

This result was generalized by Pecari¢, Peri¢ and Vukeli¢ in [5]. Further gener-
alizations were done by Agli¢ Aljinovié, Pecari¢ and Peri¢ in [1], where they consider
also the Ly -cases, 1 < p < e, as well as the general case when [c,d] € [a,b]. Among
other things, they proved that for a < ¢ < b < d and for a function f such that |f’|” is
R-integrable on [a,d], the following inequality holds:

'bia/abf(t)dt—ﬁ/cdf(t)dt

1
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Next, Dragomir [2] proved the following Ostrowski type inequality for a continu-

ous function f: [a,b] — R which is differentiable on (a,b):

a+b f x_ﬂ 2
L [ e < o <—+(b_a)> I =1l

where 1(t) =1, t € [a,b]. These results have been generalized by Pe¢ari¢ and Ungar
in [6] and [7]. Here we will improve on these results, generally giving better estimates.
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2. The main result

We will first consider the case of a function f: [a¢,b] — R and a sub-segment
[c,d] C [a,b]. The case of ‘overlapping’ intervals, i.e. when the intersection [a,b] N
[c,d] equals [c,b] or [a,d], will be dealt with in Section 4.

Now we state our main result. Throughout the paper, by t: [a,b] — R we will
denote the inclusion function 1(x) = x.

THEOREM 1. Let the function f: [a,b] — R be continuous on [a,b] and differen-
tiable on (a,b) with 0 < a < b. Then for 11—7—1-5 =1, with 1 < p,q < o, and numbers
a < ¢ <d< b, the following inequality holds:

d b 1
(B*~a) [ o~ (@ =) [ foa| < SIKl, U =1l
c a
where
22 @
(d —c)(;—l) a<u<c
b2c2_a2d2
Ku)=qp—a>+c2—d*— 5 c<u<d- ()
) b !
(d —c)(;—l) d<u<b

First we state a simple lemma (for the proof see [6]):

LEMMA 2. Let the function f: [a,b] — R be continuous on |a,b] and differenti-
able on (a,b) with a-b> 0. Then

W)= @) =t [ (70— s () 5 du G

forall x,t € [a,b].

Proof of Theorem 1. Applying Lemma 2 to our function f and integrating on ¢
over [a,b], gives

o s [y
:x/ab(t/xt(f(u)—uf/(u))u—lzdu> dr (4a)

and changing the order of integration we obtain

= _/ax(/a" f(“)_uf/(u))i—;dt>du +/Xb(/ub(f(u)—uf/(u)) i—édz)du (4b)
5[ - @ (G- w-urwa). @
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Integrating this identity on x over [c,d], multiplying by 2, and again changing the order
of integration, gives

@) [ @~ [ 1o a
:/:Il(u)du—i—/Cdlg(u)du—f—/Cdlg(u)du—i—/dbh(u)du )
where
(5= 1) (Fw) —uf'(w)) dx (6a)
b(u) = /ﬁ(é 1) (f () — s () dx (6b)
(55 1) ()~ (w)) dx (60)

— 1) (f(w) —uf'(u))dx. (6d)

Evaluating these integrals, from (5) we obtain

0 -a) [T @) [ina = [K@(rw-urw)a @

where K(u) is given by (2).
Applying the Holder’s inequality to (7) gives (1), proving the theorem. [

In order to consider the special cases p =1, g = and p =0, ¢ =1, note that
the function K is continuous and decreasing on [a,c], increasing on [c,d] and again

decreasing on [d,b], being zero at a, b, and up = 4/ % (see Fig. 1).

I'x

Figure 1. Function K

Therefore

Kl = ma [K(u)| = max{~K(c) K(d))
t—a P-d*
=(d2—cz)~max{c—2,7} (8)
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and

1Kl = [ 1) du

= 2atb)(c+d) (b—atc—d) — 4\ (PP —ad) PP —a>+A—d?), ()

and for p = g =2 we obtain

1K1 = ([ K00 au)

— 2(d37\/%;) \/(b2—a2)(a2d+b20)—3cd(b2— a*)+2cd(b—a)(c+d).  (10)

This proves

COROLLARY 3. Let the function f: [a,b] — R be continuous on [a,b] and dif-
Sferentiable on (a,b) with 0 < a <b, andlet a < c<d<b. Then

- [1ac- @) [ roa

< ((@+b)(e+a)b-ate—d)=2y/ (B2 —aa?) (B —a?+2—d2) )| f~1 |
(11)

=) [rac-@-3) [ roa

A—a* -

d2
(@ =) -max { <55 TS =, (12)

<

N —

and

\(bz ~@) [ @) [ o) u

© 02— (@2d+b2e) - 3ed (B~ a?)+2ed(b—a)(c+d) - | f1f 2. (13)

\/?

3. Limit cases: a=c,c=d,and d =b

Let us first consider the case a = c¢. Then the left hand side in (7) becomes

bz—a2)/adf(x)dx— (@2 —az)/ahf(t)dt

b d b
:az/d f(x)dx—i—bz/a f(x)dx—dz/a f(x)dx, (14)
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and we get

b d b b
p /d 7o) de+b? / F(x) de—d? / f(x)dx:% / G) (fw)—uf' (W) du (15
where

a
Gwﬁz(w—d%Q—ﬁa aguéd. "
(%—aa(——g d<u<hb

Applying the Holder’s inequality, gives
COROLLARY 4. Let the function f: [a,b] — R be continuous on [a,b] and dif-

ferentiable on (a,b) with 0 < a < b. Then for %—i— é =1, with 1 < p,q < o, and
a < d < b, the following inequality holds:

2 b 2 d 2 b 1
& [[rwas i [ Jwac- [ Jead < 3161 151l an

where the function G is given by (16).
For the special cases (p,q) = (1,%0), (p,q) = (e, 1), and (p,q) = (2,2) we have

COROLLARY 5. Let the function f: [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a < d < b. Then the following three
inequalities hold:

b d b
fLﬂ@w+#aﬂ@w—f f(x)dx
<b-d)d—a)(b—a)-|f=1f ]
b d
fLﬂ@m+ﬁaﬂmm—f 70 d

1
<5<b2—d2>(1——) IF =1

b d
fLﬂ@w+# P dx—d? [ Fx) dx

< \/%(d—a)(b—d)\/(b—a)(a+b+2d)~ 1F=1f .

The case d = b differs from the case a = ¢ only in that both sides in (14) and
(15) change signs.

Let us now consider the hmlt case d = ¢ =: x. By the Mean value Theorem it is
reasonable to assume that -— f f(s)ds has the value f(x). It will be more convenient,
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both for taking the required limits and for comparing the results with those in [7], to
divide (1) by (b — a)(d* — ¢?) and rewrite it in the following form:

a+b 1 b
c+d d—c/f b—a/uf(t)dt

b
- —aE— | K@@ ay

where the function K is as in (2). Taking the appropriate limits in (18), we obtain

a+bf
oL ba/f 2/k W—uf (W)du  (19)

where

1 a
5 (—2 — 1) a<u<x
ky(u) = I“ Z2 . (20)
5=alm1) w<u<s
Note that the function k, is discontinuous at x.
Aplying the Holder’s inequality we obtain

COROLLARY 6. Let the function f: [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b. Then for %—l—é =1, with 1 < p,q <o, and
a < x < b, the following inequality holds:

“erbf /f 1dr| <

IIkxIIq' 1f =1 fllp-

In general case, the integrals involved in calculating ||k.||; can be expressed in
closed form only using Gamma and the Gauss’s hypergeometric function ,Fj, giving

bT(L—q)T(1+ a (1 1 >
kxq:< (3 % Q) @i;@ﬂm(_?_.l._)

1

1 [/b\¥ 1 3 2\ \«
= F(= : pa ) 21
Yog—1 (x) 2 1(2 4 =45~ qb2)> 21

But in some special cases the norm |[|k,||, can be calculated, and in particular we
get:

COROLLARY 7. Let the function f: [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a < x < b. Then the following three
inequalities hold:

a+b f
t)dt
2 x  b— a/f
2
< 1 <a 24+b
b 2x

—(a+b)+x)- |f =1/l 22)
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a+b f /
f(r)de
2 x b—a
a* b’ ,
<z e {1-GE -1}l 23)
a+b f
2 x  b-— a/f ) dr

55EGZ£5§§<K1—§)%“+3x*+(?—4)?b+sx97wf—wfw} 24

The estimate (21) coincides with those in [2], [6] and [7], whereas (22) and (23) are
better than those in [6] and [7].

4. Case of overlapping intervals

We turn now to the case when the line segments [a,b] and [c,d] overlap, i.e.
[a,b] N [b,d] equals [c,b] or [a,d]. It suffices to consider the first case, a < ¢ < b <d.
The other one is obtained by interchanging a < ¢ and b < d.

First let us introduce a notation. For real numbers oo < Yy < 0 < f and a real
function ¢ € L,[ct,B], 1 < p < oo, denote by

1

folliyar= ([ o017 ar)”
the L, -norm of the restriction of ¢ to the sub-interval [y, 8] C [, B]. Obviously, for
ly,o } [y, 8], the following holds:
ol .61 < @l p .8 - (25)

We can now state our main result for overlapping intervals:

THEOREM 8. Let 0 < a < ¢ < b <d and let the function f: [a,d] — R be con-
tinuous on [a,d) and differentiable on (a,d). Then for %—I— Ll] =1, with 1 < p,q < oo,
the following inequality holds:

02 [Tae- @) [ s w

where

1
<5 IElpaa If =t lgaq (26

c<u<sb - 27)
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Proof. We proceed as in the proof of Theorem 1: apply Lemma 2 to f, integrate
on t over [a,b], and change the order of integration to obtain (4c):

b —a?

oL
= )_26 (/:(é_o (f(u)—uf’(u))du —|—/xh<2—2—1> (f(u)—uf/(u))du). (4¢)

u2

Multiplying (4c) by 2, integrating on x over [c,d], and changing the order of
integration, gives

d b
(- [ flde-(@~&) [ fla
c a
¢ d d d
:/ Il(u)du—f—/ Ig(u)du—i—/ Ig(u)du—/ Sy (28)
a c c b
where I, I, and I3 are as in (6) (exceptthatin (6b) and (6¢) I, and I3 are integrated
over different segments), and
2

1w = [ 5(G 1) () p ) ax 29)

As in the proof of Theorem 1, evaluating these integrals gives

- [Fea— @) [Joa=1 [0 —usw@)a G0

where L(u) is given by (26). Now apply the Holder’s inequality to obtain (25), which
proves the theorem. [

In order to consider the special cases p =1, g = and p =, g = 1, note that
the function L is continuous and negative, decreasing on [a,c]| from L(a) =0 to L(c),
on [c,b] increasing/decreasing from L(c) to L(b), depending on a, b, ¢, and d, and
increasing on [b,d] from L(b) to L(d) =0 (see Fig.2).

a c b d ac b d

FL 1_‘L

Figure 2. Function L
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Therefore
b
LI jaa) = / \L(u)|du=2(b—a)(d—c)(d—b+c—a) (1)
a
and

Ll = ma [L()] = max{ ~L(e), ~L(b)}

(@ =A@ =) (B =)&)
— max { 5 , = } (32)
In addition, for p = g =2 we have
b 1
Ll = ( [ 12G0P du)*
2 b—ad—0)
= —= —a)(d—c
v/ 3abc
x <a2b(d—c)(a+b) +be (263 + (c+d) (a2 —26>—3b+ 3bc))
1
+ac(2b® - (c+d)(3b2—3bc+d2))> ’, (33)

This proves

COROLLARY 9. Let the function f: [a,b] — R be continuous on [a,b] and dif-
Sferentiable on (a,b) with 0 <a <b, andlet a <c<d<b. Then

=) [1a- =) [ row
<b-a)d—o)d—btc—a) | f~1fwfua, (34)

and

- [T @) [0
1

2 _ 2\(2 — g2 2 2V(d? — b2
(d )( )7(b l)]gd b)}-||f—1f’

< —max{

3 1[a.d]s (35)

2

where 1(t) =t, t € [a,b].
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