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MORE ON THE TWO–POINT OSTROWSKI INEQUALITY
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Abstract. We improve the previous results of [7] on the Lp -version of an inequality similar to
the two-point Ostrowski inequality of Matić and Pečarić [3].

1. Introduction

Given a function f : [a,b] → R satisfying the Lipschitz condition with constant
M > 0, and a � c < d � b , Matić and Pečarić [3] proved the following two-point
Ostrowski inequality:∣∣∣∣∣ 1

b−a

∫ b

a
f (t)dt− 1

d− c

∫ d

c
f (x)dx

∣∣∣∣∣� (c−a)2 +(b−d)2

2(c−a+b−d)
·M .

This result was generalized by Pečarić, Perić and Vukelić in [5]. Further gener-
alizations were done by Aglić Aljinović, Pečarić and Perić in [1], where they consider
also the Lp -cases, 1 � p � ∞ , as well as the general case when [c,d] � [a,b] . Among
other things, they proved that for a � c < b � d and for a function f such that | f ′|p is
R-integrable on [a,d] , the following inequality holds:∣∣∣∣ 1

b−a

∫ b

a
f (t)dt − 1

d− c

∫ d

c
f (t)dt

∣∣∣∣
�
(

1
(q+1)(a−b+d− c)

·
(

(d−b)q+1

(d− c)q−1 − (c−a)q+1

(b−a)q−1

))1
q

· ‖ f ′‖p .

Next, Dragomir [2] proved the following Ostrowski type inequality for a continu-
ous function f : [a,b] → R which is differentiable on (a,b) :

∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣� b−a
|x|

(
1
4

+
(

x− a+b
2

b−a

)2
)
· ‖ f − ι f ′‖∞ ,

where ι(t) = t , t ∈ [a,b] . These results have been generalized by Pečarić and Ungar
in [6] and [7]. Here we will improve on these results, generally giving better estimates.
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2. The main result

We will first consider the case of a function f : [a,b] → R and a sub-segment
[c,d] ⊆ [a,b] . The case of ‘overlapping’ intervals, i. e. when the intersection [a,b]∩
[c,d] equals [c,b] or [a,d] , will be dealt with in Section 4.

Now we state our main result. Throughout the paper, by ι : [a,b] → R we will
denote the inclusion function ι(x) = x .

THEOREM 1. Let the function f : [a,b]→ R be continuous on [a,b] and differen-
tiable on (a,b) with 0 < a < b. Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ , and numbers

a � c < d � b, the following inequality holds:∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣� 1
2
‖K‖q · ‖ f − ι f ′‖p (1)

where

K(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(d2− c2)
(a2

u2 −1
)

a � u � c

b2−a2 + c2−d2− b2c2−a2d2

u2 c � u � d

(d2− c2)
(b2

u2 −1
)

d � u � b

. (2)

First we state a simple lemma (for the proof see [6]):

LEMMA 2. Let the function f : [a,b] → R be continuous on [a,b] and differenti-
able on (a,b) with a ·b > 0 . Then

t f (x)− x f (t) = xt
∫ t

x

(
f (u)−u f ′(u)

) 1
u2 du (3)

for all x, t ∈ [a,b] .

Proof of Theorem 1. Applying Lemma 2 to our function f and integrating on t
over [a,b] , gives

b2−a2

2
f (x)− x

∫ b

a
f (t)dt

= x
∫ b

a

(
t
∫ t

x

(
f (u)−u f ′(u)

) 1
u2 du

)
dt (4a)

and changing the order of integration we obtain

= −
∫ x

a

(∫ u

a

(
f (u)−u f ′(u)

) xt
u2 dt

)
du+

∫ b

x

(∫ b

u

(
f (u)−u f ′(u)

) xt
u2 dt

)
du (4b)

=
x
2

(∫ x

a

(a2

u2−1
)(

f (u)−u f ′(u)
)
du+

∫ b

x

(b2

u2 −1
)(

f (u)−u f ′(u)
)
du

)
. (4c)
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Integrating this identity on x over [c,d] , multiplying by 2, and again changing the order
of integration, gives

(b2 −a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

=
∫ c

a
I1(u)du+

∫ d

c
I2(u)du+

∫ d

c
I3(u)du+

∫ b

d
I4(u)du (5)

where

I1(u) =
∫ d

c
x
(a2

u2 −1
)(

f (u)−u f ′(u)
)
dx (6a)

I2(u) =
∫ d

u
x
(a2

u2 −1
)(

f (u)−u f ′(u)
)
dx (6b)

I3(u) =
∫ u

c
x
(b2

u2 −1
)(

f (u)−u f ′(u)
)
dx (6c)

I4(u) =
∫ d

c
x
(b2

u2 −1
)(

f (u)−u f ′(u)
)
dx. (6d)

Evaluating these integrals, from (5) we obtain

(b2−a2)
∫ d

c
f (x)dx− (d2−c2)

∫ b

a
f (t)dt =

1
2

∫ b

a
K(u)

(
f (u)−u f ′(u)

)
du (7)

where K(u) is given by (2) .
Applying the Hölder’s inequality to (7) gives (1) , proving the theorem. �
In order to consider the special cases p = 1, q = ∞ and p = ∞ , q = 1, note that

the function K is continuous and decreasing on [a,c] , increasing on [c,d] and again

decreasing on [d,b] , being zero at a , b , and u0 =
√

b2c2−a2d2

b2−a2+c2−d2 (see Fig. 1).

a c d bu0

ΓK

Figure 1. Function K

Therefore

‖K‖∞ = max
u∈[a,b]

|K(u)| = max{−K(c),K(d)}

= (d2− c2) ·max
{c2−a2

c2 ,
b2−d2

d2

}
(8)
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and

‖K‖1 =
∫ b

a
|K(u)|du

= 2(a+b)(c+d)(b−a+c−d)−4
√

(b2c2−a2d2)(b2−a2+c2−d2), (9)

and for p = q = 2 we obtain

‖K‖2 =
(∫ b

a
|K(u)|2 du

)1
2

=
2(d−c)√

3cd

√
(b2−a2)(a2d+b2c)−3cd(b2−a2)+2cd(b−a)(c+d). (10)

This proves

COROLLARY 3. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a � c < d � b. Then∣∣∣∣(b2−a2)

∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
�
(
(a+b)(c+d)(b−a+c−d)−2

√
(b2c2−a2d2)(b2−a2+c2−d2)

)
·‖ f−ι f ′‖∞,

(11)

∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 1

2
(d2 − c2) ·max

{c2−a2

c2 ,
b2−d2

d2

}
· ‖ f−ι f ′‖1, (12)

and∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� d−c√

3cd

√
(b2−a2)(a2d+b2c)−3cd(b2−a2)+2cd(b−a)(c+d) · ‖ f−ι f ′‖2. (13)

3. Limit cases: a = c , c = d , and d = b

Let us first consider the case a = c . Then the left hand side in (7) becomes

(b2−a2)
∫ d

a
f (x)dx− (d2−a2)

∫ b

a
f (t)dt

= a2
∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx, (14)
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and we get

a2
∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx =

1
2

∫ b

a
G(u)

(
f (u)−u f ′(u)

)
du (15)

where

G(u) =

⎧⎪⎪⎨
⎪⎪⎩

(b2−d2)
(
1− a2

u2

)
a � u � d

(d2 −a2)
(b2

u2 −1
)

d � u � b

. (16)

Applying the Hölder’s inequality, gives

COROLLARY 4. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b. Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ , and

a � d � b, the following inequality holds:∣∣∣∣a2
∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx

∣∣∣∣� 1
2
‖G‖q · ‖ f − ι f ′‖p (17)

where the function G is given by (16) .

For the special cases (p,q) = (1,∞) , (p,q) = (∞,1) , and (p,q) = (2,2) we have

COROLLARY 5. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a � d � b. Then the following three
inequalities hold:∣∣∣∣a2

∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx

∣∣∣∣
� (b−d)(d−a)(b−a) · ‖ f − ι f ′‖∞∣∣∣∣a2

∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx

∣∣∣∣
� 1

2
(b2−d2)

(
1− a2

b2

)
· ‖ f − ι f ′‖1∣∣∣∣a2

∫ b

d
f (x)dx+b2

∫ d

a
f (x)dx−d2

∫ b

a
f (x)dx

∣∣∣∣
� 1√

3d
(d−a)(b−d)

√
(b−a)(a+b+2d)· ‖ f − ι f ′‖2.

The case d = b differs from the case a = c only in that both sides in (14) and
(15) change signs.

Let us now consider the limit case d = c =: x . By the Mean value Theorem it is
reasonable to assume that 1

d−c

∫ d
c f (s)ds has the value f (x) . It will be more convenient,
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both for taking the required limits and for comparing the results with those in [7], to
divide (1) by (b−a)(d2− c2) and rewrite it in the following form:

a+b
c+d

· 1
d− c

∫ d

c
f (x)dx− 1

b−a

∫ b

a
f (t)dt

=
1

2(b−a)(d2− c2)

∫ b

a
K(u)( f (u)−u f ′(u))du (18)

where the function K is as in (2) . Taking the appropriate limits in (18) , we obtain

a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt =

1
2

∫ b

a
kx(u)( f (u)−u f ′(u))du (19)

where

kx(u) =

⎧⎪⎪⎨
⎪⎪⎩

1
b−a

(a2

u2 −1
)

a � u � x

1
b−a

(b2

u2 −1
)

x < u � b

. (20)

Note that the function kx is discontinuous at x .

Aplying the Hölder’s inequality we obtain

COROLLARY 6. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b. Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ , and

a � x � b, the following inequality holds:∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣� 1
2
‖kx‖q · ‖ f − ι f ′‖p .

In general case, the integrals involved in calculating ‖kx‖q can be expressed in
closed form only using Gamma and the Gauss’s hypergeometric function 2F1 , giving

‖kx‖q =
(

bΓ( 1
2 −q)Γ(1+q)√

π
− a

√
π Γ(1+q)
Γ( 1

2 +q)
+ x 2F1

(
−1

2
,−q; 1

2 ;
a2

x2

)

+ x
1

2q−1

(
b
x

)2q

2F1

(
1
2
−q,−q;

3
2
−q;

x2

b2

))1
q

. (21)

But in some special cases the norm ‖kx‖q can be calculated, and in particular we
get:

COROLLARY 7. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a � x � b. Then the following three
inequalities hold:∣∣∣∣a+b

2
· f (x)

x
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

b−a

(a2 +b2

2x
− (a+b)+ x

)
· ‖ f − ι f ′‖∞ (22)
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∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

2(b−a)
max

{
1− a2

x2 ,
b2

x2 −1
}
· ‖ f − ι f ′‖1 (23)∣∣∣∣a+b

2
· f (x)

x
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
� 1

2(b−a)
√

3

((
1−a

x

)3
(a+3x)+

(b
x
−1
)3

(b+3x)
)1

2

· ‖ f − ι f ′‖2. (24)

The estimate (21) coincides with those in [2], [6] and [7], whereas (22) and (23) are
better than those in [6] and [7].

4. Case of overlapping intervals

We turn now to the case when the line segments [a,b] and [c,d] overlap, i. e.
[a,b]∩ [b,d] equals [c,b] or [a,d] . It suffices to consider the first case, a � c < b � d .
The other one is obtained by interchanging a ↔ c and b ↔ d .

First let us introduce a notation. For real numbers α � γ < δ � β and a real
function ϕ ∈ Lp[α,β ] , 1 � p � ∞ , denote by

‖ϕ‖p,[γ,δ ] :=
(∫ δ

γ
|ϕ(t)|p dt

) 1
p

the Lp -norm of the restriction of ϕ to the sub-interval [γ,δ ] ⊆ [α,β ] . Obviously, for
[γ ′,δ ′] ⊆ [γ,δ ] , the following holds:

‖ϕ‖p,[γ ′,δ ′] � ‖ϕ‖p,[γ,δ ] . (25)

We can now state our main result for overlapping intervals:

THEOREM 8. Let 0 < a � c < b � d and let the function f : [a,d] → R be con-
tinuous on [a,d] and differentiable on (a,d) . Then for 1

p + 1
q = 1 , with 1 � p,q � ∞ ,

the following inequality holds:∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2−c2)

∫ d

a
f (t)dt

∣∣∣∣� 1
2
‖L‖p,[a,d] · ‖ f − ι f ′‖q,[a,d] (26)

where

L(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(d2− c2)
(a2

u2 −1
)

a � u � c

b2−a2 + c2−d2− b2c2−a2d2

u2 c � u � b

(b2−a2)
(
1− d2

u2

)
b � u � d

. (27)
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Proof. We proceed as in the proof of Theorem 1: apply Lemma 2 to f , integrate
on t over [a,b] , and change the order of integration to obtain (4c) :

b2−a2

2
f (x)− x

∫ b

a
f (t)dt

=
x
2

(∫ x

a

(a2

u2 −1
)(

f (u)−u f ′(u)
)
du+

∫ b

x

(b2

u2 −1
)(

f (u)−u f ′(u)
)
du

)
. (4c)

Multiplying (4c) by 2, integrating on x over [c,d] , and changing the order of
integration, gives

(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

=
∫ c

a
I1(u)du+

∫ d

c
I2(u)du+

∫ d

c
I3(u)du−

∫ d

b
J4(u)du (28)

where I1 , I2 , and I3 are as in (6) (except that in (6b) and (6c) I2 and I3 are integrated
over different segments), and

J4(u) =
∫ d

c
x
(d2

u2 −1
)(

f (u)−u f ′(u)
)
dx. (29)

As in the proof of Theorem 1, evaluating these integrals gives

(b2−a2)
∫ d

c
f (x)dx− (d2−c2)

∫ b

a
f (t)dt =

1
2

∫ d

a
L(u)

(
f (u)−u f ′(u)

)
du (30)

where L(u) is given by (26) . Now apply the Hölder’s inequality to obtain (25) , which
proves the theorem. �

In order to consider the special cases p = 1, q = ∞ and p = ∞ , q = 1, note that
the function L is continuous and negative, decreasing on [a,c] from L(a) = 0 to L(c) ,
on [c,b] increasing/decreasing from L(c) to L(b) , depending on a , b , c , and d , and
increasing on [b,d] from L(b) to L(d) = 0 (see Fig. 2).

a c b d

ΓL

a c b d

ΓL

Figure 2. Function L
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Therefore

‖L‖1,[a,d] =
∫ b

a
|L(u)|du = 2(b−a)(d− c)(d−b+ c−a) (31)

and

‖L‖∞,[a,d] = max
u∈[a,d]

|L(u)| = max{−L(c),−L(b)}

= max
{ (d2− c2)(c2 −a2)

c2 ,
(b2 −a2)(d2 −b2)

b2

}
. (32)

In addition, for p = q = 2 we have

‖L‖2,[a,d] =
(∫ b

a
|L(u)|2 du

)1
2

=
2√
3abc

√
(b−a)(d− c)

×
(
a2b(d−c)(a+b)+bc

(
2b3 +(c+d)(d2−2c2−3b2+3bc)

)
+ac

(
2b3− (c+d)(3b2−3bc+d2)

))1
2
. (33)

This proves

COROLLARY 9. Let the function f : [a,b] → R be continuous on [a,b] and dif-
ferentiable on (a,b) with 0 < a < b, and let a � c < d � b. Then∣∣∣∣(b2−a2)

∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� (b−a)(d− c)(d−b+ c−a) · ‖ f−ι f ′‖∞,[a,d], (34)

and ∣∣∣∣(b2−a2)
∫ d

c
f (x)dx− (d2− c2)

∫ b

a
f (t)dt

∣∣∣∣
� 1

2
max

{(d2 − c2)(c2 −a2)
c2 ,

(b2−a2)(d2 −b2)
b2

}
· ‖ f−ι f ′‖1,[a,d], (35)

where ι(t) = t , t ∈ [a,b] .
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