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GENERAL FOUR–POINT QUADRATURE FORMULAE WITH

APPLICATIONS FOR α –L–HÖLDER TYPE FUNCTIONS
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Dedicated to Professor Josip Pečarić
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Abstract. In this paper we establish a variant of general four-point weighted quadrature formula.
This new formula is used to present several Ostrowski type inequalities for α -L -Hölder func-
tions.

1. Introduction

The most elementary quadrature rules in four nodes are Simpson’s 3/8 rule based
on the following four point formula∫ b

a
f (t)dt =

b−a
8

[
f (a)+3 f

(
2a+b

3

)
+3 f

(
a+2b

3

)
+ f (b)

]
− (b−a)5

6480
f (4)(ξ ),

(1.1)
where ξ ∈ [a,b] , and Lobatt’s rule based on the formula

∫ 1

−1
f (t)dt =

1
6

[
f (−1)+5 f

(
−
√

5
5

)
+5 f

(√
5

5

)
+ f (1)

]
− 2

23625
f (6)(η), (1.2)

where η ∈ [−1,1] . Formula (1.1) is valid for any function f with continuous fourth
derivative f (4) on [a,b] and formula (1.2) for any function f with continuous sixth
derivative f (6) on [−1,1] .

Let f : [a,b]→R be differentiable on [a,b] and f ′ : [a,b]→R integrable on [a,b] .
Then the Montgomery identity holds [4]

f (x) =
1

b−a

∫ b

a
f (t)dt +

∫ b

a
P(x, t) f ′ (t)dt, (1.3)

where P(x, t) is the Peano kernel defined by

P(x,t) =

⎧⎪⎨⎪⎩
t−a
b−a

, a � t � x

t−b
b−a

, x < t � b
.
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Now, let us suppose that w : [a,b] → [0,∞〉 is some probability density function sat-
isfying

∫ b
a w(t)dt = 1, and W (t) =

∫ t
a w(x)dx for t ∈ [a,b] , W (t) = 0 for t < a and

W (t) = 1 for t > b . In [5] J. E. Pečarić proved a weighted generalization of the well
known Montgomery identity

f (x) =
∫ b

a
w(t) f (t)dt +

∫ b

a
Pw (x,t) f ′ (t)dt,

where the weighted Peano kernel is defined by

Pw (x,t) =

{
W (t) , a � t � x

W (t)−1, x < t � b
.

In [2] G. A. Anastassiou used the following equality (which is an immediate con-
sequence of the well known Taylor’s formula):

g(y)−g(x)−
n

∑
i=1

g(i) (x)
i!

(y− x)i =
1

(n−1)!

∫ y

x

(
g(n) (t)−g(n) (x)

)
(y− t)n−1 dt,

where g : I ⊆ R → R is such that for some n ∈ N the derivative g(n) exists for all
t ∈ [a,b]⊂ I (a < b) and x,y belong to [a,b] .

These two identities were used in the recent paper [1], where A. Aglić Aljinović
and J. Pečarić introduced two new extensions of the weighted Montgomery identity.

In this paper we continue our work which has been started in [3]. Namely, we use
one of those new weighted Montgomery identities to establish for each x∈ (a,(a+b)/2]
a general four-point quadrature formula of the type∫ b

a
w(t) f (t)dt =

(
1
2
−A(x)

)
[ f (a)+ f (b)]+A(x) [ f (x)+ f (a+b− x)]+R( f ,w;x) ,

(1.4)
where R( f ,w;x) is the reminder and A : (a,(a+b)/2] → R a real function. The ob-
tained formula is used to prove several Ostrowski-type inequalities for α -L -Hölder
functions.

2. General four-point quadrature formula

Let I be an open interval in R, [a,b] ⊂ I and let f : I → R be such that f (n−1)

is absolutely continuous function for some n � 2. In the recent paper [1] the following
extension of the Montgomery identity was proved for each x ∈ [a,b] :

∫ b

a
w(t) f (t)dt = f (x)−

n−1

∑
i=0

f (i+1) (a)
i!

∫ x

a
W (t) (t−a)i dt

+
n−1

∑
i=0

f (i+1) (b)
i!

∫ b

x
(1−W (t)) (t−b)i dt
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+
1

(n−2)!

{∫ x

a
W (t)

[∫ t

a

(
f (n) (a)− f (n) (s)

)
(t− s)n−2 ds

]
dt

+
∫ b

x
(1−W (t))

[∫ b

t

(
f (n) (b)− f (n) (s)

)
(t− s)n−2 ds

]
dt

}
,

(2.1)

where w : [a,b] → [0,∞〉 is some probability density function.
In this section we use (2.1) to study for each number x ∈ (

a, a+b
2

]
the general

four-point quadrature formula of the type (1.4) .
Let f : [a,b] → R be such that f (n) exists on [a,b] for some n � 2. We introduce

the following notation for each x ∈ (
a, a+b

2

]
D(x) =

(
1
2
−A(x)

)
[ f (a)+ f (b)]+A(x) [ f (x)+ f (a+b− x)] .

Further, we define

tn (x) =
(

1
2
−A(x)

){n−1

∑
i=0

f (i+1) (b)
i!

[∫ b

a
(1−W (t))(t−b)i dt

]

−
n−1

∑
i=0

f (i+1) (a)
i!

[∫ b

a
W (t)(t−a)i dt

]}

+A(x)

{
n−1

∑
i=0

f (i+1) (b)
i!

[∫ b

x
(1−W (t))(t−b)i dt +

∫ b

a+b−x
(1−W (t))(t−b)i dt

]

−
n−1

∑
i=0

f (i+1) (a)
i!

[∫ x

a
W (t) (t−a)i dt +

∫ a+b−x

a
W (t)(t−a)i dt

]}

and

Tn (x) =
(

1
2
−A(x)

)[
Ta
n (b)+Tb

n (a)
]

+A(x)
[
Ta
n (x)+Tb

n (x)+Ta
n (a+b− x)+Tb

n (a+b− x)
]
,

where

Ta
n (x) =

1
(n−2)!

∫ x

a
W (t)

[∫ t

a

(
f (n) (a)− f (n) (s)

)
(t− s)n−2 ds

]
dt,

Tb
n (x) =

1
(n−2)!

∫ b

x
(1−W (t))

[∫ b

t

(
f (n) (b)− f (n) (s)

)
(t− s)n−2 ds

]
dt.

In the next theorem we establish our variant of generalized four-point quadrature
formula based on the extended Montgomery identity which will play the key role in this
paper.
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THEOREM 1. Let I be an open interval in R, [a,b]⊂ I, and let w : [a,b]→ [0,∞〉
be some probability density function. Let f : I → R be such that f (n−1) is absolutely
continuous function for some n � 2 . Then for each x ∈ (

a, a+b
2

]
the following identity

holds ∫ b

a
w(t) f (t)dt = D(x)+ tn (x)+Tn (x) . (2.2)

Proof. We put x ≡ a,x ≡ x,x ≡ a+ b− x and x ≡ b in (2.1) to obtain four new
formulae. After multiplying these four formulae by 1/2−A(x) ,A(x) ,A(x) and 1/2−
A(x) respectively and adding we get (2.2). �

Before we give an estimation of the term∣∣∣∣∫ b

a
w(t) f (t)dt−D(x)− tn (x)

∣∣∣∣ ,
let us recall that a function ϕ : [a,b]→R is said to be of α -L -Hölder type if |ϕ (x)−ϕ (y)|
� L |x− y|α for every x,y ∈ [a,b] , where L > 0 and α ∈ (0,1] . We will also make use
of the Beta function of Euler type which is for x,y > 0 defined by

B(x,y) =
∫ 1

0
tx−1 (1− t)y−1 dt.

In what follows for x ∈ (
a, a+b

2

]
we denote

W (x,t) =
{

W (t) , a � t � x
1−W (t) , x < t � b

,

Un (x,t) =
{

(t−a)α+n−1 , a � t � x
(b− t)α+n−1 , x < t � b

.

THEOREM 2. Suppose that all the assumptions of Theorem 1 hold and addition-
ally assume that for some L > 0 and α ∈ (0,1] f (n) : [a,b] → R is an α -L-Hölder
type function. Then for each x ∈ (

a, a+b
2

]
the following inequalities hold∣∣∣∣∫ b

a
w(t) f (t)dt−D(x)− tn (x)

∣∣∣∣
� B(α +1,n−1)

(n−2)!
L

{∣∣∣∣12 −A(x)
∣∣∣∣[∫ b

a
W (t)(t−a)α+n−1 dt

+
∫ b

a
(1−W (t))(b− t)α+n−1 dt

]
+ |A(x)|

[∫ b

a
W (x,t)Un (x,t)dt +

∫ b

a
W (a+b− x, t)Un (a+b− x,t)dt

]}
� 2B(α+1,n−1)

(α+n)(n−2)!
L

{∣∣∣∣12−A(x)
∣∣∣∣(b−a)α+n +|A(x) |[(x−a)α+n +(b−x)α+n]} .
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Proof. From (2.2) we have∣∣∣∣∫ b

a
w(t) f (t)dt−D(x)− tn (x)

∣∣∣∣
=
∣∣∣∣(1

2
−A(x)

)[
Ta
n (b)+Tb

n (a)
]

+A(x)
[
Ta
n (x)+Tb

n (x)+Ta
n (a+b− x)+Tb

n (a+b− x)
]∣∣∣∣

�
∣∣∣∣12 −A(x)

∣∣∣∣[|Ta
n (b)|+

∣∣∣Tb
n (a)

∣∣∣]
+ |A(x) |

[
|Ta

n (x) |+ |Tb
n (x) |+ |Ta

n (a+b− x)|+ |Tb
n (a+b− x)|

]
(2.3)

Since f (n) is an α -L -Hölder type function, from (2.3) we obtain∣∣∣∣∫ b

a
w(t) f (t)dt−D(x)− tn (x)

∣∣∣∣
�
∣∣ 1
2 −A(x)

∣∣
(n−2)!

L

{∫ b

a
W (t)

[∫ t

a
(s−a)α (t− s)n−2 ds

]
dt

+
∫ b

a
(1−W (t))

[∫ b

t
(b− s)α (s− t)n−2 ds

]
dt

+
|A(x) |
(n−2)!

L

{∫ x

a
W (t)

[∫ t

a
(s−a)α (t− s)n−2 ds

]
dt

+
∫ a+b−x

a
W (t)

[∫ t

a
(s−a)α (t− s)n−2 ds

]
dt

+
∫ b

x
(1−W (t))

[∫ b

t
(b− s)α (s− t)n−2 ds

]
dt

+
∫ b

a+b−x
(1−W (t))

[∫ b

t
(b− s)α (s− t)n−2 ds

]
dt

}
(2.4)

The first integral over ds in (2.4) can be written as∫ t

a
(s−a)α (t − s)n−2 ds = (t−a)α+n−2

∫ t

a

(
s−a
t−a

)α ( t− s
t−a

)n−2

ds

=
[
u =

s−a
t−a

]
= (t−a)α+n−1

∫ 1

0
uα (1−u)n−2 du

= (t−a)α+n−1 B(α +1,n−1).

Similarly can be done with other integrals in (2.4) , so we obtain∣∣∣∣∫ b

a
w(t) f (t)dt−D(x)− tn (x)

∣∣∣∣
� B(α +1,n−1)

(n−2)!
L

{∣∣∣∣12 −A(x)
∣∣∣∣[∫ b

a
W (t)(t−a)α+n−1 dt
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+
∫ b

a
(1−W (t))(b− t)α+n−1 dt

]
(2.5)

+|A(x) |
[∫ b

a
W (x,t)Un (x,t)dt +

∫ b

a
W (a+b− x,t)Un (a+b− x, t)dt

]}
.

Since we have
0 � W (t) � 1, t ∈ [a,b] ,

from (2.5) we obtain∣∣∣∣12 −A(x)
∣∣∣∣[∫ b

a
W (t)(t−a)α+n−1 dt +

∫ b

a
(1−W (t)) (b− t)α+n−1 dt

]
+ |A(x) |

[∫ b

a
W (x,t)Un (x,t)dt +

∫ b

a
W (a+b− x,t)Un (a+b− x,t)dt

]
� 2

α +n

{∣∣∣∣12 −A(x)
∣∣∣∣(b−a)α+n + |A(x) |[(x−a)α+n +(b− x)α+n]} ,

which completes the proof. �

3. Nonweighted four-point quadrature formula and applications

Here we define

t̂n (x) =
(

1
2
−A(x)

)n−1

∑
i=0

[
(−1)i f (i+1) (b)− f (i+1) (a)

] (b−a)i+1

i!(i+2)

+A(x)
n−1

∑
i=0

[
(−1)i f (i+1) (b)− f (i+1) (a)

] (x−a)i+2 +(b− x)i+2

i!(i+2)(b−a)
,

and

T̂n (x) =
(

1
2
−A(x)

)[
T̂ a
n (b)+ T̂ b

n (a)
]

+A(x)
[
T̂ a
n (x)+ T̂ b

n (x)+ T̂ a
n (a+b− x)+ T̂ b

n (a+b− x)
]
,

where

T̂ a
n (x) =

1
(n−2)!(b−a)

∫ x

a
(t−a)

[∫ t

a

(
f (n) (a)− f (n) (s)

)
(t − s)n−2 ds

]
dt,

T̂ b
n (x) =

1
(n−2)!(b−a)

∫ b

x
(b− t)

[∫ b

t

(
f (n) (b)− f (n) (s)

)
(t− s)n−2 ds

]
dt. (3.1)

COROLLARY 1 Let I be an open interval in R, [a,b] ⊂ I, and let f : I → R be such
that f (n−1) is absolutely continuous for some n � 2 . Then for each x ∈ (

a, a+b
2

]
the

following identity holds

1
b−a

∫ b

a
f (t)dt = D(x)+ t̂n (x)+ T̂n (x) . (3.2)
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Proof. This is a special case of Theorem 1 for w(t) = 1
b−a , t ∈ [a,b] . �

COROLLARY 2 Let I be an open interval in R, [a,b] ⊂ I, and let f : I → R be such
that that for some n � 2, L > 0 and α ∈ (0,1] the derivative f (n−1) is absolutely
continuous and f (n) : [a,b] → R is an α -L-Hölder type function. Then for each x ∈(
a, a+b

2

]
the following inequality holds∣∣∣∣ 1

b−a

∫ b

a
f (t)dt−D(x)− t̂n (x)

∣∣∣∣
� 2B(α +1,n−1)

(b−a)(α +n+1)(n−2)!

×L

{∣∣∣∣12 −A(x)
∣∣∣∣(b−a)α+n+1 + |A(x)|

[
(x−a)α+n+1 +(b− x)α+n+1

]}
.

Proof. This is a special case of Theorem 2 for w(t) = 1
b−a , t ∈ [a,b] . �

The next step is setting

A(x) =
(b−a)2

12(x−a)(b− x)
.

This special choice of the function A enables us to establish our generalizations of the
well known Simpson’s 3/8 formula (1.1) and Lobatt’s formula (1.2). We will also show
how to apply the results of Section 2 to obtain some error estimates for these quadrature
rules if they involve α -L -Hölder type functions.

3.1. x = 2a+b
3

Suppose that all the assumptions of Corollary 1 hold. Then our generalization of
Simpson’s 3/8 formula states

1
b−a

∫ b

a
f (t)dt = D

(
2a+b

3

)
+ t̂n

(
2a+b

3

)
+ T̂n

(
2a+b

3

)
,

where

D

(
2a+b

3

)
=

1
8

[
f (a)+3 f

(
2a+b

3

)
+3 f

(
a+2b

3

)
+ f (b)

]
,

t̂n

(
2a+b

3

)
=

1
8

n−1

∑
i=0

[
(−1)i f (i+1) (b)− f (i+1) (a)

] (3i+1 +2i+2 +1
)
(b−a)i+1

3i+1i!(i+2)

and

T̂n

(
2a+b

3

)
=

1
8

[
T̂ a
n (b)+3T̂ a

n

(
2a+b

3

)
+3T̂ b

n

(
2a+b

3

)
+3T̂ a

n

(
a+2b

3

)
+3T̂ b

n

(
a+2b

3

)
+ T̂ b

n (a)
]
.

Here T̂ a
n (x) and T̂ b

n (x) are as in (3.1 ).
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COROLLARY 3 Suppose that all the assumptions of Corollary 2 hold. Then we have∣∣∣∣ 1
b−a

∫ b

a
f (t)dt−D

(
2a+b

3

)
− t̂n

(
2a+b

3

)∣∣∣∣
�

B(α +1,n−1)
(
3α+n +2α+n+1 +1

)
(b−a)α+n

4 ·3α+n (α+n+1)(n−2)!
L.

Proof. This is a special case of Corollary 2 for x = 2a+b
3 . �

EXAMPLE 1 Let us consider the special case n = 2 in Corollary 3 (that is if f ′ is
absolutely continuous and f ′′ is of α -L-Hölder type). We have∣∣∣∣ 1

b−a

∫ b

a
f (t)dt−D

(
2a+b

3

)
− t̂2

(
2a+b

3

)∣∣∣∣
�
(
3α+2 +2α+3 +1

)
(b−a)α+2

4 ·3α+2 (α +1)(α +3)
L,

where

D

(
2a+b

3

)
=

1
8

[
f (a)+3 f

(
2a+b

3

)
+3 f

(
a+2b

3

)
+ f (b)

]
,

t̂2

(
2a+b

3

)
=

b−a
12

{
2
[
f ′ (b)− f ′ (a)

]− [
f ′′ (b)+ f ′′ (a)

]
(b−a)

}
.

3.2. [a,b] = [−1,1] , x = −
√

5
5

Suppose that all the assumptions of Corollary 1 hold. Then our generalization of
Lobatt’s formula states

1
2

∫ 1

−1
f (t)dt = D

(
−
√

5
5

)
+ t̂n

(
−
√

5
5

)
+ T̂n

(
−
√

5
5

)
,

where

D

(
−
√

5
5

)
=

1
12

[
f (−1)+5 f

(
−
√

5
5

)
+5 f

(√
5

5

)
+ f (1)

]
,

t̂n

(
−
√

5
5

)
=

1
12

n−1

∑
i=0

[
(−1)i f (i+1) (1)− f (i+1) (−1)

]

×

[
2i+2 ·5i+1 +

(
5−√

5
)i+2

+
(
5+

√
5
)i+2

]
2 ·5i+1i!(i+2)
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and

T̂n

(
−
√

5
5

)
=

1
12

[
T̂−1
n (1)+5T̂−1

n

(
−
√

5
5

)
+5T̂1

n

(
−
√

5
5

)

+5T̂−1
n

(√
5

5

)
+5T̂1

n

(√
5

5

)
+ T̂ 1

n (−1)

]
.

Here T̂ a
n (x) and T̂ b

n (x) are again as in (3.1 ).

COROLLARY 4 Suppose that all the assumptions of Corollary 2 hold. Then we have∣∣∣∣∣12
∫ 1

−1
f (t)dt−D

(
−
√

5
5

)
− t̂n

(
−
√

5
5

)∣∣∣∣∣
�

B(α +1,n−1)
(

2α+n+1 ·5α+n +
(
5−√

5
)α+n+1

+
(
5+

√
5
)α+n+1

)
12 ·5α+n (α +n+1)(n−2)!

L.

Proof. This is a special case of Corollary 2 for [a,b] = [−1,1] and x =−
√

5
5 . �

EXAMPLE 2 Let us consider again the special case n = 2 in Corollary 4 (that is if f ′
is absolutely continuous and f ′′ is of α -L-Hölder type). We have∣∣∣∣∣12

∫ 1

−1
f (t)dt−D

(
−
√

5
5

)
− t̂2

(
−
√

5
5

)∣∣∣∣∣
�

2α+3 ·5α+2 +
(
5−√

5
)α+3

+
(
5+

√
5
)α+3

12 ·5α+2 (α +1)(α +3)
L.

where

D

(
−
√

5
5

)
=

1
12

[
f (−1)+5 f

(
−
√

5
5

)
+5 f

(√
5

5

)
+ f (1)

]
,

t̂2

(
−
√

5
5

)
=

1
3

[
f ′ (1)− f ′ (−1)− f ′′ (1)− f ′′ (−1)

]
.
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with applications for α -L -Hölder type functions, J. Math. Ineq., 2, 3 (2008), 343–361.
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