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LOG–CONVEXITY OF COMBINATORIAL

SEQUENCES FROM THEIR CONVEXITY

TOMISLAV DOŠLIĆ

Abstract. A sequence (xn)n�0 of positive real numbers is log-convex if the inequality x2
n �

xn−1xn+1 is valid for all n � 1 . We show here how the problem of establishing the log-convexity
of a given combinatorial sequence can be reduced to examining the ordinary convexity of related
sequences. The new method is then used to prove that the sequence of Motzkin numbers is
log-convex.
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[11] T. DOŠLIĆ AND D. VELJAN, Logarithmic behavior of some combinatorial sequences, Discrete Math.,

308 (2008), 2182–2212.
[12] L. L. LIU, Y. WANG, On the log-convexity of combinatorial sequences, Adv. Appl. Math., 39 (2007),

453–476.
[13] P. MONTEL, Sur les functions convexes et les fonctions sousharmoniques, J. Math. Pures et Appl., 7

(1928), 29–60.
[14] B. SAGAN, Inductive and injective proofs of log-concavity results, Discrete Math., 68 (1988), 281–

292.
[15] R. P. STANLEY, Log-concave and unimodal sequences in algebra, combinatorics and geometry, Ann.

N.Y. Acad. Sci., 576 (1989), 500–535.
[16] R. P. STANLEY, Positivity problems and conjectures in algebraic combinatorics, in Mathematics:

Frontiers and Perspectives, Eds. V. Arnold et al., IMU-AMS, 2000, 295–319.
[17] R. P. STANLEY, Enumerative Combinatorics vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[18] Y. WANG, Linear transformations preserving log-concavity, Lin. Alg. Appl., 359 (2003), 161–167.

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com

c© � � , Zagreb
Paper JMI-03-43


