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1. Univariate Discrete Higher Order Convex Functions

Higher order convex functions have been first studied by Popoviciu (1934, 1944).
There is a growing interest in this notion (see, e.g., Pečarić and Čuljak, 2002, Gilányi
and Páles, 2008 and the references therein, among others), because these functions
enjoy a number of good properties, important in applications.

The notion of higher order convexity is based on divided differences so much
important in interpolation theory. Since divided differences can also be defined on
discrete sets, the notion of a higher order convex function comes up in a natural way
even in a purely mathematical framework.

However, the recent development in the theory of discrete higher order convex
functions was necessitated by applications, primarily in reliability theory: bounding
expectations and probabilities of Boolean functions of large numbers of events, where
the calculation of the exact values are impossible, even by the use of contemporary
hightech computers and calculations.

The paper where the notion of higher order discrete convexity is used, in com-
bination with linear programming calculation, in a general framework, is the one by
Prékopa (1990). In that paper a synthesis is given of earlier results of the same author
and others and simultaneously the research area of the theory of discrete moment prob-
lems is initiated. The theory and the numerical calculations have already been extended
to the multivariate case. This time, however, we restrict ourselves to the univariate case.

Let f be a function defined on the discrete set z0 < z1 < · · · < zn . The first order
divided differences of f are defined by

[zi,zi+1] f =
f (zi+1)− f (zi)

zi+1− zi
, i = 0,1, . . . ,n−1.
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The k th order divided differences are defined recursively by

[zi, . . . ,zi+k] f =
]zi+1, . . . ,zi+k] f − [zi, . . . ,zi+k−1] f

zi+k− zi
, k � 2.

The function f is said to be k th order convex if all of its k th order divided differences
are nonnegative. It is said to be k th order strictly convex, if all of its k th order divided
differences are positive.

It is well known that (see, e.g., Jordan, 1947):

[zi, . . . ,zi+k] f =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
zi zi+1 . . . zi+k
...

...
. . .

...
zk−1
i zk−1

i+1 . . . zk−1
i+k

f (zi) f (zi+1) . . . f (zi+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
zi zi+1 . . . zi+k
...

...
. . .

...
zk−1
i zk−1

i+1 . . . zk−1
i+k

zk
i zk

i+1 . . . zk
i+k

∣∣∣∣∣∣∣∣∣∣∣

, 0 � i � n− k. (1.1)

It is well known that (see, e.g., Popoviciu, 1944) the following theorem holds true.

THEOREM 1. If the (m + 1)st divided differences of the function f are positive
on consecutive points, then all minors of order m+2 of the matrix

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
z0 z1 . . . zn
...

...
. . .

...
zm
0 zm

1 . . . zm
n

f (z0) f (z1) . . . f (zn)

⎞
⎟⎟⎟⎟⎟⎠

(1.2)

are positive. In other words, the (m + 1)st divided differences corresponding to any
(m+1)-element subset of {z0, . . . ,zn} are also positive.

In what follows we use extensively linear programming methodology. For an ele-
mentary introduction see Prékopa (1996).

Let ξ be a discrete random variable, the possible values of which are known to be
the numbers z0 < z1 < · · ·< zn . Introduce the notations

pi = P(ξ = zi), i = 0,1, . . . ,n.

Suppose that the above probabilities are unknown but known are the power moments
μk = E(ξ k) , k = 1, . . . ,m , where m < n . Our aim is to minimize or maximize a lin-
ear functional, defined on {pi} , subject to the constraints that arise from the moment
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equations. In other words, we consider the following linear programming problem:

min(max) { f0p0 + f1p1 + · · ·+ fn pn},
subject to

p0 + p1 + · · ·+ pn = 1,
z0p0 + z1p1 + · · ·+ znpn = μ1,
z2
0p0 + z2

1p1 + · · ·+ z2
npn = μ2,

...
zm
0 p0 +zm

1 p1 + · · ·+ zm
n pn = μm,

p0 � 0, p1 � 0, . . . , pn � 0.

(1.3)

In problem (1.3) the matrix A has full rank. Let B be an (m+1)× (m+1) part of
A and designate by I or IB the set of subscripts of those columns of A which form B .
The collection of these vectors, as well as the matrix B , is called a basis. Sometimes
we write B(I) instead of B . Let fB designate the vector of the basic components of f .
The vector y satisfying

yT B = f T
B

is called the dual vector corresponding to B . The basis B is said to be dual feasible,
relative to the minimization (maximization) problem, if we have

yT ap � fp for p ∈ {0, . . . ,n}− I

(yT ap � fp for p ∈ {0, . . . ,n}− I). (1.4)

If for every p ∈ {0, . . . ,n}− I we have yT ap �= fp , then the basis is said to be dual
nondegenerate.

The inequalities (1.4) are called the condition of optimality because if the basis
B is primal feasible and (1.4) holds, then B is an optimal basis and the corresponding
solution is an optimal solution to the problem. The differences fp− f T

B B−1ap satisfy
the equations (

1 f T
B

0 B

)(
fp− f T

B B−1ap

dp

)
=

(
fp
ap

)
,

p ∈ {0, . . . ,n}− I , hence we get the formulas

fp− f T
B B−1ap =

∣∣∣∣ fp f T
B

ap B

∣∣∣∣∣∣∣∣1 f T
B

0 B

∣∣∣∣
=

1
|B|

∣∣∣∣ fp f T
B

ap B

∣∣∣∣ , (1.5)

p ∈ {0, . . . ,n}− I .
Let LI(z) be the Lagrange polynomial of degree m , corresponding to the points

zi , i ∈ I , i.e.,

LI(z) =∑
i∈I

f (zi)LI,i(z),

where
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LI,i(z) =

∏
j∈I−{i}

(z− z j)

∏
j∈I−{i}

(zi− z j)
.

Define the vector

b(z) =

⎛
⎜⎜⎜⎝

1
z
...

zm

⎞
⎟⎟⎟⎠

for every real z . We assert that

f T
B B−1(I)b(z) = LI(z). (1.6)

In fact, b(zi) = ai for i ∈ I , hence

f T
B B−1(I)b(zi) = f (zi), i ∈ I.

Thus, (1.6) holds for every real z .
¿From the above discussion a nice characterization follows, for the dual feasible

bases, in terms of Lagrange polynomials: in the minimization (maximization) problem
(1.3) a basis B(I) is dual feasible if and only if the function f (z) runs above (below)
LI(z) for every zi , i /∈ I .

By a well-known formula in approximation theory, we have

f (z)−LI(z) =∏
j∈I

(z− z j)[z,zi, i ∈ I] f , (1.7)

valid for every z for which f is defined.
Any of the relations (1.5), (1.7) can be used to show that if we have knowledge

about the sign of the divided differences [z,zi, i ∈ I] f , then we can find out what sub-
script sets I determine dual feasible bases. This observation enables us to present
simple proof for the following theorem.

THEOREM 2. Suppose that all (m+1)st divided differences of the function f (z) ,
z ∈ {z0,z1, . . . ,zn} are positive. Then, in problem (1.3) , all bases are dual nondegener-
ate and the dual feasible bases have the following structures, presented in terms of the
subscripts of the basic vectors:

m+1 even m+1 odd

min problem { j, j +1, . . . ,k,k+1} {0, j, j +1, . . . ,k,k+1}
max problem {0, j, j +1, . . . ,k,k+1,n} { j, j +1, . . . ,k,k+1,n},

where in all parentheses the numbers are arranged in increasing order.
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1.1. Functional and Expectation Inequalities

If B is a dual feasible basis in the min problem (1.3), then

f (z) � LI(z), I = IB, (1.8)

equality holds if z ∈ I and the inequality is strict if z /∈ I .
If B is a dual feasible basis in the max problem (1.3), then

f (z) � LI(z), I = IB, (1.9)

equality holds if z ∈ I and the inequality is strict if z /∈ I .
It follows from (1.8) and (1.9) that under the given conditions we have

E( f (ξ )) � E(LI(ξ )) (1.10)

and

E( f (ξ )) � E(LI(ξ )), (1.11)

respectively. These inequalities are sharp, i.e., no better bounds can be given for
E( f (ξ )) if we only know the first m moments of the distribution.

1.2. Special Case: Minimization Problem, m+1 = 2 .

Discrete Jensen’s Inequality

The minimization problem (1.3) specializes as:

min { f0p0 + f1p1 + · · ·+ fn pn}
subject to

p0 + p1 + · · ·+ pn = 1

z0p0 +z1p1 + · · ·+ znpn = μ
p0 � 0, p1 � 0, . . . , pn � 0,

where μ = E(ξ ) and the function f is second order convex. Any dual feasible basis
has subscript set of the type { j, j+1} . If we solve for z j , z j+1 the system of equations:

p j + p j+1 = 1

z j p j + z j+1p j+1 = μ ,

then we obtain p j = (z j+1− μ)/(z j+1− z j) , p j+1 = 1− p j ,

E( f (ξ )) � f (z j)
z j+1− μ
z j+1− z j

+ f (z j+1)
μ− z j

z j+1− z j
(1.12)

and the inequality is sharp if p j � 0, p j+1 � 0, i.e., j is specified in such a way that
z j � μ � z j+1 .
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1.3. Special Case: Maximization Problem, m+1 = 2

The only dual feasible basis has subscript set {0,n} . ¿From the equation

p0 + pn = 1

z0p0 + znpn = μ

we obtain
p0 =

zn− μ
zn− z0

, pn =
μ− z0

zn− z0

and the upper bound for E( f (ξ )) is expressed by the inequality:

E( f (ξ )) � f (z0)
zn− μ
zn− z0

+ f (zn)
μ− z0

zn− z0
, (1.13)

where f is second order convex. The inequality is sharp.
If m + 1 = 3, then the third order divided differences of f have to be positive.

The estimation of E[ f (ξ )] is based on the knowledge of μ1 and μ2 . Since m+ 1 is
odd, any dual feasible basis in the minimization (maximization) problem is of the form
{0, i, i+1} ({ j, j +1,n}) . We get the inequalities:

zizi+1− (zi + zi+1)μ1 + μ2

(zi− z0)(zi+1− z0)
f (z0)− z0zi+1− (z0 + zi+1)μ1 + μ2

(zi+1− zi)(zi− z0)
f (zi)

+
z0zi− (z0 + zi)μ1 + μ2

(zi+1− zi)(zi+1− z0)
f (zi+1) � E( f (ξ )]

� z j+1zn− (z j+1 + zn)μ1 + μ2

(z j+1− z j)(zn− z j)
f (z j)− z jzn− (z j + zn)μ1 + μ2

(z j+1− z j)(zn− z j)
f (z j+1)

+
z jz j+1− (z j + z j+1)μ1 + μ2

(z j+1− z j)(zn− z j)
f (zn). (1.14)

The above inequalities are sharp if the bases are primal feasible too, i.e., i and j are
determined by the inequalities

zi � μ2− z0μ1

μ1− z0
� zi+1, z j � znμ1− μ2

zn− μ1
� z j+1.

2. Bounds on the Probability of the Union of Events

Let A1, . . . ,An be arbitrary events in an arbitrary probability space. We want to
compute or at least approximate the probability of A1∪ . . .∪An . A general method is
provided by the inclusion–exclusion formula (see Takács 1967 for its history):

P(A1∪ . . .∪An) = S1−S2 + · · ·+(−1)n−1Sn, (2.1)

where
Sk = ∑

1�i1<···<ik�n

P(Ai1 . . .Aik).
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If n is large, then we may not be able to compute all Sk , k = 1, . . . ,n but only a few of
them: S1, . . . ,Sm , where m < n . We have the Bonferroni’s bounds:

P(A1∪ . . .∪An) �
m

∑
k=1

(−1)k−1Sk, if m is even

P(A1∪ . . .∪An) �
m

∑
k=1

(−1)k−1Sk, if m is odd.

These bounds are usually weak. Fréchet (1940) has proved that the upper bound

P(A1∪ . . .∪An) � S1

is sharp. Dawson and Sankoff (1967) have proved that the sharp S1 , S2 lower bound
is:

P(A1∪ . . .∪An) � 2
i+1

S1− 2
i(i+1)

S2, i = 1+
⌊

2S2

S1

⌋
.

Kwerel (1975) has proved the sharp S1 , S2 upper bound is:

P(A1∪ . . .∪An) � S1− 2
n
S2.

THEOREM 3. Let ν be the number of events (out of A1, . . . ,An ) that occur. We
have the equation

E

[(
ν
k

)]
= Sk, k = 1, . . . ,n,

i.e., Sk is the k th binomial moment of ν .

For a proof see, e.g., Prékopa (1995). The above equation holds true for k = 0 if
we define S0 = 1.

The detailed form of Theorem 3 is:

p0 + p1 + p2 + p3 + · · ·+ pn = 1
p1 + 2p2 + 3p3 + · · ·+ npn = S1

p2 +
(

3
2

)
p3 + · · ·+

(
n
2

)
pn = S2

. . .
...(
n
n

)
pn = Sn,

(2.2)

where pi = P(ν = i) , i = 0, . . . ,n .
Given p0, . . . , pn , we can determine S1, . . . ,Sn and vice versa.
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Lower and upper bounds on the probability P(ν � 1) = P(A1 ∪ . . .∪An) can be
obtained by the use of the optimum values of the linear programming problem:

min(max)
n

∑
i=1

pi

subject to
n

∑
i=0

(
i
k

)
pi = Sk, k = 0, . . . ,m

pi � 0, i = 0, . . . ,n.

(2.3)

Suitable linear transformation on the equality constraints of problems (2.3) results
in the power moment problem

min(max)
n

∑
i=1

pi

subject to
n

∑
k=0

ik pi = μk, k = 0, . . . ,m

pi � 0, i = 0, . . . ,n,

(2.4)

where μk = E(νk) , k = 0, . . . ,m . The coefficient function in the objective of problem
(2.4) is m+1-order convex (concave) if m+1 is odd (even).

A basis in problem (2.3) is primal (dual) feasible iff the corresponding basis in
problem (2.4) is primal (dual) feasible. This fact enables us to handle the two problems
simultaneously. The S1, . . . ,Sm binomial moments can be expressed by the use of the
μ1, . . . ,μm power moments and vice versa.

Any formula or algorithm that provides us with the optimum value and optimal
solution of problem (2.3), simultaneously provides us with those of problem (2.4).

Problem (2.3) was first used by Kwerel (1975), for the cases of m = 2,3, to re-
produce the S1 , S2 sharp lower and upper bounds as well as produce new S1 , S2 , S3

sharp lower and upper bounds.
A general theory of problems (2.3), (2.4) is due to Prékopa (1990).
To derive closed form or algorithmic bounds for the probability of the union, by

the use of S1, . . . ,Sm , it is more convenient to remove the first constraint and the first
variable from problem (2.3). The new problem is:

min(max)
n

∑
i=1

pi

subject to
n

∑
i=1

(
i
k

)
pi = Sk, k = 1, . . . ,m

pi � 0, i = 1, . . . ,n.

(2.5)

If Vmin(Vmax) designates the optimum value of the min(max) problem (2.3), then
the optimum value of the min(max) problem (2.5) is Vmin(min(Vmax,1)) . Below we
present the sharp S1 , S2 , S3 lower and upper bounds and the sharp S1 , S2 , S3 , S4

upper bound.
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The sharp S1 , S2 , S3 lower bound (Kwerel 1975, Boros and Prékopa 1989) is:

P(A1∪ . . .∪An)

� i+2n−1
(i+1)n

S1− 2(2i+n−2)
i(i+1)n

S2 +
6

i(i+1)n
S3

i = 1+
⌊−6S3 +2(n−2)S2

−2S2 +(n−1)S1

⌋
.

The sharp S1 , S2 , S3 upper bound (Kwerel 1975, Boros and Prékopa 1989) is:

P(A1∪ . . .∪An)

� min

(
S1− 2(2i−1)

i(i+1)
S2 +

6
i(i+1)

S3,1

)

i = 2+
⌊

3S3

S2

⌋
.

The sharp S1 , S2 , S3 , S4 upper bound (Boros and Prékopa 1989) is:

P(A1∪ . . .∪An)

� min

(
S1− 2((i−1)(i−2)+ (2i−1)n)

i(i+1)n
S2 +

6(2i+n−4)
i(i+1)n

S3− 24
i(i+1)n

S4,1

)

i = 1+
⌊−12S4 +3(n−4)S3 +(n−2)S2

(n−2)S2−3S3

⌋
.

2.1. Algorithmic Solution of Problems (2.3)–(2.5)

First we present the dual feasible basis structure theorem (see Prékopa, 1988) that
applies to the modified problem (2.5).

THEOREM 4. All bases of problem (2.5) are dual nondegenerate and all dual
feasible bases have the following structures, expressed in terms of the basic subscripts:

m even m odd

min problem { j, j +1, . . . ,k,k+1} { j, j +1, . . . ,k,k+1,n}
max problem {1, j, j +1, . . . ,k,k+1,n} {1, j, j +1, . . . ,k,k+1}.

The algorithm can be presented in a unified manner, it applies simultaneously to
problems (1.3), (2.3), (2.4), (2.5). It has the following steps.

Step 0. Find a dual feasible basis B by the use of the dual feasible basis structures.

Step 1. Check for B−1b � 0. If yes, then go to Step 4. Otherwise go to Step 2.

Step 2. Identify j such that (B−1b) j < 0. Remove the j th vector from basis B .

Step 3. Include the unique vector, that restores dual feasible structure, into the basis.
Go to Step 1.

Step 4. Stop, optimal basis and optimal solution have been obtained.
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3. Improved Algorithm to Solve the Discrete Power Moment Problem

The algorithm is based on LU factorization of Vandermonde matrices. Even
though Lagrange interpolation is fairly old, the above-mentioned LU factorization is
more recent, see Turner (1966), Olver (2005) and the bibliography therein.

Let B be a basis in problem (1.3) and IB = {i0, . . . , im} the set of subscripts of the
basic vectors. Below we present the general forms of the matrices L , U that provide
us with the LU decomposition of the matrix B , and their inverses L−1 , U−1 . The first
subscripts in Ljk , Ujk , (L−1) jk , (U−1) jk indicate rows while the second subscripts
indicate columns. We have the following formulas:

Ljk =

⎧⎪⎨
⎪⎩

∑
l1�···�l j−k
{l1,...,l j−k}⊂IB

zl1 . . . zl j−k , if j � k

0, if j < k

(3.1)

(L−1) jk =

⎧⎪⎨
⎪⎩

(−1) j−k ∑
l1<···<l j−k
{l1,...,l j−k}⊂IB

zl1 . . . zl j−k , if j � k

0, if j < k

(3.2)

Ujk =
{

(zik − zi0)(zik − zi1) . . . (zik − zi j−1), if j � k
0, if j > k

(3.3)

(U−1) jk =

⎧⎨
⎩

(−1)k− j 1
(zi j − zi0)(zi j − zi1) . . . (zi j − zik−1)

, if j � k

0, if j < k,
(3.4)

j,k = 0, . . . ,m . In (3.1) the complete, in (3.2) the elementary symmetric functions are
in the formulas.

We are interested only in the signs of the components of B−1b = U−1L−1b . In
view of the special forms of the entries of U−1 we can avoid division when we multiply
L−1b by the rows of U−1 .

If we use the above LU decomposition for the bases of problem (1.3), then the
algorithm of the previous section can be simplified and made more accurate. Let b =
(1,μ , . . . ,μm)T .

Step 0. Find an initial dual feasible basis B in agreement with the dual feasible basis
structure theorem.

Step 1. Using the B = LU decomposition, determine L−1b and begin to multiply L−1b
by the rows of U−1 , starting with the first row. If we obtain nonnegative products
for all rows go to Step 4. Otherwise go to Step 2.

Step 2. Let j be the subscript of the first row where we obtain negative product. Re-
move the j th vector from the basis, i.e., remove the j th base point from {zi, i ∈
IB} .
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Step 3. Include that vector into the basis or point into the set of base points that restores
dual feasibility. Go to Step 1.

Step 4. We have obtained B−1b = U−1L−1b � 0 which means B is both primal and
dual feasible, i.e. optimal.

4. Solution of the Continuous Power Moment Problem with Higher Order
Convex Function in the Objective

Let f (z) , a � z � b be a function such that all of its m+1st order divided differ-
ences are positive and ξ a random variable for which a � ξ � b .

Suppose that the probability distribution of ξ is unknown but known are its first m
moments μ1, . . . ,μm . Let F(z) = P(ξ � z) be the unknown c.d.f. of ξ , −∞< z < ∞ .

We want to solve the semi-infinite linear programming problem:

min(max)
∫ b

a
f (z)dF(z)

subject to∫ b

a
zk dF(z) = μk, k = 0, . . . ,m.

(4.1)

The dual of problem (4.1) is the following

max(min)
m

∑
k=0

ykμk

subject to
m

∑
k=0

ykz
k �
(�) f (z), a � z � b.

(4.2)

Problems of this and even more general type have been studied in the literature.
The paper by Kemperman (1968) is very informative. Kemperman proved the duality
theorem for problems (4.1), (4.2) and used the dual problem (4.2) to derive formulas
for some special cases, where m is small.

Below we present an efficient iterative solution to problem (4.1). It is the combi-
nation of a cutting plane algorithm of Prékopa and Alexe (2003) and the algorithm of
Prékopa presented in the previous section.

Step 0. Initiate k← 0 and choose a finite grid Tk = {zk0, . . . ,zknk} from the interval
[a,b] .

Step 1. Write up problem (1.3) replacing Tk for z0, . . . ,zn and using fi = f (zki) , i =
0, . . . ,nk .

Step 2. Solve the problem by the dual algorithm presented in Section 4. Let Bk be the
optimal basis.
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Step 3. Construct the Lagrange polynomial

LBk(z) = f T
Bk

B−1
k

⎛
⎜⎜⎜⎝

1
z
...

zm

⎞
⎟⎟⎟⎠ .

We have the relation

f (z)−LBk(z) = [zi, i ∈ IBk , z; f ] ∏
i∈IBk

(z− zi). (4.3)

Since the function f has all positive divided differences in the interval [a,b] , it
follows that

[zki, i ∈ IBk ,z; f ] > 0 for every z /∈ {zki, i ∈ IBk}. (4.4)

Relation (4.3) and (4.4) imply that for any z /∈ {zki, i ∈ IBk} we have

f (z) < LBk(z) ( f (z) > LBk(z)),

between some consecutive basic points in the minimization (maximization) prob-
lem, otherwise the opposite inequalities hold, in agreement with the optimality
criterion. Let

s = argmin
z∈[a,b]

( f (z)−LBk(z))

(
s = argmin

z∈[a,b]
(LBk(z)− f (z))

) (4.5)

in the minimization (maximization) problem. In view of the basis structure, the
minimization in (4.5) may be restricted to the small subintervals of [a,b] between
some consecutive basic points (a great numerical advantage).

Given a tolerance limit ε > 0, the absolute value of the minimum in (4.5) is (a)
smaller than or equal to ε , (b) greater than ε . In case (a) go to Step 4. In case of
(b) supplement s to the grid, set k← k+1 and go to step 1.

Step 4. Stop, the algorithm has terminated, the required precision in the solution of
the problem has been obtained. The approximate optimal solution is the basic
solution corresponding to Bk .

The correctness of the above algorithm follows from the correctness of the cut-
ting plane method applied to the semi-infinite linear programming problem (see, e.g.,
Goberna, Lopez, 1998).

Prékopa and Szedmák (2002) report on the numerical results obtained in connec-
tion with the numerical solution of the discrete power moment problem. Moments of
order up to 30 could be used in connection with a former algorithm. The use of LU
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decomposition can improve on it. Prékopa and Alexe (2003) report on the numerical
solution of the continuous power moment problem, again, without the use of the LU
decomposition. Problems with up to 30 moments could be solved with satisfactory pre-
cision. Again, we expect that the recent algorithm improves on the numerical solution
and we will be able to solve even larger problems.

5. Relationship to Other Inequalities Involving Higher Order Convex Functions

Discrete and continuous moment problems are based on integrals

μk =
∫
Ω
ξ k(ω)dP, k = 1, . . . ,m

whereas most inequalities concerning higher order convex functions use derivatives.
An exception is the inequality

E( f (ξ )) � b− μ
b−a

f (a)+
μ−a
b−a

f (b), (5.1)

where ξ is a random variable such that a � ξ � b and

μ = E(ξ ) =
∫
Ω
ξ (ω)dP

is the expectation of ξ .
We can take, e.g., Ω= [c,d] and, designating the elements of Ω by x , rather than

by ω , we can take an integrable function g(x) , x∈ [c,d] as a random variable. Assume
that a � g(x) � b for c � x � d . Then the inequality (5.1) takes the form

∫ b

a
f (g(x))dP(x) �

b−
∫ d

c
g(x)dP(x)

b−a
f (a)+

∫ d

c
g(x)dP(x)−a

b−a
f (b),

where P is any nonnegative measure such that its value on [c,d] is 1 .
Inequality (5.1) is mentioned in Edmundson (1957) and Madansky (1959). They

applied it to some problems in operations research.
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[5] A. GILÁNYI AND ZS. PÁLES, On Convex Functions of Higher Order, Math. Inequalities and Appl.,
11 (2008), 271–282.

[6] A. GOBERNA AND M.A. LOPEZ, Linear Semi-Infinite Optimization, Wiley, New York, 1998.



498 ANDRÁS PRÉKOPA
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[20] A. PRÉKOPA, Inequalities on Expectations Based on the Knowledge of Multivariate Moments,

M. Shaked, Y.L. Tong, eds., Stochastic Inequalities. Institute of Mathematical Statistics. Lecture
Notes–Monograph Series, Vol. 22. Institute of Mathematical Statistics, Hayward, CA, 309–331, 1992.
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