lournal of
athematical
nequalities
Volume 3, Number 4 (2009), 499-510

ALMOST EVERYWHERE CONVERGENCE OF A
SUBSEQUENCE OF THE NORLUND LOGARITHMIC
MEANS OF WALSH-KACZMARZ-FOURIER SERIES

KAROLY NAGY

Abstract. The main aim of this paper is to prove that the maximal operator of a subsequence
of the (one-dimensional) logarithmic means of Walsh-Kaczmarz-Fourier series is of weak type
(1,1). Moreover, we prove that the maximal operator of the logarithmic means of quadratical
partial sums of double Walsh-Kaczmarz-Fourier series is of weak type (1,1), provided that
the supremum in the maximal operator is taken over special indices. The set of Walsh-Kaczmarz
polynomials is dense in L', so by the well-known density argument the logarithmic means 3. (f)
converge a.e. to f for all integrable function f.

1. Introduction

The n-th Riesz’s logarithmic means of a Fourier series is defined by

1=

1 nfls n—1
- Z k(f), ln e Z
l" k=1 k k=1

The Riesz’s logarithmic means with respect to the trigonometric system was studied by
alot of authors, e.g. Szdsz [17] and Yabuta [18], with respect to Walsh, Vilenkin system
by Simon [13] and Gat [4].

Let {gx : k > 0} be a sequence of nonnegative numbers, the n-th Norlund means
of an integrable function f is defined by

1 n—1
~ n— S )
ang,lél KSk(f)

where Q, = ZZ;% qx- This Norlund means of Walsh-Fourier series was investigated
by Moéricz and Siddiqi [10]. The case, when ¢ = % is excluded, since the method of
Moéricz and Siddiqi does not work in this case.

If g := %, then we get the (Norlund) logarithmic means:

1SS
tn(f) o Ekgl n_k'
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From now, we will write simply logarithmic means #,(f). Recently, Git and Gogi-
nava [5] proved some convergence and divergence properties of this logarithmic means
of functions in the class of continuous functions, and in the Lebesgue space. They
proved that the maximal norm convergence function space of this logarithmic means is
Llog" L.

The a.e. convergence of a subsequence of logarithmic means of Walsh-Fourier
series of integrable functions was discussed by Gat and Goginava [8, 6]. More results
on this logarithmic means with respect to unbounded Vilenkin system can be found in
[2].

First, we give a brief introduction to the theory of dyadic analysis [12, 1].

Denote by Z, the discrete cyclic group of order 2, that is Z, = {0, 1}, the group
operation is the modulo 2 addition and every subset is open. The normalized Haar
measure on Z; is given in the way that the measure of a singleton is 1/2. Let

G:= X Z2,
k=0

G is called the Walsh group. The elements of G can be represented by a sequence
X = (X0, X1, X, -..) Where x; € {0,1} (k€ N)(N:={0,1,...},P:=N\{0}).

The group operation on G is the coordinate-wise addition (denoted by +), the
measure (denoted by ) and the topology are the product measure and topology. Con-
sequently, G is a compact Abelian group. Dyadic intervalls are defined by

I(x) =G, Li(x):={y€G:y= (X0, s Xn—1,Vn,Ynt1--) }

for x € G,n € P. They form a base for the neighborhoods of G. Let 0= (0:i € N) € G
and I, := I,(0) for n € N.

Furthermore, let L”(G) denote the usual Lebesgue spaces on G (with the corre-
sponding norm ||.||,), %, the o -algebra generated by the sets I,(x)(x € G) and E, the
conditional expectation operator with respect to .27, (n € N). The Rademacher functions
are defined as

r(x) = (—1)* (x€ G,k eN).

Each natural number n can be uniquely expressed as

n=Y¥n2 n€{0,1} (i€N),
i=0
where only a finite number of #;’s different from zero. Let the order of n > 0 be
denoted by |n| := max{j € N:n; # 0}. Thatis, |n| is the integral part of the binary
logarithm of n and 21"l < n < 2/+1,
Define the Walsh-Paley functions by

oo

on(x) = [] ()™ = (~ 1) S

k=0
Let the Walsh-Kaczmarz functions [16] be defined by kg =1 and for n > 1

In|—1 [n|—1

in(6) 1= 7o) () [T (g1 -#(2))™ = () (= 1) S0 o1,
k=0
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The Walsh-Paley system is @ := (w, : n € N) and the Walsh-Kaczmarz system is
K := (K, : n € N). It is well known that

{Kn Zk n<2k+l} {w 2k<n<2k+l}

for all k € N and xp = wy.

A relation between Walsh-Kaczmarz functions and Walsh-Paley functions was
given by V. A. Skvortsov in the following way (see [15]). Let the transformation
T4 : G — G be defined by

TA(X) 1= (XA—1,X4-2, -+, X1, X0, X4, XA 41, ---)
for A € N. We have that
K,,(x) = r‘n‘(x)wnfﬂn‘ (T|,,|(x)) (I’l eN,xe G).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirich-
let kernels, the Fejér means, the Fejér kernels, the logarithmic means and logarithmic
kernels:

n—1 n—1
"= [ g, St =S 0, D= 3 o
k=0

1 & 1 &
o-nf:_zsltcxf7 Kr(tx __ZDl(cxa
=0 k=0
lnfl Saf lnfl DOC
g —— k , F%.— — k ,
n (f) lnkg‘ln—k " L & n—k
where o, = w, or k, (n € P). Df :=0

It is known [12] that

2" xel,,
D n = 1
2 (%) {O, otherwise (n € N) %

and E,f = S»»(f). The maximal operator 6" is defined by o**f := sup,cp |0 f]|
for f € L'(G). The maximal operator 6* was investigated by G. Gat in [3].

Next, we introduce some notation with respect to the theory of two-dimensional
system. Let the two-dimensional Walsh group be G x G and the two-dimensional
Fourier coefficients, the rectangular partial sums of the Fourier series, Dirichlet ker-
nels, the Marcinkiewicz means and Marcinkiewicz kernels be defined as:

fa(nlanZ) ::/ fanlanzd.u7
GxG

ny— 1}’12 1
Srolclnz Z 2 f kl ak ( )
k=0 I=
Dy (2% 1= D}, (x)DJ (%),
1&
Myf = zskkf7 :ZZ‘D;:"'
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where o, = either w, or k, (n € P).
The cubical Norlund logarithmic means and kernels are defined by

o
Dkk

_l_ ik a._l_
'_lg‘ ’F"'_lg

Let <7, , denote the o -algebra generated by the sets I,(x) x I,(y) (x,y € G) and
E,, the conditional expectation operator with respect to 7, , (n € N). Define the
maximal operator of the Marcinkiewicz means and the maximal function of a function
feLY(GxG) by

M [ =sup| ALY f], f*i=sup|Ennf].
nep neN

The maximal operator .Z** was investigated by the author in [11].
For two-dimensional variable (x,y) € G X G we use the notations

0, (x,3) = o (x), D' () =D (), Ki!(x,y) = Kt (x),
oc2
for any n € N.

2. The a.e. convergence of a subsequence of one-variable logarithmic means

THEOREM 1. Let {my, : n > 1} be a sequence of positive integers wich satisfies

i log?(m,, — 2™l 4-1) -
= logm,

Then the operator t**(f) := sup,» |ty (f)| is of weak type (1,1).

Analogue of this result on Walsh-Fourier logarithmic means was given by Gogi-
nava [8].

COROLLARY 1. Let {my,:n > 1} be a sequence of positive integers which satis-
fies the condition of Theorem 1 and let f € L'(G), then

o (f,X) = f(x) ae. asn— oo,
COROLLARY 2. Let f € L'(G), then

i (f,x) = f(x) a.e asn— oo

The basis of the proof of Theorem 1 are the following lemmas.
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LEMMA 1. Let 24 <m < 241 then

InFyy (X) = Ly _pa-1,1Da ()
1! 1 1
—w - iK® (T4
w0 % (g ) K )

2A—l
—w2A71(x)mK§—l(TA—l(x))+rA( X)L, 2AFn QA(TA( x))

T e e Ll

2A—1 1
+m 24— 1+1K2“ 1(0)-

Proof. During the proof of Lemma 1 we will use the following equations:

D5y, (x) = Doa(x) + 1 (0)DF (14 (x)),  j=0,1,...,24 ~ 1 )
and
gA,/(x):DZA(‘X)_wZA—l(x)D;U(TA—l(x))? j:O’l’“.,ZAil. (3)
To prove (3), we write for j < 24!
241 J—1
ZKA—j == D2A — 2 Kk == D2A - 2 KZA—l—l
k=2A—j 1=0

Jj=1
= D2A —rA—1 2 Wra-1_5_ 1 OTa—1.-
1=0
For 0 <1< j <24 ! wehave wu | ;(x) = wu_(x)ay(x) and wyu-1_{(Ta_1(x)) =
Wya-1_1(x). These imply
-1

K
= Dys —ra—1Wpa-1_10Ta—1 2 W0 T
’ =0

= Dsa — rA—lszflle;p O0Ta—1

and (3) is complete.
Let |m| = A, then

InFX(x) = + Y L==1I+I
e L S TS L
First, we discuss II by the help of (2).
m-21-1 D, (%) 271 DY (14 (x))
2A+/ J A
1l = —— =1 D —
Z‘l m_2A_j  m2 2a (X) + ra(x) Z‘l Y

= lmizADzA(X)‘FrA( )lm 2AF ZA(TA( ))
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Now, we investigate 1.

201 D;A_j(x) _2A71 DQKA_j('x) 241 DQKA_j('x)

I = =
J§=‘6 m—24+ j§=:0m_2A+j f:2A§;1+1m_2A+j

=L+Db.

By the help of (3) and Abel’s transformation we could write

2A-1 2A—1 w

1 DY (ta-1(x))
I, =D ) A
1 2A('x)j§Om_2A+j 2A71(x)j=21 m_2A+j

= (lm72A*1+1 - lm72A)D2A (.X)
1t 1 1
— - iK® (T4_
2A71(x) j;l (m—2A+j m—2A+j+l>] Jj (TA 1(X))

2A—1
—Wha_ (x) WKSI)A"I (TA,I ()C))

At last, we discuss I,. We set s := 24 — j and use Abel’s transformation for .

Loy DR P DE)
— m-—s — m-—s
s=1 s=0

2/\1 2 A1
1 1 2411
2 <m_s‘7_s+1>”{“>+m’% 1()-

This completes the proof of Lemma 1. [

~—log?(m, —2"1+1)
logmy,

LEMMA 2. Let lim < oo, then

n—oo

|| m,1||lgc<°°, n=1,2,...

Proof. We have
IK? otally = K] Sc <o, jA=12,..

and
IKS e <o, j=1.2,..

(See [14]). Moreover,

DKH1 m_ 11nJ+1

| m—j

1

1 m=
1Enll < - 2
I j=1
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In the same way ||F?||; < O(l,) (See [8]). Using Lemma 1, we immediately have

1 olmn|—1 1||K“’ T 1”1

[Fm i 1474 Y —F—r—r —|| Smnl=1© Ty —1 11
L, j=1 J

l i
L
mp

Im,

a1 _
12" UK

_2lmn| © T\mn\ ||1

+lmn Z}) my — +_|| 2l lHl
log?(m,, — 2™l 41
:0<°g (m i )>:0(1).
logmy,,

This completes the proof of Lemma 2. [

Proof of Theorem 1. The maximal function f* := sup,cn | f*D2| is of weak type
(1,1) [12]. In the article [3] G4t introduced the operators L, M defined by

Lf :=sup|f*raK5ota| and Mf := sup |f*raKy o 14|
AeN nAEN
|n|<A

and he showed that the operators L,M and o** are of weak type (1,1). Now, we
define the modified kernels K, 074 by K, 074 := 0w K, 074 for n € P,|n| = A and
the operator L, M by

Lf:= sup\f*rA % oTa| and Mf:= sup |f*raKPo1al.
n,AeEN
In|<A

The method of Git in [3] gives that the operators L, M are of weak type (1,1).
Atlast, let f € L'(G), supp f C Iy and [; f=0. Set n(k) := min{n: |m,| > k}.
If n < n(k) then

i, (F0) = [ OIS (+3)au(s) = B ) [ 0ty

Consequently, set n > n(k).
Define the operator N by

[
m, —2""’1‘
Nf Sup‘f*’]mnl - Frytzlfﬂmn\ oTlmn||'

My
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We have
lm,1—2"”"‘ ®
_ sup i ‘F;nn_z\mn\(T‘mnl(x))‘dnu'(x)
I n}n(k) nmy
& log(m, —21ml 1)
S log my 1 —atmat © T 1
n=1
& log(m, —21ml 1)
< 10 || 2\mn\ Hl
n=1 g
Z log?(m,, — 2l 4 l)
S logm,
This implies

/Nf Jau(x / 70) / (59D 155 (5 53 i) | i)

< CHf||1~

From Lemma 2 the operator N and ¢ is of type (eo,e0). The operator N is sublinear
and quasi-local, this gives by standard argument [12] that the operator N is of weak
type (1,1).

Lemma 1 and

1 2‘mn\*1_1 ~f ~ 2\mn\—l_2 O'K7*f 1
(f) <cff+sup— Y ——+cLf+Nf+sup— Y +—o"*f
S = B w1 lm, S Ma—S  lnm,

<cff+cMf+cLf +cNf+co™* f

complete the proof of Theorem 1. [

COROLLARY 3. The operator t** is of type (p,p) forall 1 < p < oo
3. The a.e. convergence of a subsequence of logarithmic means of quadratical

partial sums

Define the two-dimensional maximal operator té( by

tFf(x' %) := sup [t5, (f,x" . 27)|.
neP

We will use that the maximal function f* is of weak type (1,1) and of type (p, p) for
all 1 < p < oo [9] and the maximal operator .#** has the same property [11].
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THEOREM 2. The operator té‘ is of weak type (1,1). and of type (p,p) for all
1< p<oo.

By standard argument we have

COROLLARY 4. Let f € L'(G x G), then
t5: (f,x'2?) — f(x!,x%) a.e. asn — oo.
The analogue of this result with respect to Walsh-Fourier logarithmic means was given
by Gt and Goginava [6].
Proof of Theorem 2. First, we decompose the 2" -th logarithmic kernels.
1.2 o Dgn_j(xl)D’zfn_j(xz) g Dgn_j(xl)D’{n_j(xz)
l2’1F’2<n (x s X ) = 2 " + 2 -
j=1 J j=2m 141 J
=:1+1I

In I we use (3)

n—1 ) )
DoDn () ) 21D
= ’ Jj=1 J

n—1 ) 1
_D2"(x2)w2"—1(x1)2z M
Jj=1 J
on—1 D;?(Tnfl(xl))D;?(Tn,I(xz))

oy (o () Y 7
=

4
=l ¥ Fyi (x',22).
n=1

L
Since Fy' (x!,x?) = 2"12’11“ Don(x')Dan (x*) we have

<cf*.

tul’lf = sup \f*Fé;,l
nep

To discuss Fé,’? we will use Abel’s transformation (Fé,’l3 goes in the same way)

2n71 Dw 2n7171 1 1 2n7171 Ka)
J - () 0} J (0]
— = - ]K + n—1 — . n—1-
,-:21 j ,:21 (J J+1> s Z‘l j+1

Define the operator O by

. 1 2p02
Of := sup |f*DyuryKy " o1,
n,AeN
ln|<A
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in [11] (Lemma 10) it was proved that the operator O is of weak type (1, 1) and of type
(p,p) forall 1 < p < 0. Define the modified kernel K® 074 := wyu_K® 074 and the
modified operator O by

Of == sup |f*DhyraKP? o 1a).
n,AeN
|n|<A

The method of [11] gives that the operator O is of weak type (1,1) and of type (p,p)
forall 1 < p < eo. These imply

21l

1 | ~ ~
tul’zf::sup\f*Fé;ﬂgsup— 2 ——Of +cOf < cOf.
nepP nep l2” j=1 J+ 1

Now, we discuss Fé;f . Abel’s transformation gives that

znfl D?},ID?)Q 2"71—1 %w

_ J (0]
Z - 2 J+1 + on—1

=1 J j=1

and

—1
pla_ Lo 2 2"2‘1 H 0 (Ty—1 X Ty—1)
—_— T n__ n__ .
n l2'1 2 172 1 j:1 ]+1

+€%/2(:)—1 o (Tn—l X Tn—l)) .

Define the modified kernel %;j“’ o(Ty_1 X Ty—1) = (1)21,,,171(1)22,1,171

for j < 2" ! and the operators M,M by

{}i/ij (Tn—l X Tn—l)

Mf := sup |f*r£r/2,e%/n“’o (ta xT4)|, Mf:= sup \f*rlﬁrf,e%flwo (Ta X T4)|-
n,AeN n,AeN
|n|<A |n|<A

The operator M is of weak type (1,1) and of type (p,p) for all 1 < p < e ([11],
Lemma 8). The method of [11] gives that the operator M has the same property. We
note that during the proof of Lemma 8 in [11] we used the fact that r/ﬁr/% is ur1a41-

measurable and % o (T4 X T4) (and J5,% 0 (T4 X T4) = W)y, 034y S0 (Tp X
Tp) t00) is <74 4 -measurable function for |n| < A.
These imply
1.4 1.4 1S - .
t"f:=sup|f«xF,, | <sup— —Mf+cMf <cMf.
d n€P| 2 ‘ neP l2” J:Zl J+ 1

At last, we have to see I1. In I let be s :=2" — j and use Abel’s transformation!
Thus,

=l i lpnyk2  2n—lp n—1
D¢ Dy’ 1 1 PR |
II: K K — _ e%/K 57 .

26 2" —s 26 (2"—s 2"—s+1)s SRS TE RS
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Define F3, and t; by

and

[1

—

[2

—

[3

—_

[4]
[5]

[6]

[7]

[8

[t

[9

—

[10]
[11]
[12]
[13]
[14]
[15]

[16]

1 7S 1 2l
F} = — — K+ —————
Ion sg() <2"—S 2"—S+1)S s +l2n(2n_1+l) 2=l

n—1
271 -2 1

1
t2f = sup|f *F3:| < sup—
f ne]g| 2| negb” Sg() 2" —s

%K,*f_’_c'%l(,*f
< cHEFF.

This completes the proof of Theorem 2. [
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