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ALMOST EVERYWHERE CONVERGENCE OF A

SUBSEQUENCE OF THE NÖRLUND LOGARITHMIC

MEANS OF WALSH–KACZMARZ–FOURIER SERIES

KÁROLY NAGY

Abstract. The main aim of this paper is to prove that the maximal operator of a subsequence
of the (one-dimensional) logarithmic means of Walsh-Kaczmarz-Fourier series is of weak type
(1,1) . Moreover, we prove that the maximal operator of the logarithmic means of quadratical
partial sums of double Walsh-Kaczmarz-Fourier series is of weak type (1,1) , provided that
the supremum in the maximal operator is taken over special indices. The set of Walsh-Kaczmarz
polynomials is dense in L1 , so by the well-known density argument the logarithmic means tκ2n ( f )
converge a.e. to f for all integrable function f .

1. Introduction

The n -th Riesz’s logarithmic means of a Fourier series is defined by

1
ln

n−1

∑
k=1

Sk( f )
k

, ln :=
n−1

∑
k=1

1
k
.

The Riesz’s logarithmic means with respect to the trigonometric system was studied by
a lot of authors, e.g. Szász [17] and Yabuta [18], with respect to Walsh, Vilenkin system
by Simon [13] and Gát [4].

Let {qk : k � 0} be a sequence of nonnegative numbers, the n -th Nörlund means
of an integrable function f is defined by

1
Qn

n−1

∑
k=1

qn−kSk( f ),

where Qn := ∑n−1
k=1 qk. This Nörlund means of Walsh-Fourier series was investigated

by Móricz and Siddiqi [10]. The case, when qk = 1
k is excluded, since the method of

Móricz and Siddiqi does not work in this case.
If qk := 1

k , then we get the (Nörlund) logarithmic means:

tn( f ) :=
1
ln

n−1

∑
k=1

Sk( f )
n− k

.
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From now, we will write simply logarithmic means tn( f ) . Recently, Gát and Gogi-
nava [5] proved some convergence and divergence properties of this logarithmic means
of functions in the class of continuous functions, and in the Lebesgue space. They
proved that the maximal norm convergence function space of this logarithmic means is
L log+ L.

The a.e. convergence of a subsequence of logarithmic means of Walsh-Fourier
series of integrable functions was discussed by Gát and Goginava [8, 6]. More results
on this logarithmic means with respect to unbounded Vilenkin system can be found in
[2].

First, we give a brief introduction to the theory of dyadic analysis [12, 1].
Denote by Z2 the discrete cyclic group of order 2, that is Z2 = {0,1} , the group

operation is the modulo 2 addition and every subset is open. The normalized Haar
measure on Z2 is given in the way that the measure of a singleton is 1/2. Let

G :=
∞×

k=0
Z2,

G is called the Walsh group. The elements of G can be represented by a sequence
x = (x0,x1, ...,xk, ...) where xk ∈ {0,1} (k ∈ N)(N := {0,1, ...},P := N\{0}).

The group operation on G is the coordinate-wise addition (denoted by + ), the
measure (denoted by μ ) and the topology are the product measure and topology. Con-
sequently, G is a compact Abelian group. Dyadic intervalls are defined by

I0(x) := G, In(x) := {y ∈ G : y = (x0, ...,xn−1,yn,yn+1...)}
for x ∈G,n ∈ P . They form a base for the neighborhoods of G . Let 0 = (0 : i∈N)∈G
and In := In(0) for n ∈ N.

Furthermore, let Lp(G) denote the usual Lebesgue spaces on G (with the corre-
sponding norm ‖.‖p ), An the σ -algebra generated by the sets In(x)(x ∈G) and En the
conditional expectation operator with respect to An(n∈N). The Rademacher functions
are defined as

rk(x) := (−1)xk (x ∈ G,k ∈ N).

Each natural number n can be uniquely expressed as

n =
∞

∑
i=0

ni2i, ni ∈ {0,1} (i ∈ N),

where only a finite number of ni ’s different from zero. Let the order of n > 0 be
denoted by |n| := max{ j ∈ N : n j �= 0}. That is, |n| is the integral part of the binary
logarithm of n and 2|n| � n < 2|n|+1.

Define the Walsh-Paley functions by

ωn(x) :=
∞

∏
k=0

(rk(x))nk = (−1)∑
|n|
k=0 nkxk .

Let the Walsh-Kaczmarz functions [16] be defined by κ0 = 1 and for n � 1

κn(x) := r|n|(x)
|n|−1

∏
k=0

(r|n|−1−k(x))
nk = r|n|(x)(−1)∑

|n|−1
k=0 nkx|n|−1−k .
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The Walsh-Paley system is ω := (ωn : n ∈ N) and the Walsh-Kaczmarz system is
κ := (κn : n ∈ N). It is well known that

{κn : 2k � n < 2k+1} = {ωn : 2k � n < 2k+1}
for all k ∈ N and κ0 = ω0.

A relation between Walsh-Kaczmarz functions and Walsh-Paley functions was
given by V. A. Skvortsov in the following way (see [15]). Let the transformation
τA : G → G be defined by

τA(x) := (xA−1,xA−2, ...,x1,x0,xA,xA+1, ...)

for A ∈ N. We have that

κn(x) = r|n|(x)ωn−2|n|(τ|n|(x)) (n ∈ N,x ∈ G).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirich-
let kernels, the Fejér means, the Fejér kernels, the logarithmic means and logarithmic
kernels:

f̂ α (n) :=
∫

G
fαn, Sαn f :=

n−1

∑
k=0

f̂ α (k)αk, Dα
n :=

n−1

∑
k=0

αk,

σα
n f :=

1
n

n

∑
k=0

Sαk f , Kα
n :=

1
n

n

∑
k=0

Dα
k ,

tαn ( f ) :=
1
ln

n−1

∑
k=1

Sαk f

n− k
, Fα

n :=
1
ln

n−1

∑
k=1

Dα
k

n− k
,

where αn = ωn or κn (n ∈ P). Dα
0 := 0.

It is known [12] that

D2n(x) =

{
2n, x ∈ In,

0, otherwise (n ∈ N)
(1)

and En f = S2n( f ). The maximal operator σκ ,∗ is defined by σκ ,∗ f := supn∈P |σκ
n f |

for f ∈ L1(G). The maximal operator σκ ,∗ was investigated by G. Gát in [3].
Next, we introduce some notation with respect to the theory of two-dimensional

system. Let the two-dimensional Walsh group be G×G and the two-dimensional
Fourier coefficients, the rectangular partial sums of the Fourier series, Dirichlet ker-
nels, the Marcinkiewicz means and Marcinkiewicz kernels be defined as:

f̂ α (n1,n2) :=
∫

G×G
fαn1αn2dμ ,

Sαn1,n2
f (x1,x2) :=

n1−1

∑
k=0

n2−1

∑
l=0

f̂ α (k, l)αk(x1)αl(x2),

Dα
n1,n2

(x1,x2) := Dα
n1

(x1)Dα
n2

(x2),

M α
n f :=

1
n

n

∑
k=0

Sαk,k f , K α
n :=

1
n

n

∑
k=0

Dα
k,k.
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where αn = either ωn or κn (n ∈ P).
The cubical Nörlund logarithmic means and kernels are defined by

tαn ( f ) :=
1
ln

n−1

∑
k=1

Sαk,k f

n− k
, Fα

n :=
1
ln

n−1

∑
k=1

Dα
k,k

n− k
.

Let An,n denote the σ -algebra generated by the sets In(x)× In(y) (x,y ∈ G) and
En,n the conditional expectation operator with respect to An,n (n ∈ N). Define the
maximal operator of the Marcinkiewicz means and the maximal function of a function
f ∈ L1(G×G) by

M κ∗ f := sup
n∈P

|M κ
n f |, f ∗ := sup

n∈N
|En,n f |.

The maximal operator M κ∗ was investigated by the author in [11].
For two-dimensional variable (x,y) ∈ G×G we use the notations

α1
n (x,y) = αn(x), Dα ,1

n (x,y) = Dα
n (x), Kα ,1

n (x,y) = Kα
n (x),

α2
n (x,y) = αn(y), Dα ,2

n (x,y) = Dα
n (y), Kα ,2

n (x,y) = Kα
n (y),

for any n ∈ N.

2. The a.e. convergence of a subsequence of one-variable logarithmic means

THEOREM 1. Let {mn : n � 1} be a sequence of positive integers wich satisfies

∞

∑
n=1

log2(mn −2|mn| +1)
logmn

< ∞.

Then the operator tκ ,∗( f ) := supn�1 |tκmn
( f )| is of weak type (1,1) .

Analogue of this result on Walsh-Fourier logarithmic means was given by Gogi-
nava [8].

COROLLARY 1. Let {mn : n � 1} be a sequence of positive integers which satis-
fies the condition of Theorem 1 and let f ∈ L1(G) , then

tκmn
( f ,x) → f (x) a.e. as n → ∞.

COROLLARY 2. Let f ∈ L1(G) , then

tκ2n( f ,x) → f (x) a.e. as n → ∞.

The basis of the proof of Theorem 1 are the following lemmas.
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LEMMA 1. Let 2A � m < 2A+1 , then

lmFκ
m (x) = lm−2A−1+1D2A(x)

−ω2A−1(x)
2A−1−1

∑
j=1

(
1

m−2A + j
− 1

m−2A + j +1

)
jKω

j (τA−1(x))

−ω2A−1(x)
2A−1

m−2A−1 Kω
2A−1(τA−1(x))+ rA(x)lm−2AFω

m−2A(τA(x))

+
2A−1−2

∑
s=0

(
1

m− s
− 1

m− s+1

)
sKκ

s (x)

+
2A−1−1

m−2A−1 +1
Kκ

2A−1−1(x).

Proof. During the proof of Lemma 1 we will use the following equations:

Dκ
2A+ j(x) = D2A(x)+ rA(x)Dω

j (τA(x)), j = 0,1, ...,2A −1 (2)

and
Dκ

2A− j(x) = D2A(x)−ω2A−1(x)D
ω
j (τA−1(x)), j = 0,1, ...,2A−1. (3)

To prove (3), we write for j � 2A−1

Dκ
2A− j = D2A −

2A−1

∑
k=2A− j

κk = D2A −
j−1

∑
l=0

κ2A−l−1

= D2A − rA−1

j−1

∑
l=0

ω2A−1−l−1 ◦ τA−1.

For 0 � l < j � 2A−1 we have ω2A−1−l(x) = ω2A−1(x)ωl(x) and ω2A−1−1(τA−1(x)) =
ω2A−1−1(x) . These imply

Dκ
2A− j = D2A − rA−1ω2A−1−1 ◦ τA−1

j−1

∑
l=0

ωl ◦ τA−1

= D2A − rA−1ω2A−1−1D
ω
j ◦ τA−1

and (3) is complete.
Let |m| = A, then

lmFκ
m (x) =

2A

∑
j=1

Dκ
j (x)

m− j
+

m−1

∑
j=2A+1

Dκ
j (x)

m− j
=: I + II.

First, we discuss II by the help of (2).

II =
m−2A−1

∑
j=1

Dκ
2A+ j

(x)

m−2A− j
= lm−2AD2A(x)+ rA(x)

m−2A−1

∑
j=1

Dω
j (τA(x))

m−2A− j

= lm−2AD2A(x)+ rA(x)lm−2AFω
m−2A(τA(x)).



504 KÁROLY NAGY

Now, we investigate I.

I =
2A−1

∑
j=0

Dκ
2A− j

(x)

m−2A + j
=

2A−1

∑
j=0

Dκ
2A− j

(x)

m−2A + j
+

2A−1

∑
j=2A−1+1

Dκ
2A− j

(x)

m−2A + j
=: I1 + I2.

By the help of (3) and Abel’s transformation we could write

I1 = D2A(x)
2A−1

∑
j=0

1
m−2A + j

−ω2A−1(x)
2A−1

∑
j=1

Dω
j (τA−1(x))

m−2A + j

= (lm−2A−1+1− lm−2A)D2A(x)

−ω2A−1(x)
2A−1−1

∑
j=1

(
1

m−2A + j
− 1

m−2A + j +1

)
jKω

j (τA−1(x))

−ω2A−1(x)
2A−1

m−2A−1Kω
2A−1(τA−1(x)).

At last, we discuss I2. We set s := 2A− j and use Abel’s transformation for I2.

I2 =
2A−1−1

∑
s=1

Dκ
s (x)

m− s
=

2A−1−1

∑
s=0

Dκ
s (x)

m− s

=
2A−1−2

∑
s=0

(
1

m− s
− 1

m− s+1

)
sKκ

s (x)+
2A−1−1

m−2A−1 +1
Kκ

2A−1−1(x).

This completes the proof of Lemma 1. �

LEMMA 2. Let lim
n→∞

log2(mn−2|mn|+1)
logmn

< ∞ , then

‖Fκ
mn
‖1 � c < ∞, n = 1,2, ...

Proof. We have

‖Kω
j ◦ τA‖1 = ‖Kω

j ‖1 � c < ∞, j,A = 1,2, ...

and

‖Kκ
j ‖1 � c < ∞, j = 1,2, ...

(See [14]). Moreover,

‖Fκ
m ‖1 � 1

lm

m−1

∑
j=1

‖Dκ
j ‖1

m− j
� 1

lm

m−1

∑
j=1

ln j +1
m− j

= O(lm).
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In the same way ‖Fω
m ‖1 � O(lm) (See [8]). Using Lemma 1, we immediately have

‖Fκ
mn
‖1 � 1+

1
lmn

2|mn|−1−1

∑
j=1

‖Kω
j ◦ τ|mn|−1‖1

j
+

1
lmn

‖Kω
2|mn|−1 ◦ τ|mn|−1‖1

+
lmn−2|mn|

lmn

‖Fω
mn−2|mn| ◦ τ|mn|‖1

+
1

lmn

2|mn|−1−2

∑
s=0

‖Kκ
s ‖1

mn − s
+

1
lmn

‖Kκ
2|mn|−1−1

‖1

= O

(
log2(mn −2|mn| +1)

logmn

)
= O(1).

This completes the proof of Lemma 2. �

Proof of Theorem 1. The maximal function f ∗ := supn∈N | f ∗D2n | is of weak type
(1,1) [12]. In the article [3] Gát introduced the operators L,M defined by

L f := sup
A∈N

| f ∗ rAKω
2A ◦ τA| and M f := sup

n,A∈N
|n|�A

| f ∗ rAKω
n ◦ τA|

and he showed that the operators L,M and σκ ,∗ are of weak type (1,1). Now, we
define the modified kernels K̃n ◦ τA by K̃n ◦ τA := ω2A−1Kn ◦ τA for n ∈ P, |n| = A and
the operator L̃,M̃ by

L̃ f := sup
A∈N

| f ∗ rAK̃ω
2A ◦ τA| and M̃ f := sup

n,A∈N
|n|�A

| f ∗ rAK̃ω
n ◦ τA|.

The method of Gát in [3] gives that the operators L̃,M̃ are of weak type (1,1) .
At last, let f ∈ L1(G) , supp f ⊂ Ik and

∫
Ik

f = 0. Set n(k) := min{n : |mn| � k} .

If n � n(k) then

tκmn
( f ,x) =

∫
G

f (y)Fκ
mn

(x+ y)dμ(y) = Fκ
mn

(x)
∫

G
f (y)dμ(y) = 0.

Consequently, set n > n(k).
Define the operator N by

N f := sup
n�1

| f ∗ r|mn|
lmn−2|mn|

lmn

Fω
mn−2|mn| ◦ τ|mn||.



506 KÁROLY NAGY

We have

∫
Ik

sup
n�n(k)

lmn−2|mn|

lmn

|Fω
mn−2|mn|(τ|mn|(x))|dμ(x)

�
∞

∑
n=1

log(mn −2|mn| +1)
logmn

‖Fω
mn−2|mn| ◦ τ|mn|‖1

�
∞

∑
n=1

log(mn −2|mn| +1)
logmn

‖Fω
mn−2|mn|‖1

�
∞

∑
n=1

log2(mn−2|mn| +1)
logmn

� c.

This implies

∫
Ik

N f (x)dμ(x) �
∫
Ik

| f (y)|

⎛
⎜⎝∫

Ik

sup
n�n(k)

|Fω
mn−2|mn|(τ|mn|(x+ y))|dμ(x)

⎞
⎟⎠dμ(y)

� c‖ f‖1.

From Lemma 2 the operator N and tκ ,∗ is of type (∞,∞). The operator N is sublinear
and quasi-local, this gives by standard argument [12] that the operator N is of weak
type (1,1) .

Lemma 1 and

tκ ,∗( f ) � c f ∗ + sup
n�1

1
lmn

2|mn|−1−1

∑
j=1

M̃ f
j

+ cL̃ f +N f + sup
n�1

1
lmn

2|mn|−1−2

∑
s=0

σκ ,∗ f
mn − s

+
1

lmn

σκ ,∗ f

� c f ∗ + cM̃ f + cL̃ f + cN f + cσκ ,∗ f

complete the proof of Theorem 1. �

COROLLARY 3. The operator tκ ,∗ is of type (p, p) for all 1 < p � ∞ .

3. The a.e. convergence of a subsequence of logarithmic means of quadratical
partial sums

Define the two-dimensional maximal operator tκ� by

tκ� f (x1,x2) := sup
n∈P

|tκ2n( f ,x1,x2)|.

We will use that the maximal function f ∗ is of weak type (1,1) and of type (p, p) for
all 1 < p � ∞ [9] and the maximal operator M κ ,∗ has the same property [11].
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THEOREM 2. The operator tκ� is of weak type (1,1) . and of type (p, p) for all
1 < p � ∞ .

By standard argument we have

COROLLARY 4. Let f ∈ L1(G×G) , then

tκ2n( f ,x1,x2) → f (x1,x2) a.e. as n → ∞.

The analogue of this result with respect to Walsh-Fourier logarithmic means was given
by Gát and Goginava [6].

Proof of Theorem 2. First, we decompose the 2n -th logarithmic kernels.

l2nFκ
2n(x1,x2) =

2n−1

∑
j=1

Dκ
2n− j(x

1)Dκ
2n− j(x

2)

j
+

2n−1

∑
j=2n−1+1

Dκ
2n− j(x

1)Dκ
2n− j(x

2)

j

=: I + II.

In I we use (3)

I =
2n−1

∑
j=1

D2n(x1)D2n(x2)
j

−D2n(x1)ω2n−1(x2)
2n−1

∑
j=1

Dω
j (τn−1(x2))

j

−D2n(x2)ω2n−1(x1)
2n−1

∑
j=1

Dω
j (τn−1(x1))

j

+ω2n−1(x1)ω2n−1(x2)
2n−1

∑
j=1

Dω
j (τn−1(x1))Dω

j (τn−1(x2))
j

=: l2n

4

∑
n=1

F1,i
2n (x1,x2).

Since F1,1
2n (x1,x2) =

l2n−1+1
l2n

D2n(x1)D2n(x2) we have

t1,1
� f := sup

n∈P
| f ∗F1,1

2n | � c f ∗.

To discuss F1,2
2n we will use Abel’s transformation (F1,3

2n goes in the same way)

2n−1

∑
j=1

Dω
j

j
=

2n−1−1

∑
j=1

(
1
j
− 1

j +1

)
jKω

j +Kω
2n−1 =

2n−1−1

∑
j=1

Kω
j

j +1
+Kω

2n−1 .

Define the operator O by

Of := sup
n,A∈N
|n|�A

| f ∗D1
2Ar

2
AKω,2

n ◦ τA|,
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in [11] (Lemma 10) it was proved that the operator O is of weak type (1,1) and of type
(p, p) for all 1 < p � ∞ . Define the modified kernel K̃ω

n ◦ τA := ω2A−1K
ω
n ◦ τA and the

modified operator Õ by

Õ f := sup
n,A∈N
|n|�A

| f ∗D1
2A+1r

2
AK̃ω,2

n ◦ τA|.

The method of [11] gives that the operator Õ is of weak type (1,1) and of type (p, p)
for all 1 < p � ∞ . These imply

t1,2
� f := sup

n∈P
| f ∗F1,2

2n | � sup
n∈P

1
l2n

2n−1−1

∑
j=1

1
j +1

Õ f + cÕ f � cÕ f .

Now, we discuss F1,4
2n . Abel’s transformation gives that

2n−1

∑
j=1

Dω,1
j Dω,2

j

j
=

2n−1−1

∑
j=1

K ω
j

j +1
+K ω

2n−1

and

F1,4
2n =

1
l2n

ω1
2n−1ω

2
2n−1

(
2n−1−1

∑
j=1

K ω
j ◦ (τn−1× τn−1)

j +1
+K ω

2n−1 ◦ (τn−1× τn−1)

)
.

Define the modified kernel ˜K ω
j ◦ (τn−1×τn−1) :=ω1

2n−1−1ω
2
2n−1−1K

ω
j ◦ (τn−1×τn−1)

for j � 2n−1 and the operators M,M̃ by

M f := sup
n,A∈N
|n|�A

| f ∗ r1
Ar2

AK ω
n ◦ (τA × τA)|, M̃ f := sup

n,A∈N
|n|�A

| f ∗ r1
Ar2

A
˜K ω
n ◦ (τA × τA)|.

The operator M is of weak type (1,1) and of type (p, p) for all 1 < p � ∞ ([11],
Lemma 8). The method of [11] gives that the operator M̃ has the same property. We
note that during the proof of Lemma 8 in [11] we used the fact that r1

Ar2
A is AA+1,A+1 -

measurable and K ω
n ◦ (τA × τA) (and ˜K ω

n ◦ (τA × τA) = ω1
2A−1−1ω

2
2A−1−1K

ω
n ◦ (τA ×

τA) too) is AA,A -measurable function for |n| � A.
These imply

t1,4
� f := sup

n∈P
| f ∗F1,4

2n | � sup
n∈P

1
l2n

2n−1−1

∑
j=1

1
j +1

M̃ f + cM̃ f � cM̃ f .

At last, we have to see II . In II let be s := 2n− j and use Abel’s transformation!
Thus,

II =
2n−1−1

∑
s=0

Dκ ,1
s Dκ ,2

s

2n− s
=

2n−1−2

∑
s=0

(
1

2n− s
− 1

2n− s+1

)
sK κ

s +
2n−1−1
2n−1 +1

K κ
2n−1−1.



ALMOST EVERYWHERE CONVERGENCE OF A SUBSEQUENCE... 509

Define F2
2n and t2� by

F2
2n :=

1
l2n

2n−1−2

∑
s=0

(
1

2n− s
− 1

2n− s+1

)
sK κ

s +
2n−1−1

l2n(2n−1 +1)
K κ

2n−1−1

and

t2� f := sup
n∈P

| f ∗F2
2n| � sup

n∈P

1
l2n

2n−1−2

∑
s=0

1
2n− s

M κ ,∗ f + cM κ ,∗ f

� cM κ ,∗ f .

This completes the proof of Theorem 2. �
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[4] G. GÁT, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hung., 61,
1-2 (1993), 131–149.
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