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Abstract. In this paper, by using the weighted geometric mean G[n,t] and the weighted arith-
metic one A[n,t] due to Lawson-Lim for each t ∈ [0,1] , we investigate n -variable versions of a
complement of the Golden-Thompson-Segal type inequality due to Ando-Hiai: Let H1,H2, · · · ,Hn

be selfadjoint operators such that m � Hi � M for i = 1,2, · · · ,n and some scalars m � M . Then

S(ep(M−m))−
2
p ‖ G[n,t](epH1 , · · · ,epHn )

1
p ‖

� ‖ eA[n,t](H1 ,···,Hn) ‖ � S(ep(M−m))
2
p ‖ G[n,t](epH1 , · · · ,epHn )

1
p ‖

for all p > 0 and the both-hand sides of the inequality above converge to the middle-hand side
as p ↓ 0 , where S(·) is the Specht ratio and ‖ · ‖ stands for the operator norm.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive (in
symbol: A � 0) if (Ax,x) � 0 for all x ∈ H . In particular, A > 0 means that A is
positive and invertible. For some scalars m and M , we write m � A � M if m(x,x) �
(Ax,x) � M(x,x) for all x ∈ H . The order A � B means that A−B is positive. The
symbol ‖ · ‖ stands for the operator norm. Let A and B be two positive operators on a
Hilbert space H . For each t ∈ [0,1] , the weighted geometric mean A �t B of A and B
in the sense of Kubo-Ando [10] is defined by

A �t B = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2

if A is invertible.
In the commutative case, if H and K are Hermitian matrices, then eH+K = eHeK .

However, in the noncommutative case, it is entirely no relation between eH+K and
eH ,eK under the usual order. For the construction of nonlinear relativistic quantum
fields, Segal [13] proved that

‖ eH+K ‖ � ‖ eHeK ‖ .
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Also, motivated by quantum statistical mechanics, Golden [8], Symanzik [16] and
Thompson [17] independently proved that

Tr eH+K � Tr eHeK .

This inequality is called Golden-Thompson trace inequality.
Throughout this paper, in the setting of Hilbert space operators, we discuss the

Golden-Thompson-Segal type inequalities for the operator norm. Ando and Hiai [2]
gave a lower bound on ‖ eH+K ‖ in terms of the geometric mean: For two selfadjoint
operators H and K and t ∈ [0,1] ,

‖ (
epH �t epK) 1

p ‖�‖ e(1−t)H+tK ‖ (1.1)

for all p > 0 and the left-hand side of (1.1) converges to the right-hand side as p ↓ 0.
In [6], we considered a complement of the Golden-Thompson type inequality un-

der the usual order: Let H and K be selfadjoint operators such that m � H,K � M for
some scalars m � M , and let t ∈ [0,1] . Then

S(eM−m)−1S(ep(M−m))−
1
p
(
epH �t epK) 1

p � e(1−t)H+tK

� S(eM−m)S(ep(M−m))
1
p
(
epH �t epK) 1

p

for all p > 0, where S(·) is the Specht ratio. Moreover, in [14], we obtained a reverse
of (1.1):

‖ e(1−t)H+tK ‖� S(ep(M−m))
1
p ‖ (

epH �t epK) 1
p ‖

for all p > 0.
In this paper, by using the weighted geometric mean G[n,t] and the weighted

arithmetic one A[n, t] due to Lawson-Lim for each t ∈ [0,1] , we investigate n -variable
versions of a complement of the Golden-Thompson-Segal type inequality due to Ando-
Hiai: Let H1,H2, · · · ,Hn be selfadjoint operators such that m � Hi � M for i = 1,2, · · · ,n
and some scalars m � M . Then

S(ep(M−m))−
2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖

�‖ eA[n,t](H1,···,Hn) ‖� S(ep(M−m))
2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖ (1.2)

for all p > 0 and the both-hand sides of (1.2) converge to the middle-hand side as p ↓ 0.

2. Preliminary

In [3], Ando, Li and Mathias proposed a definition of the geometric mean for an
n -tuple of positive operators and showed that it has many required properties on the ge-
ometric mean. Afterward, by virtue of geometry, Lawson and Lim [11, 12] established
a definition of the weighted geometric mean for an n -tuple of positive operators. In
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[4], we considered it in the framework of operator theory. Following [11, 4], we recall
the definition of the weighted geometric mean G[n,t] with t ∈ [0,1] for an n -tuple of
positive invertible operators A1,A2, · · · ,An . Let G[2,t](A1,A2) = A1 �t A2 . For n � 3,

G[n,t] is defined inductively as follows: Put A(1)
i = Ai for all i = 1,2, · · · ,n and

A(r)
i = G[n−1, t]((A(r−1)

j ) j �=i) = G[n−1,t](A(r−1)
1 , · · · ,A(r−1)

i−1 ,A(r−1)
i+1 , · · · ,A(r−1)

n )

inductively for r . Then sequences {A(r)
i } have the same limit for all i = 1,2, · · · ,n in

the Thompson metric. So we can define

G[n,t](A1,A2, · · · ,An) = lim
r→∞

A(r)
i .

Similarly, we can define the weighted arithmetic mean as follows: Let A[2,t](A1,A2) =

(1− t)A1 + tA2 . For n � 3, A[n,t] is defined inductively as follows: Put Ã(1)
i = Ai for

all i = 1,2, · · · ,n and

Ã(r)
i = A[n−1, t]((

˜

A(r−1)
j ) j �=i) = A[n−1,t](

˜

A(r−1)
1 , · · · , ˜A(r−1)

i−1 ,
˜

A(r−1)
i+1 , · · · , ˜A(r−1)

n )

inductively for r . Then we see that sequences {Ã(r)
i } have the same limit for all i =

1,2, · · · ,n because it is just the problems on weights. If we put

A[n,t](A1, · · · ,An) = lim
r→∞

Ã(r)
i ,

then it is expressed by

A[n,t](A1, · · · ,An) = t[n]1A1 + · · ·+ t[n]nAn

where t[n]i � 0 for i = 1,2, · · · ,n and ∑n
i=1 t[n]i = 1. Also, the weighted harmonic

mean H[n, t](A1, · · · ,An) is defined as

H[n,t](A1, · · · ,An) =
(
t[n]1A−1

1 + · · ·+ t[n]nA−1
n

)−1
.

We remark that the coefficient {t[n]i} depends on n only. For example, in the case of
n = 2,3, it follows from [11] that

A[2, t](A1,A2) = t[2]1A1 + t[2]2A2 = (1− t)A1 + tA2,

A[3, t](A1,A2,A3) = t[3]1A1 + t[3]2A2 + t[3]3A3 =
1− t
2− t

A1 +
1− t + t2

2+ t− t2
A2 +

t
1+ t

A3.

For the sake of convenience, we show the general term of the coefficient {t[n]i} in
[4]: For any positive integer n � 2

t[n]n−m =
m(m+1)+2m(n−2m−2)t+(n2− (4m+1)n+4m(m+1))t2

(n−1)(m+(n−2m)t)(m+1+(n−2(m+1))t)
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for m = 0,1, · · · ,n−1.
Moreover, the arithmetic-geometric-harmonic mean inequality holds:

H[n, t](A1, · · · ,An) � G[n,t](A1, · · · ,An) � A[n,t](A1, · · · ,An). (AGH)

As a converse of the arithmetic-geometric mean inequality, Specht [15] estimated
the upper bound of the arithmetic mean by the geometric one for positive numbers: For
x1, · · · ,xn ∈ [m,M] with 0 < m � M ,

x1 + · · ·xn

n
� S(h) n

√
x1 · · ·xn, (2.1)

where h = M
m (� 1) is a generalized condition number in the sense of Turing [19] and

the Specht ratio is defined for h > 0 as

S(h) =
(h−1)h

1
h−1

e logh
(h �= 1) and S(1) = 1. (2.2)

Alić, Bullen, Pečarić and Volenec in [1] showed noncommutative version of Specht
inequality (2.1) in the case of n = 2 as follows:

(1− t)A1 + tA2 � S(h)A1 �t A2,

also see [18].
Moreover, we showed n -variable noncommutative operator version of (2.1) in [4]:

For any positive integer n � 3, let A1,A2, · · · ,An be positive invertible operators such
that m � Ai � M for i = 1,2, · · · ,n and some scalars 0 < m � M . Put h = M

m . Then for
each t ∈ [0,1]

A[n,t](A1, · · · ,An) � S(h)2 G[n,t](A1, · · · ,An). (2.3)

We collect basic properties of the Specht ratio ([7, Lemma 2.47], [20]):

LEMMA 2.1. Let h > 0 be given. Then the Specht ratio has the following proper-
ties:

(1) S(h−1) = S(h) .

(2) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for
h > 1 .

(3) limp→0 S(hp)
1
p = 1 .

3. Results

In [9], Hiai and Petz showed the following geometric mean version of the Lie-
Trotter formula: If A and B are positive invertible and t ∈ [0,1] , then

lim
p→0

(Ap �t Bp)
1
p = e(1−t) logA+t logB.
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One of the authors and Nakamoto [5] defined the chaotically t -geometric mean
A ♦t B which is different from the usual t -geometric mean A �t B :

A ♦t B = e(1−t) logA+t logB.

We firstly show an n -variable version of the Lie-Trotter formula for the weighted
geometric mean due to Lawson-Lim:

LEMMA 3.1. Let A1,A2, · · · ,An be positive invertible operators such that m �
Ai � M for i = 1,2, · · · ,n and some scalars 0 < m � M, and let p > 0 . Then

G[n,t](Ap
1 , · · · ,Ap

n)
1
p uniformly converges to the chaotically geometric mean

eA[n,t](logA1,···,logAn) as p ↓ 0 .

Proof. It follows from [6, Lemma 3.5] that for all λi ∈ [0,1] , i = 1,2, · · · ,n such
that ∑n

i=1λi = 1,

0 � log
n

∑
i=1

λiAi −
n

∑
i=1

λi logAi � logS(h).

In particular, we have

0 � logA[n,t](A1, · · · ,An) − A[n,t](logA1, · · · , logAn) � logS(h).

Replacing Ai by Ap
i for p > 0,

0 � logA[n,t](Ap
1 , · · · ,Ap

n)−A[n,t](logAp
1 , · · · , logAp

n) � logS(hp)

and hence

0 � logA[n, t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) � logS(hp)

1
p .

Since S(hp)
1
p → 1 as p ↓ 0, it follows that A[n,t](Ap

1 , · · · ,Ap
n)

1
p uniformly converges to

the chaotically geometric mean eA[n,t](logA1,···,logAn) as p ↓ 0.
On the other hand, since

0 � logA[n, t](A−1
1 , · · · ,A−1

n )−A[n,t](logA−1
1 , · · · , logA−1

n ) � logS(h−1),

it follows from S(h−1) = S(h) by Lemma 2.1 that

0 � logH[n,t](A1, · · · ,An)−A[n,t](logA1, · · · , logAn) � − logS(h)

and this implies

0 � logH[n, t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) � − logS(hp)

1
p

for all p > 0.

Hence H[n, t](Ap
1 , · · · ,Ap

n)
1
p uniformly converges to the chaotically geometricmean

eA[n,t](logA1,···,logAn) as p ↓ 0.
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By (AGH), we have

logH[n, t](Ap
1 , · · · ,Ap

n)
1
p � logG[n,t](Ap

1 , · · · ,Ap
n)

1
p � logA[n,t](Ap

1 , · · · ,Ap
n)

1
p

for all p > 0 and hence we have this lemma. �
For the case of n = 2, Ando-Hiai showed that the norm ‖ (Ap

1 �t Ap
2)

1
p ‖ is mono-

tone increasing for p > 0. For n � 3, we have the following result:

LEMMA 3.2. Let A1,A2, · · · ,An be positive invertible operators such that m �
Ai � M for i = 1,2, · · · ,n and some scalars 0 < m � M. Put h = M

m . Then for each
0 < q < p

S(hp)−
2
p ‖ G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖

�‖ G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖� S(hp)

2
p ‖ G[n, t](Ap

1 , · · · ,Ap
n)

1
p ‖,

where S(h) is defined as (2.2).

Proof. By the arithmetic-geometric mean inequality, it follows that for each 0 <
q < p

G[n,t](A
q
p
1 , · · · ,A

q
p
n ) � A[n,t](A

q
p
1 , · · · ,A

q
p
n )

� A[n,t](A1, · · · ,An)
q
p by the concavity of t

q
p and 0 < q

p < 1

� S(h)
2q
p G[n,t](A1, · · · ,An)

q
p by (2.3) and Löwner-Heinz Theorem.

Replacing Ai by Ap
i , we have

G[n,t](Aq
1, · · · ,Aq

n) � S(hp)
2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Also,

G[n, t](A−q
1 , · · · ,A−q

n ) � S(h−p)
2q
p G[n,t](A−p

1 , · · · ,A−p
n )

q
p

and hence

G[n,t](Aq
1, · · · ,Aq

n) � S(hp)−
2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Therefore we have for all q > 0

S(hp)−
2
p ‖ G[n, t](Ap

1 , · · · ,Ap
n)

1
p ‖

�‖ G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖� S(hp)

2
p ‖ G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖ . �

By Lemma 3.2, we show n -variable versions of a complement of the Golden-
Thompson-Segal type inequality due to Ando-Hiai:
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THEOREM 3.3. Let H1,H2, · · · ,Hn be selfadjoint operators such that m � Hi � M
for i = 1,2, · · · ,n and some scalars m � M. Then

S(ep(M−m))−
2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖

�‖ eA[n,t](H1,···,Hn) ‖� S(ep(M−m))
2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖ (3.1)

for all p > 0 and the both-hand sides of (3.1) converge to the middle-hand side as
p ↓ 0 , where the Specht ratio S(h) is defined as (2.2).

Proof. If we replace Ai by eHi in Lemma 3.2, then it follows that

S(ep(M−m))−
2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖

�‖ G[n,t](eqH1 , · · · ,eqHn)
1
q ‖� S(ep(M−m))

2
p ‖ G[n,t](epH1 , · · · ,epHn)

1
p ‖

for all 0 < q < p . Hence we have (3.1) as q ↓ 0 by Lemma 3.1.

The latter part of Theorem follows from S(ep(M−m))
2
p → 1 as p ↓ 0 by Lemma 2.1.

�
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geometric mean due to Lawson-Lim, Linear Alg. Appl., 427 (2007), 272–284.
[5] M. FUJII AND R. NAKAMOTO, A geometric mean in the Furuta inequality, Sci. Math. Japon., 55

(2002), 615–621.
[6] M. FUJII, Y. SEO AND M. TOMINAGA, Golden-Thompson type inequalities related to a geometric

mean via Specht’s ratio, Math. Inequal. Appl., 5 (2002), 573–582.
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