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ON A FUNCTIONAL VOLTERRA–FREDHOLM

INTEGRAL EQUATION, VIA PICARD OPERATORS

NICOLAIE LUNGU AND IOAN A. RUS

Abstract. In this paper we present some results relative to existence, uniqueness, integral in-
equalities and data dependence for the solutions of the functional Volterra-Fredholm integral
equation with deviating argument in a Banach space:

u(x,y) = g(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
K(x,y,s,t,u(s,t))dsdt, x,y ∈ R+

by Picard operators technique. This equation is a generalization of the equation (VF) from the
paper: B.G. Pachpatte, On Volterra-Fredholm integral equation in two variables, Demonstratio
Math., 40(2007), No. 4, 832-852.

1. Introduction

The present paper is motivated by a recent paper [5] by B.G. Pachpatte which
studies a system of Volterra-Fredholm integral equations in two variables x,y ∈ R+ .
The aim of our paper is to study the following more general Volterra-Fredholm integral
equation with deviating argument in a Banach space:

u(x,y) = g(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
K(x,y,s,t,u(s,t))dsdt, x,y ∈ R+. (1.1)

Let (E, | · |) be a Banach space. Let τ > 0 and

Xτ := {u ∈C(R2
+,E) | ∃ M(u) > 0 : |u(x,y)|e−τ(x+y) � M(u)}.

On Xτ we consider Bielecki’s norm

‖u‖τ := sup
x,y∈R+

(|u(x,y)|e−τ(x+y)).

It is clear that (Xτ ,‖ · ‖τ) is a Banach space.
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Relative to (1.1) we suppose that:

(c1) g ∈C(R2
+×E,E), K ∈C(R4

+ ×E,E) ;
(c2) h : Xτ → Xτ is such that

∃ lh > 0 : |h(u)(x,y)−h(v)(x,y)| � lh‖u− v‖τ · eτ(x+y),

∀ x,y ∈ R+, ∀ u,v ∈ Xτ ;

(c3) ∃ lg > 0 : |g(x,y,e1)−g(x,y,e2)| � lg|e1− e2|,
∀ x,y ∈ R+, ∀ e1,e2 ∈ E;

(c4) ∃ lK(x,y,s, t) : |K(x,y,s,t,e1)−K(x,y,s,t,e2)|
� lK(x,y,s,t)|e1 − e2|, ∀ x,y,s,t ∈ R+, e1,e2 ∈ E;

(c5) lK ∈C(R4
+,R+) and∫ x

0

∫ y

0
lK(x,y,s,t)eτ(s+t)dsdt � leτ(x+y), ∀ x,y ∈ R+;

(c6) lhlg + l < 1.
We consider the operator

A : Xτ → Xτ , A(u)(x,y) := second part of (1.1).

First of all we shall prove that under the conditions (c1)− (c6) the operator A is a
Picard operator. So, we present some notions and results from Picard operators theory
(see I.A. Rus [6]-[8]).

2. Picard operators

Let (X ,d) be a metric space, A : X → X an operator and c > 0. We denote by FA

the fixed point set of A .

DEFINITION 2.1. (I. A. Rus [6]–[8]) A is a Picard operator (PO) if there exists
x∗A ∈ X such that:

(i) FA = {x∗A} ;
(ii) An(x) → x∗A as n → ∞, ∀ x ∈ X .

DEFINITION 2.2. (I. A. Rus [8]) A is a c-Picard operator (c-PO) if A is PO and
d(x,x∗A) � cd(x,A(x)), ∀ x ∈ X .

LEMMA 2.1. (Abstract Gronwall lemma) ([8]) Let (X ,d,�) be an ordered met-
ric space and A : X → X an operator. We suppose that

(i) A is PO;
(ii) A is increasing.

If we denote by x∗A the unique fixed point of A, then
(a) x � A(x) ⇒ x � x∗A ;
(b) x � A(x) ⇒ x � x∗A .
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LEMMA 2.2. (I. A. Rus [8]) Let (X ,d,�) be an ordered metric space and A,B,C :
X → X be such that

(i) A � B � C;
(ii) The operators A,B,C are POs;
(iii) The operator B is increasing.

Then
x∗A � x∗B � x∗C.

3. Existence and uniqueness

We begin with

THEOREM 3.1. Under the conditions (c1)− (c6) the equation (1.1) has in Xτ a
unique solution u∗ and the sequence of successive approximations

un+1(x,y) = g(x,y,h(un)(x,y))+
∫ x

0

∫ y

0
K(x,y,s, t,un(s,t))dsdt, n ∈ N (3.1)

converges uniformly to u∗ .

Proof. We have that the operator A is a contraction in Xτ with respect to ‖ · ‖τ .
Indeed, for u,v ∈ Xτ from (c1)− (c6) it follows

|A(u)(x,y)−A(v)(x,y)| � |g(x,y,h(u)(x,y))−g(x,y,h(v)(x,y))|
+ lg|h(u)(x,y)−h(v)(x,y)|
+

∫ x

0

∫ y

0
lK(x,y,s,t)|u(s,t)− v(s, t)|dsdt

� lglh‖u− v‖τeτ(x+y) + l‖u− v‖τeτ(x+y)

� (lglh + l)eτ(x+y)‖u− v‖τ.

Hence
‖A(u)−A(v)‖τ � (lglh + l)‖u− v‖τ,

for all u,v ∈ Xτ .
From (c6) we have that A is a contraction. So, from the contraction principle A

is a c-Picard operator, where

c =
1

1− lglh− l
. �

REMARK 3.1. If E := R
n and

g(x,y,h(u)(x,y)) := h(x,y)+
∫ ∞

0

∫ ∞

0
G(x,y,s, t,u(s,t))dsdt (3.2)

then we have Pachpatte’s result.
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REMARK 3.2. If E := l p(R) , 1 � p < ∞ , then the equation (1.1) is an infinite
system of functional-integral equations:

ui(x,y) = gi(x,y,h(u1, . . . ,un, . . .)(x,y)+
∫ x

0

∫ y

0
Ki(x,y,s,t,u1(s, t), . . . ,un(s, t), . . .)dsdt

for all x,y ∈ R+ and i ∈ N
∗ .

4. Integral inequalities

THEOREM 4.1. Let (E, | · |,�) be an ordered Banach space. We suppose that:
(i) the conditions (c1)− (c6) are satisfied;
(ii) the operators

g(x,y, ·) : E → E

h : E → E

K(x,y,s,t, ·) : E → E,

are increasing.
If u∗ ∈ Xτ is the unique solution of the equation (1.1) and u ∈ Xτ is a solution of

the following inequality

u(x,y) � g(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
K(x,y,s,t,u(s, t))dsdt, ∀ x,y ∈ R+ (4.1)

then
u(x,y) � u∗(x,y).

Proof. We consider the operator

A : Xτ → Xτ , A(u)(x,y) := second part of (1.1).

The operator A is a Picard operator. From the condition (ii) A is increasing. Then
the proof follows from Lemma 2.1. �

EXAMPLE 4.1. Consider:

g(x,y,h(u)(x,y)) � h(x,y) (4.2)

and
K(x,y,s,t,u(s,t)) � b(x,y)L(s, t,u(s,t)),

where h,b : R
2
+ → R+ are continuous functions and L : R

3
+ → R+ is a continuous

function which satisfies the condition

0 � L(x,y,v)−L(x,y,w) � M(x,y,w)(v−w)

for x,y ∈ R+ and v � w � 0. M is a nonnegative continuous function defined on R
3
+ .
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Then

u(x,y) � h(x,y)+b(x,y)
∫ x

0

∫ y

0
L(s,t,u(s,t))dsdt. (4.3)

Consider the operator B : Xτ → Xτ , B(u)(x,y) := last part of (4.3).
It is clear that the operator B is PO on Xτ and is increasing.
Let u∗B be the unique fixed point of B . Thus, from Lemma 2.2, we have

u∗(x,y) = A(u∗) � B(u∗B) = u∗B.

From the papers [1]+[2] (S.S. Dragomir and N.M. Ionescu), we have

u∗B(x,y) = h(x,y)+b(x,y)
[
exp

(∫ x

0

∫ y

0
P(s, t)dsdt

)
−1

]
(4.4)

where
P(x,y) = [L2(x,y,h(x,y))+M2(x,y,h(x,y))b2(x,y)]1/2,

for x,y ∈ R+ .
Then

u(x,y) � u∗B(x,y).

5. Data dependence: Monotony

Consider the following integral equations

ui(x,y) = gi(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
Ki(x,y,s,t,u(s, t))dsdt, i = 1,2,3. (5.1i)

THEOREM 5.1. We suppose that
(i) gi,h,Ki, i = 1,2,3 satisfy the conditions (c1)− (c6);
(ii) g1 � g2 � g3, K1 � K2 � K3 ;
(iii) the operators:

g2(x,y, ·) : E → E,

h : E → E,

Ki(x,y,s,t, ·) : E → E, i = 1,2,3

are increasing.
Then the equation (5.1i) has a unique solution u∗i and

u∗1 � u∗2 � u∗3. (5.2)

Proof. Consider the operators Ai , i = 1,2,3, Ai : Xτ → Xτ

Ai(u)(x,y) := second part of (5.1i), i = 1,2,3.

These operators are as in Lemma 2.2. We remark that u∗i ∈ Xτ , i = 1,2,3. The
proof follows from Lemma 2.2. �
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6. Data dependence: Continuity

In this section we shall use the following notations:

g̃(u)(x,y) := g(x,y,h(u)(x,y))

and

K̃(u)(x,y) :=
∫ x

0

∫ y

0
K(x,y,s,t,u(s,t))dsdt.

Let us consider the following equations

ui(x,y) = gi(x,y,h(u)(x,y))+
∫ x

0

∫ y

0
Ki(x,y,s,t,u(s,t))dsdt, i = 1,2. (6.1i)

We have

THEOREM 6.1. We suppose that:
(i) gi,h,Ki, i = 1,2 , satisfy the conditions (c1)− (c6);
(ii) there exist ηi ∈ R+ , i = 1,2 , such that

‖g̃1(u)− g̃2(u)‖τ � η1 and ‖K̃1(u)− K̃2(u)‖τ � η2, ∀ u ∈ Xτ .

Then, if u∗i is the unique solution of (6.1i), then:

‖u∗1−u∗2‖ � η1 +η2.

Proof. The proof follows from Theorem 7.1.1 in I.A. Rus [7]. �

7. Data dependence: Differentiability

In this section we take E = R .
To study the differentiability of the fixed point with respect to parameters we need

the fiber contraction theorem.

THEOREM 7.1. (Fiber contraction theorem [3], [4], [7]) Let (X ,d) be a metric
space and (Y,ρ) be a complete metric space.

Let B : X ×Y → X ×Y be a continuous operator and A : X → X , D : X ×Y → Y
two operators. We suppose that:

(i) B(u,w) = (A(u),D(u,w)) for all u ∈ X , w ∈ Y ,
(ii) A is a Picard operator;
(iii) there exists q ∈ (0,1) such that

ρ(D(u,w),D(u,w)) � qρ(w,w)

for all u ∈ X and w,w ∈ Y .
Then B is a Picard operator.

In what follows we consider the equation

u(x,y,λ )= g(x,y,h(u)(x,y),λ )+
∫ x

0

∫ y

0
K(x,y,s,t,u(s,t,λ ),λ )dsdt, ∀ x,y∈R+, λ ∈ I.

(7.1)
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THEOREM 7.2. We suppose that
(i) the conditions (c1)− (c6) and the Theorem 3.1 are satisfied;

(ii) K ∈ C(R4
+ × I ×R,R) , has continuous derivative

∂K
∂u

and there exists q ∈
(0,1) such that

∫ x

0

∫ y

0

∣∣∣∣∂K
∂u

∣∣∣∣eτ(s+t)dsdt � qeτ(x+y), ∀ x,y ∈ R+. (7.2)

Then the solution of the equation (7.1) is differentiable with respect to λ and
∂u
∂λ

∈C(R2
+ × I,R) .

Proof. In what follows we use the fiber contraction theorem (Theorem 7.1).
Let X := C(R2

+× I,R) and the operator A : X → X defined by

A(u)(x,y,λ ) := the second part of (6.1i) (7.3)

A(u)(x,y,λ ) = g(x,y,h(u)(x,y),λ )

+
∫ x

0

∫ y

0
K(x,y,s,t,u(s,t,λ ),λ )dsdt, ∀ x,y ∈ R+, λ ∈ I.

Let u(x,y,λ ) be the unique fixed point of A . We suppose that there exists
∂u
∂λ

.

Then from (7.1) it follows that

∂u(x,y,λ )
∂λ

=
∂g(x,y,h(u)(x,y),λ )

∂λ
(7.4)

+
∫ x

0

∫ y

0

∂K(x,y,s,t,u(s,t,λ ),λ )
∂u

· ∂u(s,t,λ )
∂λ

dsdt

+
∫ x

0

∫ y

0

∂K(x,y,s,t,u(s,t,λ ),λ )
∂λ

dsdt

In what follows we denote

w(x,y,λ ) =
∂u(x,y,λ )

∂λ
,

then we have

w(x,g,λ ) =
∂g(x,y,h(u)(x,y),λ )

∂λ
(7.5)

+
∫ x

0

∫ y

0

∂K(x,y,s,t,u(s,t,λ ),λ )
∂u

w(s,t,λ )dsdt

+
∫ x

0

∫ y

0

∂K(x,y,s,t,u(s,t,λ ),λ )
∂λ

dsdt.

This relation suggests to consider the following operator

D : C(R2
+× I,R)×C(R2

+× I,R) →C(R2
+ × I,R)
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where

D(u,w)(x,y,λ ) := second part of (7.5)

for all x,y ∈ R+ and λ ∈ I .
The operator D is a contraction with respect to w , indeed

|D(u,w)(x,y,λ )−D(u,w)(x,y,λ )|�
∫ x

0

∫ y

0

∣∣∣∣∂K(x,y,s,t,u(s,t,λ ),λ )
∂u

w(s, t,λ )

−∂K(x,y,s, t,u(s,t,λ ),λ )
∂u

w(s,t,λ )
∣∣∣∣dsdt

�
∫ x

0

∫ y

0

∣∣∣∣∂K(x,y,s,t,u(s,t,λ ),λ )
∂u

∣∣∣∣ |w(s,t,λ )−w(s,t,λ )|dsdt

�
∫ x

0

∫ y

0

∣∣∣∣∂K(x,y,s,t,u(s,t,λ ),λ )
∂u

∣∣∣∣ |w(s,t,λ )−w(s,t,λ )|e−τ(s+t)eτ(s+t)dsdt

� ‖w(s, t,λ )−w(s,t,λ )‖qeτ(x+y).

Then we have

‖D(u,w)(x,y,λ )−D(u,w)(x,y,λ )‖ � q‖w(x,y,λ )−w(x,y,λ )‖, q ∈ (0,1). (7.6)

Then the operator D is a contraction and has a unique fixed point w , D(u,w) = w .
If we take the operator:

B : C(R2
+× I,R)×C(R2

+× I,R) →C(R2
+ × I,R)×C(R2

+× I,R)

B(u,w) = (A(u),D(u,w)),

from Theorem 7.1, we have that B is a Picard operator. This implies that the sequences

un+1 := A(un)
wn+1 := D(un,wn), n ∈ N,

converge uniformly to (u∗,w∗) ∈ FB , for all u0,w0 ∈C(R2
+ × I,R) .

Let u0(x,y, ·) ∈C1(I) and w0 :=
∂u0

∂λ
. Then by induction we prove that

wn =
∂un

∂λ
.

Therefore, (un) converges uniformly to u∗ and

(
∂un

∂λ

)
n∈N

converges uniformly

to w∗ . From the above converges it follows that there exists
∂u
∂λ

and
∂u
∂λ

= w . �
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