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BOUNDS FOR THE NORMALIZED JENSEN-MERCER FUNCTIONAL
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Abstract. We introduce the normalized Jensen-Mercer functional

Mo (f.x,p) = fla)+ f(b) — ipif(xi) -f <a+b— ipm)
iz =

i=1

and establish the inequalities of type M.#,(f,x,q) > #,(f,x,p) = mA,(f.x,q), where f is
a convex function, x = (x1,...,x,) and m and M are real numbers satisfying certain conditions.
We prove them for the case when p and g are nonnegative n-tuples and when p and q satisfy
the conditions for the Jensen-Steffensen inequality. We also give their integral versions in both
cases.

1. Introduction

In paper [4] A. McD. Mercer proved the following variant of Jensen’s inequality,
to which we will refer as to the “Jensen-Mercer inequality”.

THEOREM A. Let [a,b] be an interval in R and xy,...,x, € [a,b]. Let wy,...,wy
be nonnegative real numbers such that W, =Y} w; > 0. If f:]a,b] — R isa convex
function, then

f a—l—b—WLG:wixi <f(a)+f(b)—izn:wif(xi). (L.1)

ni=1 Wa i=1

In paper [1] is proved that (1.1) remains valid even in the case when the condition
”w = (wi,...,w,) is nonnegative n-tuple” is somewhat relaxed. More precisely the
following is true.

THEOREM B. Let [a,b] be an interval in R and x = (x1,...,x,) € [a,b]" be a
monotonic n-tuple. Let w = (w1, ...,wy) be a real n-tuple such that

0KWe<W, (k=1,....n), W,>0, (1.2)
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where Wy =35 w; (k=1,2,...,n). If f:[a,b] — R is aconvex function, then (1.1)
holds.

Let &2, denotes the set of all nonnegative real n-tuples (py,...,p,) with the prop-
erty Y pi= 1. For any convex function f : [a,b] — R and for any choice of n-tuples
x=(x1,...,%,) € [@,b]" and p = (p1,...,pn) € P, we define

i=1

%"(f’x’p) = f(a) +f(b) - En:pif(xi) -f <a+b_ il’iﬁ) (1.3)
i=1

and we call it the normalized Jensen-Mercer functional. For a fixed function f and n-
tuple x, .#,(f,x,-) can be observed as a function on &,. Note that &, is obviously
a convex subset in R” and because of Theorem A, .#,(f,x,p) > 0 forall p € &,.

In Section 2 we establish the inequalities of type M., (f,x,q) = A#,(f,x,p) =
mty(f,x,q), where m and M are real constants satisfying certain conditions. We
prove them for the case when p and g are nonnegative n-tuples and when p and ¢q
satisfy the conditions for the Jensen-Steffensen inequality. In Section 4 we give the
integral versions of all results from Section 2 and 3.

2. Bounds for the normalized Jensen-Mercer functional
‘We assume the notations from introduction.

THEOREM 1. Let p = (p1,...,pn) and q = (q1,...,qn) be two n-tuples from
P,. Let m and M be any real constants such that

m>z0, pi—mq; >0, Mqgi—pi=0 (i=1,...,n). (2.1)

If f:]a,b] = R is a convex function and x = (x1,...,x,) is any n-tuple from [a,b]",
then

M, (f,x,q) = M,(f,x,p) = mt,(f,x,q). (2.2)

Proof. Suppose that p,q € &, and m,M € R satisfy (2.1). From p; —mgq; >
0 (i=1,...,n) follows that 1 —m =3} | (pi—mg;) >0 ie., m <1, and from Mq; —
pi=0(i=1,...,n) follows that M — 1 =YY" | (Mg;—p;) 20ie, M>1. If m=1
or M =1, then p=gq and (2.2) obviously holds. Hence, it remains to consider the
case when m <1 and M > 1.

Applying Theorem A with w; := p; —mg; and using the convexity of the function
f we obtain the right inequality in (2.2).

Similarly, applying Theorem A with w; := Mgq; — p; and using the convexity of
the function f we obtain the left inequality in (2.2). O

COROLLARY 1. Let p=(p1,...,pn) and ¢ = (q1,...,qn) be two n-tuples from
Py suchthat gi >0 (i=1,...,n). Let

m=m(p,q) := min {%}7 M =M(p,q) := max {%’} (2.3)

1<i<n 1<i<n
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If f:|a,b] — R is a convex function and x = (x1,...,x,) is any n-tuple from |a,b]",
then (2.2) holds.

Proof. Obviously m > 0 and

pi _ Db ; —
o m>0, M—-2>0 (i=1,...,n),

which implies
pl_mql>07 Mq1_pt>0 (1217,7’1)

Hence, m and M satisfy the conditions of Theorem 1. [

3. Bounds for the normalized Jensen-Mercer functional under the
Jensen-Steffensen conditions

Let &, denotes the set of all real n-tuples p = (p1,...,p,) satisfying the follow-
ing Jensen-Steffensen conditions

0<P <l (k=1,....n—1), P,=1, 3.1)
where Py : El 1pi (k=1,...,n). Since any n-tuple p from &7, obviously satisfies
(3.1), &, C P,. Notice that 32 is also a convex subset of R”.

Let f : [a,b] — R be a convex function, x = (x1,...,x,) € [a,b]" any monotonic

n-tuple and p = (p1,...,pn) € P,. Then Y*  pixi € |a,b] (see for example [1]) and
My (f,x,p) is well defined. Also, because of Theorem B, .#,(f,x,p) > 0 for all
pE P,.

_ THEOREM 2. Let p = (p1,...,pn) and q = (qi,....,qn) be two n-tuples from
P,. Let m and M be any real constants such that

and
MQy— P =0, M(I—Qk)—(l—Pk) 20 (k=1,....,n—1), (3.3)
where P, = Y% pi, Qv = 3% qi. If f:]a,b] =R is a convex function and x =
(X1,...,Xn) € [a,D]" is any monotonic n-tuple, then
M%n(f,x,q) (fax p) m% (fax q) (34)

Proof. Assume that p,q € &, and m,M € R satisfy (3.2) and (3.3). From (3.2)
follows that it has to be m < 1, and from (3.3) follows thatithastobe M > 1. If m=1
or M =1, then p=gq and (3.4) obviously holds. Hence, it remains to consider the
case when m <1 and M > 1.

To prove the right inequality in (3.4) we consider the n-tuple w = (wy,...,wy)
defined by w; := p;—mgq; (i=1,...,n). From (3.2) follows that w satisfies conditions
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(1.2). Now, we follow our proof of Theorem 1, but instead of using Theorem A we use
Theorem B.

To prove the left inequality in (3.4) we consider the n-tuple w = (wy,...,wy)
defined by w; := Mq; — p;, (i=1,...,n). From (3.3) follows that w satisfies condi-
tions (1.2). Again, we follow our proof of Theorem 1, but using Theorem B instead of
Theorem A. [

_ COROLLARY 2. Let p=(p1,...,pn) and q=(q1,...,qn) be two n-tuples from
Py. For k€ {1,...,n} denote P, := Zi-‘:lp,-, O = Zleq,-. Assume that 0 < Qy < 1
forall ke {1,...,n—1} and define

= i(p,q) ::min{gkk,}:gkk:k:l,...,n—1}7 (3.5)

M:M(p,q)::max{%,tgi:k:l,...,n—l}. (3.6)

If f:a,b] = R is a convex function and if x = (x1,...,x,) € [a,b]" is any monotonic
n-tuple, then

M.A,(fx,q) = A0(f,x,p) 2 Aly(f,x.q). 3.7

Proof. Since 0 < Q; < 1 forall k€ {1,...,n—1}, 7z and M are well defined
and obviously (3.2) and (3.3) are satisfied for m = /i and M = M. Therefore we can
apply Theorem 2 to obtain (3.7). O

We can consider the uniform distribution u = (%7 e %) and the corresponding
nonweighted Jensen-Mercer functional

M(f %) = My (foxw) = fla) + f(b) —

'EM=

f i) — (a +b- 2x1> :

Then we can state the following special case of Corollary 2.

COROLLARY 3. Let p = (p1,...,pn) be n-tuple from P,. For k € {1,...,n}
denote B, :=Y*_, p; and define

rhm:n-min{%,%:k:l,...,n—l},

M, ::n-max{%,ln_jf :k:l7...,n—l}.

If f:]a,b] = R is a convex function and if x = (x1,...,x,) € |a,b]" is any monotonic
n-tuple, then
Moﬁn(fax) (f7x P) mO% (fv )

Next, we show that Theorem 2 in some way provides an improvement of Corol-
lary 1. Denote by IT, the set off all permutations of (1,2,...,n). Suppose that 7 =
(m(1),7(2),...,7m(n)) €I, and denote ay := (dz(1),dz(2);---an(n)) for any n-tuple
a=(ay,ay,...,a,). First we prove one simple auxiliary result.
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LEMMA 1. Let p = (p1,...,pn) and q = (qi,...,qn) be two nonnegative n-
tuples from Py,. If q; > 0 forall i € {1,...,n}, then wm(p,q) and M(p,q) are well
defined by (3.5) and (3.6) and

max {ql } >M(p,q), m(p,q)> min {%} (3.3)

1<i<n 1<i<n

Proof. Since ¢; > 0 for all i € {1,...,n}, it is obvious that 0 < Q; < 1 for all
ke {1,...,n—1}, so that 7i(p,q) and M(p,q) are well defined by (3.5) and (3.6).

Also, for any k € {1,...,n— 1} we can write
k k n n
B = ZPiZ Z%Qia 1-P= D pi= _ > L.
i=1 i=1 i=k+1 i=k+1
Now,
k

_ Di
max = max ; > P, > min { } = min { }
1<i<n{‘1 }Qk 1<l<n{‘1 }qu Z Rz i qu 1<i<n O,

i=1
ie.,
P .
max {p’} > £ > min {ﬂ}
1<i<n Qk 1<i<n qi

Similarly,

max {pz}> =B > min {%} forallk € {1,...,n—1},

1<ign L4 —O 7 1<i<n

and (3.8) immediately follows. [

REMARK 1. It is clear that inequalities stated in Lemma 1 can be strict. For ex-

- 11112 11111
ample,if n=35, p=(5,3,5:5.5) and §=(3.5.5,5:5), then

max{l’l}—3>M(P‘I) % m(p,q) = 6> mm{%}:g,

1<isn 1<ig<n

It is not hard to see that generally

max{sl’} max M(pr,qz), min {%} min /(pr,qr).

1<isn rell, 1<ign nell,

THEOREM 3. Let f: [a,b] — R be a convex function and x = (x1,...,x,) € |a,b]"
be any n-tuple. Let m = (n(1),7(2),...,m(n)) be a permutation of (1,2,...,n) such

that x5 is monotonic (nondecreasing or nonincreasing). If p = (p1,...,pn) and q =
(q15---,qn) are two n-tuples from P, such that q; >0 forall i € {1,...,n}, then
max {84 4,(f.%.9) > M(pr.qx) 6/ %.) > 4,/ %.P) (3.9)

> 1(pr,gx) o (fox.q) > min {2).4,(f,x,9),

1<isn

where m(px,qn) and M(py,qr) are defined as in (3.5) and (3.6). The first and the
last inequality can be strict.
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Proof. Since 7 is chosen so that x; is monotonic we can apply Corollary 2 and
Lemma 1 to the n-tuples p; and g, to get

max {pﬂ(l } (faxmqﬂ) =z (Pﬂaqn) (f,xmqﬂ) >. n(faxr[,Pn)

1<i<n \ 49n()

> ”71( qﬂ) (f7x7r»Q7r)
> mln { 71:51)} n(f7xn747r)~

1<i<n (i)

Since 4, (f,x,p) doesn’t change if we simultaneously permute the components of
x and p, we have %n(frx?'hpﬂ') = %"(frx:?P) and %n(f7x71'aq7f) = %n(f;x,q)-

Also it is obvious that max {@} = max {ﬂ} and min {@} = min {ﬂ}

1<i<n L 9n(i) 1<isn L4 1<i<n \4n(i) 1<is<n Ui
Therefore, sequence of inequalities (3.9) holds. By Remark 1 the first and the last
inequality in the sequence can be strict. [

4. Integral versions

In [3] the following theorem is proved.

THEOREM C. Let (Q, 47, ) be a probability measure space, and let x : Q — [a,b]
(—o0 < a < b < ) be ameasurable function. Then for any continuous convex function
fila,b) =R,

flato- [xdu | <r@+rm)- [fwau
Q Q

holds.

It can analogously be proved that for a measure space (Q,.o7, 1) with 0 < u (Q) <
oo the integral version of the Jensen-Mercer inequality

1 1
f a+b—m!mu <f(a)+f(b)—m!f(wdu (@.1)

holds. In a special case when Q = [at, ], where —eo < < f§ <ecoand A : [a, ] — R
is any nondecreasing function such that A(f) # A () inequality (4.1) becomes

b b
P R p—— /x DAAW) | < f(@) + 1)~ 1w / F)dA (). 4.2)

o

Also, we can prove that (4.2) remains valid even in the case when the condition
” A is nondecreasing function” is somewhat relaxed. We use the following integral
variant of the Jensen-Steffensen inequality given by R. P. Boas [2] (see also [5, p. 59]):
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THEOREM D. Let x:[a,f] — (a,b) be a continuous and monotonic function
(either nondecreasing or nonincreasing), where —oo < o0 < ff < o0 and —eo < a <
b < oo, and let function A : [ct,] — R be either continuous or of bounded variation

satisfying

A0) SA() < A(B) forallt €lo,B], A(B)—A(ct)>0. (4.3)
If f:(a,b) — R is a convex function, then
B B
7| mm [x0020) | < s [ )02 0). @4

holds.

THEOREM 4. Let x: [a,B] — [a,b] be a continuous and monotonic function,
where —eo < 00 < B < +o0 and —oo < a < b < +oo. Let function A:[a,p] — R
be either continuous or of bounded variation satisfying (4.3). Then for any continuous
convex function f : [a,b] — R inequality (4.2) holds.

Proof. Suppose that x is continuous and nondecreasingi.e., x (t;) < x(z) for 1, <
1, € [a,B]. Let &, be any real numbers such that @ < « and § < 3. We define
function x: [a, 8] — [a,b] by

at+94_q), te(a al;

(1) = { x(1), _ t € [, B];
b2t~ p). 1< BBl

X is also continuous and nondecreasing. Furthermore, x([ct, &]) = [a,x(c)], X([B, B H=
[x(B),b] and X(r) = x(t) forall t € [c, B]. N

Next, we define two functions Ay : [&,E} — R and ZC :[a,B] — R by

1, r=a; 17 te[&7a];
) =30, 1€ (@p); and Afr)={ £BEL e (o, pl;
_lat:ﬁ7 07 te[ﬁ?ﬁ}

Notice that Ay is a step function with only jumps at end points of the interval [c, B]
—R

Therefore, the integral f£ y(t)djls(t) is well defined for any function y : [&, f]
continuous at the points & and B , and we have

B
[ 3O = (@) B (3+0) = 2 (2] +3(B)A(B) ~ A(B - 0)]

= (&)~ (). (45)
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Also, if A is continuous on [c, 3] then A is continuous on [é&, 3], and if A is of
bounded variation on [cr, ] then A is of bounded variation on [&,f]. Therefore

the integral |, 5 y(t)dA.(t) is well defined for any continuous and piecewise monotonic
function y : [&, B] — R, and we have

/ﬁ - / (1)dele) + /ﬁ Y(OdR() + /ﬁ (1) (1)
B aﬁ '
= / Y(O)dA (1) = / y(1)d [%} (4.6)
1 B
=TI A >a/y(”d“”

Now we define A : [&, 5] — R by A(t) = A.(t) — A(t), t € [é&,B]. Notice that

A(B)—A (&) =c(B)

—Ae(8) = A(B) + A (@) =0—1+14+1=1. (4.7)

From previous observations we conclude that the integral f 5y (t)d;l (¢) is well defined

for any continuous and piecewise monotonic function y : [&, } — R, and from (4.5)
and (4.6) we have

/7—7
j (@) +y(

If we apply Theorem D on the functions ¥, f and A (we can do that even if the function
A is neither continuous nor of bounded variation since all the integrals are well defined)
we obtain

mz

). (4.8)

B B
1 - 1 o
N\i55@ a/xmdx(z) TFTE a/f(x(t))dfl(t). @9)

Using (4.7), (4.8) with y =X and (4.8) with y = f (X), from (4.9) we have

B B
f (a+b e [ X0 ) £(@) + 16) = 2750y [ £ ).
¢ ¢ (4.10)
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In case when x is nonincreasing we define function x: [o, B] — [a,b] by

b+%(r—&)7 t€la,al;

x(t) = { x(@), t € [a,Bl;
at (1 —p). 1€(B.p]

and obtain (4.10) in the same way. This completes the proof. O
There is no loss in generality if we assume A () — A (o) = 1 and consider the
normalized Jensen-Mercer functional

B B
M(frx,0) ::f(a)+f(b)—/f(x(t))d)t(t)—f a+b—/x(t)d)t(t) L @1

Under the appropriate assumptions on f, x and A, we always have .Z (f,x,A) >
For —co < 00 < B <o let Ay g) denotes the class of all functions A : [a, ] — R
which are either continuous or of bounded variation and satisfy the condition

A(e) <A() <A (B) forallr e [a,B], A(B)—Ala)=1. (4.12)

Notice that any nondecreasing function A : [a, 8] — R with A () —A(a) =1 belongs
to A[a,B] .

Now we can state the integral analogues of the results from the previous section.
First, we give the integral version of Theorem 1.

THEOREM 5. Let A and W be two functions from Ajg g, —=<a< B <oo. Let
x: o, B] = [a,b], —eo < a < b < oo be a continuous function and let f : [a,b] — R be
a convex function.

a) If u is nondecreasing and if m > 0 is a constant such that the function p : [, B]
— R defined by

p(t):=A@)—mu(t), tela,p] (4.13)

is also nondecreasing, then
M(fox,A) = md (f,x,1). (4.14)

b) If A is nondecreasing and if M > 0 is a constant such that the function
o :[o,B] — R defined by

o(t):=Mu@)—A(r), te]o,p] (4.15)
is also nondecreasing, then

M (f,x,u) = A (f,x,A). (4.16)
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Proof. a) Since u and p = A —mu are assumed to be nondecreasing and m > 0,
the function A = p +mu is nondecreasing too. Hence, .# (f,x,A) and .# (f,x, 1) are
well defined. Since p is nondecreasing it has to be m < 1. If m =1 then (4.14) holds
with equality sign. Hence, it remains to consider the case when m < 1. In this case
p(B)—p(a)=1—m>0 and p is nondecreasing by our assumption so that (4.2) can
be applied to p. Now, using (4.2) and then the convexity of f we obtain (4.14).

b) Since A and 6 = Mu — A are assumed to be nondecreasing and M > 0, the
function u = 1-(0 +A) is nondecreasing too. Hence, . (f,x,A) and . (f,x,u) are
well defined. Since p is nondecreasing it hastobe M > 1. If M =1 then (4.16) holds
with equality sign. Hence, it remains to consider the case when M > 1. In this case
6(B)—o(a) =M —1>0 and o is nondecreasing by our assumption so that (4.2)
can be applied to 0. Now, using (4.2) and then the convexity of f we obtain (4.16).
This completes the proof. [l

COROLLARY 4. Let A and p be two functions from Ny ), —o° < a0 <ff < oo,
x: o, B] = [a,b], —eo < a < b < eo bea continuous function and f : [a,b] = R bea
convex function.

a) Let u is strictly increasing and define

m=m(A,u):= inf {inf{ﬁg;:ﬁgg:agsgﬁ,s#t}}.

a<t<f

If m >0, then
AM(f,x,A) = A (f,x,10). (4.17)

b) Let A is nondecreasing, U is strictly increasing and define

M=M(A,u):= sup {sup{ﬁg;:ﬁgi;:agsgﬁ,s#t}}.

a<t<f

If]l71<°°, then
MA(f,x, 1) = A (f,x,A). (4.18)

Proof. a) Since u is strictly increasing it is injective and 7 is well defined real
number in [—oo,00). If 7i2 > 0, then p = A — s is well defined nondecreasing function
on [a, ] and we can apply Theorem 5 a) with m = 1 to obtain (4.17).

b) Since A is nondecreasing and u is strictly increasing M is well defined real
number in (0,0]. If M < oo then 6 = Mu — A is well defined nondecreasing function
on [o, B] and we can apply Theorem 5 b) with M = M to obtain (4.18). [

REMARK 2. If /2 = 0, then the inequality (4.17) is trivially fulfilled. Similarly,
if M = oo, then the inequality (4.18) is trivially fulfilled. Two simple examples which
illustrate such cases are as follows.

For [o, 8] = [0,1] let A(t) =#>, u(t) =t, ¢t €[0,1]. Then

For [, 8] = [0,1] let A(¢t) =¢, u(t) =13, ¢t €[0,1]. Then

R
wi— O

.M =3.
, M =oo.
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As in the discrete case we can consider the uniform distribution i.e., the function
U € Ajgp) defined by v() := ﬁ+at, t € [a,B] and the corresponding nonweighted
integral Jensen-Mercer functional

B B
AL 3) = A 20) = @)+ 0) = g [ 701 (a5t [ty
Then we can state the following special case of Corollary 4.

COROLLARY 5. Let A be a function from Ajg p), —0 < 00 < B <eo, x:[a, ] —
[a,b], —eo < a < b < oo be a continuous function and f: [a,b] — R be a convex func-
tion.

a) If iy = (B — ) -infy ;g {inf{% ca<s<p, s¢z}} >0, then
M(f,x,A) =g M (f,x).

b) If A is nondecreasing and My := (§ — ) - SUPy /< {sup{“?if(‘v) o <s
<P, s#£t}} < oo, then Mot (f,x) = M (f,x,2).

Next, we give the integral version of Theorem 2.

THEOREM 6. Let A and W be two functions from Ajgp, =< a< B < eo,
either both continuous or both of bounded variation. Let x: |0, ] — [a,b], —e <
a < b < o be a monotonic function (either nondecreasing or nonincreasing) and
f :la,b] = R be a convex function.

a) If m > 0 is a constant such that for all o0 <t < 3

A1) =) =m(u(r) —u()) 2 0, A(B) = A() —m(u(B) —u(1)) 20, (4.19)

then
A (frx,0) = mdl (f,x,10). (4.20)

b) If M > 0 is a constant such that for all o <t < f3

M(u(t) —p(a)) = (A1) = A()) = 0, M(u(B)—u(t)) = (A(B) - A(r)) =0, (4.21)

then
MA(f,x, 1) = A (f,x,A). (4.22)

Proof. First note that under the given assumptionson A, u, x and f, .#(f,x,A)
and . (f,x,u) are well defined and nonnegative.

a)From (4.19) follows that it has to be m < 1. If m = 1 then (4.20) obviously
holds with equality sign. Hence, it remains to consider the case 0 <m < 1. We define
the function p : [ot,f] — R by p(¢) :=A(t) —mu(t), ¢t € [, B]. If A and p are both
continuous (both of bounded variation), then p is continuous (of bounded variation)
too. Further, from (4.19) follows that for all @ <t < f8

p(t)—p(a)=A(t) —A(a)
o)

0 — 2 m(u(t) — ()
(B)—p(t) = 2(B) — A (1)

>0
m(u(B) — pu(r)) = 0.

)
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Also, since A,u € Ao g

p(B) —p(c) = A(B) — A(er) ~m(u(B) — u(ex)) = 1 —m > 0.

We conclude that the normalized function 1 -0 belongs to the class Ay ). Now, we
follow our proof of Theorem 5 a), but instead of using (4.2) we apply Theorem 4.
Thus we obtain (4.20).

b)From (4.21) follows that it hasto be M > 1. If M =1 then (4.22) holds with
equality sign. Hence, it remains to consider the case M > 1. We define the function
o:la,f]—R by o(t) :=Mu(t)—A(t), t € [a,B]. If A and u are both continuous
(both of bounded variation), then o is continuous (of bounded variation) too. Further,
from (4.21) follows that forall o <7 < 8

o(r) —o(a) =M(u@) —u(a)) = (A() —A(a)) =0,
o(B)—o()=Mu(B)—u()) - (A(B)-A() >0

o(B) —o(a) =M(u(B) — u(a)) = (A(B) = A(a)) =M —1>0.

We conclude that the normalized function Aﬁa belongs to the class Ay gj. Now we
follow our proof of Theorem 5 b) but instead of using (4.2) we apply Theorem 4. Thus
we obtain (4.22). O

COROLLARY 6. Let A and U be two functions from A p), =< a< B < eo,
either both continuous or both of bounded variation. Let x : [o,,] — [a,b], —eo <
a < b < o be a monotonic function (either nondecreasing or nonincreasing) and
f:la,b] = R be a convex function. Assume that u(or) < u(t) < w(P) forall o <t <
B, and define

= m(A,u) = inf{ Lol ABAY o <r < B} , (4.23)
M=MO,u) = sup{ﬁggjﬁgg) B o<t < B}. (4.24)

Then
Mfx,u) = A (fox,A) = m A (f,x,u). (4.25)

Proof. Since pu(at) < u(t) <u(B) forall o<t <, i and M are well defined,
and obviously 7 € [0,00) and M € (0,o0]. Therefore, the right inequality in (4.25)
follows from Theorem 6 a) with m = 7. If M = o, then the left inequality in (4.25)
holds trivially, while for M < oo it follows from Theorem 6b) withM=M. O

As in the previous case we can consider the uniform distribution v and the cor-
responding nonweighted integral Jensen-Mercer functional .# (f,x) and state the fol-
lowing special case of Corollary 6:
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COROLLARY 7. Let A be a function from Ay p), —o0 < 00 < B <oo. Let x:
[, B] — [a,b], —eo < a < b < e be a monotonic function (either nondecreasing or
nonincreasing) and f : [a,b] — R be a convex function. If fiy and My are defined by

g = (B — a0) -inf { L2 21

—o

ﬁﬂ)j(’) To <t</3},
Vo= (B — ) -sup { A8 010 1 )

then Mo (f,x) = A (f,x,1) > i (f,x).

REFERENCES

[1] S. ABRAMOVICH, M. KLARICIC BAKULA, M. MATIC AND J. PECARIC, A Variant of Jensen-
Steffensen’s inequality and quasi-arithmetic means, J. Math. Anal. Appl., 307 (2005), 370-386.

[2] R. P. BOAS, The Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.,
No. 302-319 (1970), 1-8.

[3] W. S. CHEUNG, A. MATKOVIC AND J. PECARIC, A variant of Jessen’s Inequality and generalized
means, J. Inequal. Pure and Appl. Math., 7, 1 (2006), Article 10.

[4] A. McD. MERCER, A variant of Jensen’s inequality, J. Inequal. Pure and Appl. Math., 4, 4 (2003),
Article 73.

[5] J. E.PECARIC, F. PROSCHAN AND Y. L. TONG, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, Inc. 1992.

(Received October 21, 2008) J. Bari¢
Faculty of Electrical Engineering

Mechanical Engineering and Naval Architecture

University of Split

Rudera Boskovica b.b.

21000 Split

Croatia e-mail: jbaric@fesb.hr

A. Matkovi¢

Faculty of Electrical Engineering

Mechanical Engineering and Naval Architecture
University of Split

Rudera Boskovica b.b.

21000 Split

Croatia

e-mail: anita@pmfst.hr

Journal of Mathematical Inequalities
www.ele-math.com

jmi@ele-math.com



