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Abstract. We introduce the normalized Jensen-Mercer functional

Mn( f ,xxxx, pppp) = f (a)+ f (b)−
n

∑
i=1

pi f (xi)− f

(
a+b−

n

∑
i=1

pixi

)
and establish the inequalities of type MMn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) � mMn( f ,xxxx,qqqq) , where f is
a convex function, xxxx = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions.
We prove them for the case when pppp and qqqq are nonnegative n -tuples and when pppp and qqqq satisfy
the conditions for the Jensen-Steffensen inequality. We also give their integral versions in both
cases.

1. Introduction

In paper [4] A. McD. Mercer proved the following variant of Jensen’s inequality,
to which we will refer as to the ”Jensen-Mercer inequality”.

THEOREM A. Let [a,b] be an interval in R and x1, . . . ,xn ∈ [a,b] . Let w1, . . . ,wn

be nonnegative real numbers such that Wn = ∑n
i=1 wi > 0 . If f : [a,b]→ R is a convex

function, then

f

(
a+b− 1

Wn

n

∑
i=1

wixi

)
� f (a)+ f (b)− 1

Wn

n

∑
i=1

wi f (xi) . (1.1)

In paper [1] is proved that (1.1) remains valid even in the case when the condition
”wwww = (w1, . . . ,wn) is nonnegative n -tuple” is somewhat relaxed. More precisely the
following is true.

THEOREM B. Let [a,b] be an interval in R and xxxx = (x1, . . . ,xn) ∈ [a,b]n be a
monotonic n-tuple. Let wwww = (w1, . . . ,wn) be a real n-tuple such that

0 � Wk � Wn (k = 1, . . . ,n) , Wn > 0, (1.2)
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where Wk =∑k
i=1 wi (k = 1,2, . . . ,n) . If f : [a,b] → R is a convex function, then (1.1)

holds.

Let Pn denotes the set of all nonnegative real n -tuples (p1, . . . , pn) with the prop-
erty ∑n

i=1pi = 1. For any convex function f : [a,b] → R and for any choice of n -tuples
xxxx = (x1, . . . ,xn) ∈ [a,b]n and pppp = (p1, . . . , pn) ∈ Pn we define

Mn( f ,xxxx, pppp) := f (a)+ f (b)−
n

∑
i=1

pi f (xi)− f

(
a+b−

n

∑
i=1

pixi

)
(1.3)

and we call it the normalized Jensen-Mercer functional. For a fixed function f and n -
tuple xxxx, Mn( f ,xxxx, ·) can be observed as a function on Pn . Note that Pn is obviously
a convex subset in R

n and because of Theorem A, Mn( f ,xxxx, pppp) � 0 for all pppp ∈ Pn .
In Section 2 we establish the inequalities of type MMn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) �

mMn( f ,xxxx,qqqq) , where m and M are real constants satisfying certain conditions. We
prove them for the case when pppp and qqqq are nonnegative n -tuples and when pppp and qqqq
satisfy the conditions for the Jensen-Steffensen inequality. In Section 4 we give the
integral versions of all results from Section 2 and 3.

2. Bounds for the normalized Jensen-Mercer functional

We assume the notations from introduction.

THEOREM 1. Let pppp = (p1, . . . , pn) and qqqq = (q1, . . . ,qn) be two n-tuples from
Pn . Let m and M be any real constants such that

m � 0, pi −mqi � 0, Mqi− pi � 0 (i = 1, . . . ,n) . (2.1)

If f : [a,b]→ R is a convex function and xxxx = (x1, . . . ,xn) is any n-tuple from [a,b]n ,
then

MMn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) � mMn( f ,xxxx,qqqq). (2.2)

Proof. Suppose that pppp,qqqq ∈ Pn and m,M ∈ R satisfy (2.1) . From pi −mqi �
0 (i = 1, . . . ,n) follows that 1−m = ∑n

i=1 (pi −mqi) � 0 i.e., m � 1, and from Mqi −
pi � 0 (i = 1, . . . ,n) follows that M− 1 = ∑n

i=1 (Mqi − pi) � 0 i.e., M � 1. If m = 1
or M = 1, then pppp = qqqq and (2.2) obviously holds. Hence, it remains to consider the
case when m < 1 and M > 1.

Applying Theorem A with wi := pi−mqi and using the convexity of the function
f we obtain the right inequality in (2.2) .

Similarly, applying Theorem A with wi := Mqi − pi and using the convexity of
the function f we obtain the left inequality in (2.2) . �

COROLLARY 1. Let pppp = (p1, . . . , pn) and qqqq = (q1, . . . ,qn) be two n-tuples from
Pn such that qi > 0 (i = 1, . . . ,n) . Let

m = m(pppp,qqqq) := min
1�i�n

{
pi
qi

}
, M = M(pppp,qqqq) := max

1�i�n

{
pi
qi

}
. (2.3)
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If f : [a,b] → R is a convex function and xxxx = (x1, . . . ,xn) is any n-tuple from [a,b]n ,
then (2.2) holds.

Proof. Obviously m � 0 and

pi
qi
−m � 0, M− pi

qi
� 0 (i = 1, . . . ,n) ,

which implies
pi −mqi � 0, Mqi − pi � 0 (i = 1, . . . ,n) .

Hence, m and M satisfy the conditions of Theorem 1. �

3. Bounds for the normalized Jensen-Mercer functional under the
Jensen-Steffensen conditions

Let P̃n denotes the set of all real n -tuples pppp = (p1, . . . , pn) satisfying the follow-
ing Jensen-Steffensen conditions

0 � Pk � 1 (k = 1, . . . ,n−1), Pn = 1, (3.1)

where Pk :=∑k
i=1 pi (k = 1, . . . ,n) . Since any n -tuple pppp from Pn obviously satisfies

(3.1) , Pn ⊆ P̃n . Notice that P̃n is also a convex subset of R
n .

Let f : [a,b] → R be a convex function, xxxx = (x1, . . . ,xn) ∈ [a,b]n any monotonic
n -tuple and pppp = (p1, . . . , pn) ∈ P̃n . Then ∑n

i=1pixi ∈ [a,b] (see for example [1]) and
Mn( f ,xxxx, pppp) is well defined. Also, because of Theorem B, Mn( f ,xxxx, pppp) � 0 for all
pppp ∈ P̃n .

THEOREM 2. Let pppp = (p1, . . . , pn) and qqqq = (q1, . . . ,qn) be two n-tuples from
P̃n . Let m and M be any real constants such that

m � 0, Pk −mQk � 0, (1−Pk)−m(1−Qk) � 0 (k = 1, . . . ,n−1) (3.2)

and
MQk −Pk � 0, M (1−Qk)− (1−Pk) � 0 (k = 1, . . . ,n−1), (3.3)

where Pk = ∑k
i=1pi , Qk = ∑k

i=1qi . If f : [a,b] → R is a convex function and xxxx =
(x1, . . . ,xn) ∈ [a,b]n is any monotonic n-tuple, then

MMn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) � mMn( f ,xxxx,qqqq). (3.4)

Proof. Assume that pppp,qqqq∈ P̃n and m,M ∈ R satisfy (3.2) and (3.3) . From (3.2)
follows that it has to be m � 1, and from (3.3) follows that it has to be M � 1. If m = 1
or M = 1, then pppp = qqqq and (3.4) obviously holds. Hence, it remains to consider the
case when m < 1 and M > 1.

To prove the right inequality in (3.4) we consider the n -tuple wwww = (w1, . . . ,wn)
defined by wi := pi−mqi (i = 1, . . . ,n) . From (3.2) follows that wwww satisfies conditions
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(1.2) . Now, we follow our proof of Theorem 1, but instead of using Theorem A we use
Theorem B.

To prove the left inequality in (3.4) we consider the n -tuple wwww = (w1, . . . ,wn)
defined by wi := Mqi − pi, (i = 1, . . . ,n) . From (3.3) follows that wwww satisfies condi-
tions (1.2) . Again, we follow our proof of Theorem 1, but using Theorem B instead of
Theorem A. �

COROLLARY 2. Let pppp = (p1, . . . , pn) and qqqq = (q1, . . . ,qn) be two n-tuples from
P̃n. For k ∈ {1, . . . ,n} denote Pk := ∑k

i=1pi , Qk := ∑k
i=1qi . Assume that 0 < Qk < 1

for all k ∈ {1, . . . ,n−1} and define

m̃ = m̃(pppp,qqqq) := min
{

Pk
Qk

, 1−Pk
1−Qk

: k = 1, . . . ,n−1
}

, (3.5)

M̃ = M̃(pppp,qqqq) := max
{

Pk
Qk

, 1−Pk
1−Qk

: k = 1, . . . ,n−1
}

. (3.6)

If f : [a,b]→ R is a convex function and if xxxx = (x1, . . . ,xn) ∈ [a,b]n is any monotonic
n-tuple, then

M̃Mn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) � m̃Mn( f ,xxxx,qqqq). (3.7)

Proof. Since 0 < Qk < 1 for all k ∈ {1, . . . ,n− 1} , m̃ and M̃ are well defined
and obviously (3.2) and (3.3) are satisfied for m = m̃ and M = M̃ . Therefore we can
apply Theorem 2 to obtain (3.7) . �

We can consider the uniform distribution uuuu = ( 1
n , . . . , 1

n) and the corresponding
nonweighted Jensen-Mercer functional

Mn( f ,xxxx) := Mn( f ,xxxx,uuuu) = f (a)+ f (b)− 1
n

n

∑
i=1

f (xi)− f

(
a+b− 1

n

n

∑
i=1

xi

)
.

Then we can state the following special case of Corollary 2.

COROLLARY 3. Let pppp = (p1, . . . , pn) be n-tuple from P̃n . For k ∈ {1, . . . ,n}
denote Pk := ∑k

i=1 pi and define

m̃0 := n ·min
{

Pk
k , 1−Pk

n−k : k = 1, . . . ,n−1
}

,

M̃0 := n ·max
{

Pk
k , 1−Pk

n−k : k = 1, . . . ,n−1
}

.

If f : [a,b]→ R is a convex function and if xxxx = (x1, . . . ,xn) ∈ [a,b]n is any monotonic
n-tuple, then

M̃0Mn( f ,xxxx) � Mn( f ,xxxx, pppp) � m̃0Mn( f ,xxxx).

Next, we show that Theorem 2 in some way provides an improvement of Corol-
lary 1. Denote by Πn the set off all permutations of (1,2, . . . ,n) . Suppose that π =
(π(1),π (2) , . . . ,π(n)) ∈ Πn and denote aaaaπ := (aπ(1),aπ(2), . . . ,aπ(n)) for any n -tuple
aaaa = (a1,a2, . . . ,an) . First we prove one simple auxiliary result.
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LEMMA 1. Let pppp = (p1, . . . , pn) and qqqq = (q1, . . . ,qn) be two nonnegative n-
tuples from Pn . If qi > 0 for all i ∈ {1, . . . ,n} , then m̃(pppp,qqqq) and M̃(pppp,qqqq) are well
defined by (3.5) and (3.6) and

max
1�i�n

{
pi
qi

}
� M̃(pppp,qqqq), m̃(pppp,qqqq) � min

1�i�n

{
pi
qi

}
. (3.8)

Proof. Since qi > 0 for all i ∈ {1, . . . ,n} , it is obvious that 0 < Qk < 1 for all
k ∈ {1, . . . ,n− 1}, so that m̃(pppp,qqqq) and M̃(pppp,qqqq) are well defined by (3.5) and (3.6) .
Also, for any k ∈ {1, . . . ,n−1} we can write

Pk :=
k

∑
i=1

pi =
k

∑
i=1

pi
qi

qi, 1−Pk =
n

∑
i=k+1

pi =
n

∑
i=k+1

pi
qi

qi.

Now,

max
1�i�n

{
pi
qi

}
Qk = max

1�i�n

{
pi
qi

} k

∑
i=1

qi � Pk � min
1�i�n

{
pi
qi

} k

∑
i=1

qi = min
1�i�n

{
pi
qi

}
Qk,

i.e.,

max
1�i�n

{
pi
qi

}
� Pk

Qk
� min

1�i�n

{
pi
qi

}
.

Similarly,

max
1�i�n

{
pi
qi

}
� 1−Pk

1−Qk
� min

1�i�n

{
pi
qi

}
for all k ∈ {1, . . . ,n−1},

and (3.8) immediately follows. �

REMARK 1. It is clear that inequalities stated in Lemma 1 can be strict. For ex-
ample, if n = 5, p = (p = (p = (p = ( 1

6 , 1
3 , 1

9 , 1
6 , 2

9) and q = (q = (q = (q = ( 1
5 , 1

5 , 1
5 , 1

5 , 1
5) , then

max
1�i�n

{
pi
qi

}
= 5

3 > M̃(pppp,qqqq) = 5
4 , m̃(pppp,qqqq) = 5

6 > min
1�i�n

{
pi
qi

}
= 5

9 .

It is not hard to see that generally

max
1�i�n

{
pi
qi

}
= max

π∈Πn
M̃(ppppπ ,qqqqπ), min

1�i�n

{
pi
qi

}
= min

π∈Πn
m̃(ppppπ ,qqqqπ).

THEOREM 3. Let f : [a,b] → R be a convex function and xxxx = (x1, . . . ,xn)∈ [a,b]n

be any n-tuple. Let π = (π(1),π(2), . . . ,π(n)) be a permutation of (1,2, . . . ,n) such
that xxxxπ is monotonic (nondecreasing or nonincreasing). If pppp = (p1, . . . , pn) and qqqq =
(q1, . . . ,qn) are two n-tuples from Pn such that qi > 0 for all i ∈ {1, . . . ,n} , then

max
1�i�n

{
pi
qi

}
Mn( f ,xxxx,qqqq) � M̃(ppppπ ,qqqqπ)Mn( f ,xxxx,qqqq) � Mn( f ,xxxx, pppp) (3.9)

� m̃(ppppπ ,qqqqπ)Mn( f ,xxxx,qqqq) � min
1�i�n

{
pi
qi

}
Mn( f ,xxxx,qqqq),

where m̃(ppppπ ,qqqqπ) and M̃(ppppπ ,qqqqπ) are defined as in (3.5) and (3.6) . The first and the
last inequality can be strict.
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Proof. Since π is chosen so that xxxxπ is monotonic we can apply Corollary 2 and
Lemma 1 to the n -tuples ppppπ and qqqqπ to get

max
1�i�n

{
pπ(i)
qπ(i)

}
Mn( f ,xxxxπ ,qqqqπ) � M̃(ppppπ ,qqqqπ)Mn( f ,xxxxπ ,qqqqπ) � Mn( f ,xxxxπ , ppppπ)

� m̃(ppppπ ,qqqqπ)Mn( f ,xxxxπ ,qqqqπ)

� min
1�i�n

{
pπ(i)
qπ(i)

}
Mn( f ,xxxxπ ,qqqqπ).

Since Mn( f ,xxxx, pppp) doesn’t change if we simultaneously permute the components of
xxxx and pppp , we have Mn( f ,xxxxπ , ppppπ) = Mn( f ,xxxx, pppp) and Mn( f ,xxxxπ ,qqqqπ) = Mn( f ,xxxx,qqqq) .
Also it is obvious that max

1�i�n

{
pπ(i)
qπ(i)

}
= max

1�i�n

{
pi
qi

}
and min

1�i�n

{
pπ(i)
qπ(i)

}
= min

1�i�n

{
pi
qi

}
.

Therefore, sequence of inequalities (3.9) holds. By Remark 1 the first and the last
inequality in the sequence can be strict. �

4. Integral versions

In [3] the following theorem is proved.

THEOREM C. Let (Ω,A ,μ) be a probability measure space, and let x :Ω→ [a,b]
(−∞< a < b < ∞) be a measurable function. Then for any continuous convex function
f : [a,b] → R ,

f

⎛⎝a+b−
∫
Ω

xdμ

⎞⎠� f (a)+ f (b)−
∫
Ω

f (x)dμ

holds.

It can analogously be proved that for a measure space (Ω,A ,μ) with 0 < μ (Ω) <
∞ the integral version of the Jensen-Mercer inequality

f

⎛⎝a+b− 1
μ (Ω)

∫
Ω

xdμ

⎞⎠� f (a)+ f (b)− 1
μ (Ω)

∫
Ω

f (x)dμ (4.1)

holds. In a special case when Ω= [α,β ] , where −∞<α < β <∞ and λ : [α,β ] → R

is any nondecreasing function such that λ (β ) �= λ (α) inequality (4.1) becomes

f

⎛⎝a+b− 1
λ (β )−λ (α)

β∫
α

x(t)dλ (t)

⎞⎠� f (a)+ f (b)− 1
λ (β )−λ (α)

β∫
α

f (x(t))dλ (t). (4.2)

Also, we can prove that (4.2) remains valid even in the case when the condition
”λ is nondecreasing function” is somewhat relaxed. We use the following integral
variant of the Jensen-Steffensen inequality given by R. P. Boas [2] (see also [5, p. 59]):
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THEOREM D. Let x : [α,β ] → (a,b) be a continuous and monotonic function
(either nondecreasing or nonincreasing), where −∞ < α < β < ∞ and −∞ � a <
b � ∞, and let function λ : [α,β ] → R be either continuous or of bounded variation
satisfying

λ (α) � λ (t) � λ (β ) for all t ∈ [α,β ], λ (β )−λ (α) > 0. (4.3)

If f : (a,b) → R is a convex function, then

f

⎛⎝ 1
λ (β )−λ (α)

β∫
α

x(t)dλ (t)

⎞⎠� 1
λ (β )−λ (α)

β∫
α

f (x(t))dλ (t). (4.4)

holds.

THEOREM 4. Let x : [α,β ] → [a,b] be a continuous and monotonic function,
where −∞ < α < β < +∞ and −∞ < a < b < +∞ . Let function λ : [α,β ] → R

be either continuous or of bounded variation satisfying (4.3) . Then for any continuous
convex function f : [a,b]→ R inequality (4.2) holds.

Proof. Suppose that x is continuous and nondecreasing i.e., x(t1) � x(t2) for t1 <

t2 ∈ [α,β ] . Let α̃, β̃ be any real numbers such that α̃ < α and β < β̃ . We define
function x̃ : [α̃, β̃ ] → [a,b] by

x̃(t) =

⎧⎪⎪⎨⎪⎪⎩
a+ x(α)−a

α−α̃ (t− α̃) , t ∈ [α̃,α];
x(t), t ∈ [α,β ];

b+ b−x(β )
β̃−β (t− β̃), t ∈ [β , β̃ ].

x̃ is also continuous and nondecreasing. Furthermore, x̃([α̃ ,α])= [a,x(α)] , x̃([β , β̃ ])=
[x(β ),b] and x̃(t) = x(t) for all t ∈ [α,β ] .

Next, we define two functions λ̃s : [α̃, β̃ ] → R and λ̃c : [α̃, β̃ ] → R by

λ̃s(t) =

⎧⎪⎨⎪⎩
1, t = α̃ ;

0, t ∈ (α̃ , β̃ );

−1, t = β̃ ,

and λ̃c(t) =

⎧⎪⎨⎪⎩
1, t ∈ [α̃,α] ;
λ (β )−λ (t)
λ (β )−λ (α) , t ∈ [α,β ] ;

0, t ∈ [β , β̃ ].

Notice that λ̃s is a step function with only jumps at end points of the interval [α̃, β̃ ] .

Therefore, the integral
∫ β̃
α̃ y(t)dλ̃s(t) is well defined for any function y : [α̃, β̃ ] → R

continuous at the points α̃ and β̃ , and we have

β̃∫
α̃

y(t)dλ̃s(t) = y(α̃) [λ̃s (α̃ +0)− λ̃s (α̃)]+ y(β̃)[λ̃s(β̃ )− λ̃s(β̃ −0)]

= −y(α̃)− y(β̃). (4.5)
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Also, if λ is continuous on [α,β ] then λ̃c is continuous on [α̃, β̃ ] , and if λ is of
bounded variation on [α,β ] then λ̃c is of bounded variation on [α̃, β̃ ] . Therefore

the integral
∫ β̃
α̃ y(t)dλ̃c(t) is well defined for any continuous and piecewise monotonic

function y : [α̃ , β̃ ] → R , and we have

β̃∫
α̃

y(t)dλ̃c(t) =
α∫
α̃

y(t)dλ̃c(t)+

β∫
α

y(t)dλ̃c(t)+

β̃∫
β

y(t)dλ̃c(t)

=

β∫
α

y(t)dλ̃c(t) =

β∫
α

y(t)d
[
λ (β )−λ (t)
λ (β )−λ (α)

]
(4.6)

= − 1
λ (β )−λ (α)

β∫
α

y(t)dλ (t) .

Now we define λ̃ : [α̃, β̃ ] → R by λ̃ (t) = λ̃c(t)− λ̃s(t) , t ∈ [α̃, β̃ ] . Notice that

λ̃ (β̃ )− λ̃ (α̃) = λ̃c(β̃ )− λ̃c (α̃)− λ̃s(β̃ )+ λ̃s (α̃) = 0−1+1+1= 1. (4.7)

From previous observations we conclude that the integral
∫ β̃
α̃ y(t)dλ̃(t) is well defined

for any continuous and piecewise monotonic function y : [α̃, β̃ ] → R , and from (4.5)
and (4.6) we have

β̃∫
α̃

y(t)dλ̃ (t) =

β̃∫
α̃

y(t)dλ̃c (t)−
β̃∫

α̃

y(t)dλ̃s(t)

= − 1
λ (β )−λ (α)

β∫
α

y(t)dλ (t)+ y(α̃)+ y(β̃). (4.8)

If we apply Theorem D on the functions x̃ , f and λ̃ (we can do that even if the function
λ̃ is neither continuous nor of bounded variation since all the integrals are well defined)
we obtain

f

⎛⎜⎝ 1

λ̃ (β̃ )− λ̃ (α̃)

β̃∫
α̃

x̃(t)dλ̃ (t)

⎞⎟⎠� 1

λ̃(β̃ )− λ̃ (α̃)

β̃∫
α̃

f (x̃(t))dλ̃ (t) . (4.9)

Using (4.7) , (4.8) with y = x̃ and (4.8) with y = f (x̃) , from (4.9) we have

f

⎛⎝a+b− 1
λ (β )−λ (α)

β∫
α

x(t)dλ (t)

⎞⎠� f (a)+ f (b)− 1
λ (β )−λ (α)

β∫
α

f (x(t))dλ (t).

(4.10)
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In case when x is nonincreasing we define function x̃ : [α̃, β̃ ] → [a,b] by

x̃(t) =

⎧⎪⎪⎨⎪⎪⎩
b+ x(α)−b

α−α̃ (t− α̃), t ∈ [α̃,α];
x(t), t ∈ [α,β ];

a+ a−x(β )
β̃−β (t − β̃), t ∈ [β , β̃ ]

and obtain (4.10) in the same way. This completes the proof. �
There is no loss in generality if we assume λ (β )− λ (α) = 1 and consider the

normalized Jensen-Mercer functional

M ( f ,x,λ ) := f (a)+ f (b)−
β∫

α

f (x(t))dλ (t)− f

⎛⎝a+b−
β∫
α

x(t)dλ (t)

⎞⎠ . (4.11)

Under the appropriate assumptions on f , x and λ , we always have M ( f ,x,λ ) � 0.
For −∞< α < β <∞ let Λ[α ,β ] denotes the class of all functions λ : [α,β ] → R

which are either continuous or of bounded variation and satisfy the condition

λ (α) � λ (t) � λ (β ) for all t ∈ [α,β ], λ (β )−λ (α) = 1. (4.12)

Notice that any nondecreasing function λ : [α,β ] → R with λ (β )−λ (α) = 1 belongs
to Λ[α ,β ] .

Now we can state the integral analogues of the results from the previous section.
First, we give the integral version of Theorem 1.

THEOREM 5. Let λ and μ be two functions from Λ[α ,β ] , −∞< α < β < ∞ . Let
x : [α,β ] → [a,b] , −∞< a < b < ∞ be a continuous function and let f : [a,b]→ R be
a convex function.

a) If μ is nondecreasing and if m � 0 is a constant such that the function ρ : [α,β ]
→ R defined by

ρ(t) := λ (t)−mμ(t), t ∈ [α,β ] (4.13)

is also nondecreasing, then

M ( f ,x,λ ) � mM ( f ,x,μ). (4.14)

b) If λ is nondecreasing and if M > 0 is a constant such that the function
σ : [α,β ] → R defined by

σ(t) := Mμ(t)−λ (t), t ∈ [α,β ] (4.15)

is also nondecreasing, then

MM ( f ,x,μ) � M ( f ,x,λ ). (4.16)
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Proof. a) Since μ and ρ = λ −mμ are assumed to be nondecreasing and m � 0,
the function λ = ρ+mμ is nondecreasing too. Hence, M ( f ,x,λ ) and M ( f ,x,μ) are
well defined. Since ρ is nondecreasing it has to be m � 1. If m = 1 then (4.14) holds
with equality sign. Hence, it remains to consider the case when m < 1. In this case
ρ(β )−ρ(α) = 1−m > 0 and ρ is nondecreasing by our assumption so that (4.2) can
be applied to ρ . Now, using (4.2) and then the convexity of f we obtain (4.14) .

b) Since λ and σ = Mμ −λ are assumed to be nondecreasing and M > 0, the
function μ = 1

M (σ +λ ) is nondecreasing too. Hence, M ( f ,x,λ ) and M ( f ,x,μ) are
well defined. Since ρ is nondecreasing it has to be M � 1. If M = 1 then (4.16) holds
with equality sign. Hence, it remains to consider the case when M > 1. In this case
σ(β )−σ(α) = M− 1 > 0 and σ is nondecreasing by our assumption so that (4.2)
can be applied to σ . Now, using (4.2) and then the convexity of f we obtain(4.16) .
This completes the proof. �

COROLLARY 4. Let λ and μ be two functions from Λ[α ,β ] , −∞ < α < β < ∞ ,
x : [α,β ] → [a,b] , −∞< a < b <∞ be a continuous function and f : [a,b]→ R be a
convex function.

a) Let μ is strictly increasing and define

m̃ = m̃(λ ,μ) := inf
α<t<β

{
inf
{
λ (t)−λ (s)
μ(t)−μ(s) : α � s � β , s �= t

}}
.

If m̃ � 0 , then
M ( f ,x,λ ) � m̃M ( f ,x,μ). (4.17)

b) Let λ is nondecreasing, μ is strictly increasing and define

M̃ = M̃(λ ,μ) := sup
α<t<β

{
sup
{
λ (t)−λ (s)
μ(t)−μ(s) : α � s � β , s �= t

}}
.

If M̃ < ∞ , then
M̃M ( f ,x,μ) � M ( f ,x,λ ). (4.18)

Proof. a) Since μ is strictly increasing it is injective and m̃ is well defined real
number in [−∞,∞). If m̃ � 0, then ρ = λ − m̃μ is well defined nondecreasing function
on [α,β ] and we can apply Theorem 5 a) with m = m̃ to obtain (4.17) .

b) Since λ is nondecreasing and μ is strictly increasing M̃ is well defined real
number in (0,∞] . If M̃ < ∞ then σ = M̃μ−λ is well defined nondecreasing function
on [α,β ] and we can apply Theorem 5 b) with M = M̃ to obtain (4.18) . �

REMARK 2. If m̃ = 0, then the inequality (4.17) is trivially fulfilled. Similarly,
if M̃ = ∞ , then the inequality (4.18) is trivially fulfilled. Two simple examples which
illustrate such cases are as follows.

For [α,β ] = [0,1] let λ (t) = t3 , μ(t) = t , t ∈ [0,1] . Then m̃ = 0, M̃ = 3.
For [α,β ] = [0,1] let λ (t) = t , μ(t) = t3 , t ∈ [0,1] . Then m̃ = 1

3 , M̃ =∞ .
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As in the discrete case we can consider the uniform distribution i.e., the function
υ ∈ Λ[α ,β ] defined by υ(t) := 1

β−α t , t ∈ [α,β ] and the corresponding nonweighted
integral Jensen-Mercer functional

M ( f ,x) := M ( f ,x,υ)= f (a)+ f (b)− 1
β−α

∫ β

α
f (x(t))dt− f

(
a+b− 1

β−α

∫ β

α
x(t)dt

)
.

Then we can state the following special case of Corollary 4.

COROLLARY 5. Let λ be a function from Λ[α ,β ] , −∞< α < β <∞ , x : [α,β ]→
[a,b] , −∞< a < b <∞ be a continuous function and f : [a,b] → R be a convex func-
tion.

a) If m̃0 := (β − α) · infα<t<β

{
inf
{
λ (t)−λ (s)

t−s : α � s � β , s �= t
}}

� 0 , then

M ( f ,x,λ ) � m̃0M ( f ,x).
b) If λ is nondecreasing and M̃0 := (β −α) · supα<t<β

{
sup
{
λ (t)−λ (s)

t−s : α � s

� β , s �= t}} < ∞ , then M̃0M ( f ,x) � M ( f ,x,λ ).

Next, we give the integral version of Theorem 2.

THEOREM 6. Let λ and μ be two functions from Λ[α ,β ] , −∞ < α < β < ∞ ,
either both continuous or both of bounded variation. Let x : [α,β ] → [a,b] , −∞ <
a < b < ∞ be a monotonic function (either nondecreasing or nonincreasing) and
f : [a,b] → R be a convex function.

a) If m � 0 is a constant such that for all α < t < β

λ (t)−λ (α)−m(μ(t)− μ(α)) � 0, λ (β )−λ (t)−m(μ(β )− μ(t))� 0, (4.19)

then
M ( f ,x,λ ) � mM ( f ,x,μ). (4.20)

b) If M > 0 is a constant such that for all α < t < β

M(μ(t)−μ(α))− (λ (t)−λ (α)) � 0, M(μ(β )−μ(t))− (λ (β )−λ (t)) � 0, (4.21)

then
MM ( f ,x,μ) � M ( f ,x,λ ). (4.22)

Proof. First note that under the given assumptions on λ , μ , x and f , M ( f ,x,λ )
and M ( f ,x,μ) are well defined and nonnegative.

a)From (4.19) follows that it has to be m � 1. If m = 1 then (4.20) obviously
holds with equality sign. Hence, it remains to consider the case 0 � m < 1. We define
the function ρ : [α,β ] → R by ρ(t) := λ (t)−mμ(t) , t ∈ [α,β ] . If λ and μ are both
continuous (both of bounded variation), then ρ is continuous (of bounded variation)
too. Further, from (4.19) follows that for all α < t < β

ρ(t)−ρ(α) = λ (t)−λ (α)−m(μ(t)− μ(α)) � 0,

ρ(β )−ρ(t) = λ (β )−λ (t)−m(μ(β )− μ(t)) � 0.



540 J. BARIĆ AND A. MATKOVIĆ

Also, since λ ,μ ∈ Λ[α ,β ]

ρ(β )−ρ(α) = λ (β )−λ (α)−m(μ(β )− μ(α)) = 1−m > 0.

We conclude that the normalized function 1
1−mρ belongs to the class Λ[α ,β ] . Now, we

follow our proof of Theorem 5 a) , but instead of using (4.2) we apply Theorem 4.
Thus we obtain (4.20) .

b)From (4.21) follows that it has to be M � 1. If M = 1 then (4.22) holds with
equality sign. Hence, it remains to consider the case M > 1. We define the function
σ : [α,β ] → R by σ(t) := Mμ(t)−λ (t) , t ∈ [α,β ] . If λ and μ are both continuous
(both of bounded variation), then σ is continuous (of bounded variation) too. Further,
from (4.21) follows that for all α < t < β

σ(t)−σ(α) = M(μ(t)− μ(α))− (λ (t)−λ (α)) � 0,

σ(β )−σ(t) = M(μ(β )− μ(t))− (λ (β )−λ (t)) � 0.

Also, since λ ,μ ∈ Λ[α ,β ]

σ(β )−σ(α) = M(μ(β )− μ(α))− (λ (β )−λ (α)) = M−1 > 0.

We conclude that the normalized function 1
M−1σ belongs to the class Λ[α ,β ] . Now we

follow our proof of Theorem 5 b) but instead of using (4.2) we apply Theorem 4. Thus
we obtain (4.22) . �

COROLLARY 6. Let λ and μ be two functions from Λ[α ,β ] , −∞ < α < β < ∞ ,
either both continuous or both of bounded variation. Let x : [α,β ] → [a,b] , −∞ <
a < b < ∞ be a monotonic function (either nondecreasing or nonincreasing) and
f : [a,b]→ R be a convex function. Assume that μ(α) < μ(t) < μ(β ) for all α < t <
β , and define

m̃ = m̃(λ ,μ) := inf
{
λ (t)−λ (α)
μ(t)−μ(α) ,

λ (β )−λ (t)
μ(β )−μ(t) : α < t < β

}
, (4.23)

M̃ = M̃(λ ,μ) := sup
{
λ (t)−λ (α)
μ(t)−μ(α) ,

λ (β )−λ (t)
μ(β )−μ(t) : α < t < β

}
. (4.24)

Then
M̃M ( f ,x,μ) � M ( f ,x,λ ) � m̃M ( f ,x,μ). (4.25)

Proof. Since μ(α) < μ(t) < μ (β ) for all α < t < β , m̃ and M̃ are well defined,
and obviously m̃ ∈ [0,∞) and M̃ ∈ (0,∞] . Therefore, the right inequality in (4.25)
follows from Theorem 6 a) with m = m̃ . If M̃ = ∞ , then the left inequality in (4.25)
holds trivially, while for M̃ < ∞ it follows from Theorem 6 b) with M = M̃ . �

As in the previous case we can consider the uniform distribution υ and the cor-
responding nonweighted integral Jensen-Mercer functional M ( f ,x) and state the fol-
lowing special case of Corollary 6:



JENSEN-MERCER FUNCTIONAL 541

COROLLARY 7. Let λ be a function from Λ[α ,β ] , −∞ < α < β < ∞ . Let x :
[α,β ] → [a,b] , −∞ < a < b < ∞ be a monotonic function (either nondecreasing or
nonincreasing) and f : [a,b] → R be a convex function. If m̃0 and M̃0 are defined by

m̃0 := (β −α) · inf
{
λ (t)−λ (α)

t−α , λ (β )−λ (t)
β−t : α < t < β

}
,

M̃0 := (β −α) · sup
{
λ (t)−λ (α)

t−α , λ (β )−λ (t)
β−t : α < t < β

}
,

then M̃0M ( f ,x) � M ( f ,x,λ ) � m̃0M ( f ,x).
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