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INEQUALITIES OF GRÜSS TYPE INVOLVING THE

p–HH–NORMS IN THE CARTESIAN PRODUCT SPACE

EDER KIKIANTY, S. S. DRAGOMIR, AND P. CERONE

Abstract. Inequalities in estimating a type of Čebyšev functional involving the p -HH-norms are
obtained by applying the known results by Grüss, Ostrowski, Čebyšev, and Lupaş. Some of these
inequalities are proven to be sharp. In 1998, Dragomir and Fedotov considered a generalised
Čebyšev functional, in order to approximate the Riemann-Stieltjes integral. In this paper, some
sharp bounds for the generalised Čebyšev functional with convex integrand and monotonically
increasing integrator are established as well. An application for the Čebyšev functional involving
the p -HH-norms is also considered; and the bounds are proven to be sharp.

1. Introduction

Let (X,‖ · ‖) be a normed space and consider the Cartesian product space X2 =
{(x,y) : x,y ∈ X}, where the addition and scalar multiplication are defined in the usual
way. This space is a normed space together with any of the following p -norms (cf.
Clarkson [2, p. 397–398], Li and Tsing [11, p. 36], and Milne [13, p. 142]):

‖(x,y)‖p :=

{
(‖x‖p +‖y‖p)

1
p , 1 � p <∞;

max{‖x‖,‖y‖}, p =∞,

for any (x,y) ∈ X2 . Kikianty and Dragomir [8] introduced another type of norm on X2

which is called the p -HH-norm, and is defined as follows:

‖(x,y)‖p−HH :=
(∫ 1

0
‖(1− t)x+ ty‖pdt

) 1
p

, (1.1)

for any 1 � p < ∞ and (x,y) ∈ X2 . For fundamental properties of this norm, we refer
to the paper by Kikianty and Dragomir [8]. We note that the p -norms and the p -HH-
norms are all equivalent in X2 .

Some inequalities of Ostrowski type, which involve the p -HH-norms and the p -
norms, have been considered by Kikianty, Dragomir, and Cerone [9, 10]. Continuing
these works, we are interested in obtaining some new inequalities involving the p -HH-
norms.

In this paper, we consider bounds in estimating the difference of ‖(·, ·)‖p+q
p+q−HH

and the product ‖(·, ·)‖p
p−HH‖(·, ·)‖q

q−HH , for any p,q � 1. This difference, however,
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is a particular type of Čebyšev functional. In the following, we recall some classical
facts concerning this functional.

For two Lebesgue integrable functions f ,g : [a,b] → R , the Čebyšev functional is
defined by

T ( f ,g) :=
1

b−a

∫ b

a
f (t)g(t)dt − 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
g(t)dt.

In 1935, Grüss proved the following inequality which bounds the Čebyšev functional
[14, p. 295–296]:

|T ( f ,g)| � 1
4
(Φ−φ)(Γ− γ), (1.2)

provided that f and g satisfy the condition φ � f (t) �Φ and γ � g(t) � Γ for all t ∈
[a,b] . The constant 1

4 is best possible and is achieved for f (t) = g(t) = sgn
(
t − a+b

2

)
.

Some related results regarding the sharp upper bounds for this functional can be sum-
marised as follows:

1. Čebyšev (1882): If f ,g are continuously differentiable functions on [a,b] , then

|T ( f ,g)| � 1
12

‖ f ′‖L∞‖g′‖L∞(b−a)2, (1.3)

where ‖ f ′‖L∞ := supt∈[a,b] | f ′(t)| . Equality holds iff f ′ and g′ are constants [14, p.
297]. Inequality (1.3) is also valid for absolutely continuous functions f ,g where
f ′,g′ ∈ L∞[a,b] .

2. Ostrowski (1970): If f is Lebesgue integrable on [a,b] , m,M ∈ R such that
−∞� m � f � M � ∞ , g is absolutely continuous and g′ ∈ L∞[a,b] , then

|T ( f ,g)| � 1
8
(b−a)(M−m)‖g′‖L∞ , (1.4)

and the constant 1
8 is the best possible [14, p. 300].

3. Lupaş (1973): If f ,g are absolutely continuous, f ′,g′ ∈ L2[a,b] , then

|T ( f ,g)| � 1
π2 (b−a)‖ f ′‖L2‖g′‖L2 , (1.5)

where ‖ f ′‖L2 =
∫ b
a | f ′(t)|2dt . Equality holds iff

f (x) = A+Bsin

[
π

b−a

(
x− a+b

2

)]
and g(x) = C+Dsin

[
π

b−a

(
x− a+b

2

)]
,

where A , B , C , and D are constants [14, p. 301].
In Section 3, we apply these results to obtain upper bounds in estimating the dif-

ference of ‖(x,y)‖p+q
p+q−HH and ‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH (p,q � 1) . Some of these

inequalities are proven to be sharp.
More results regarding the Čebyšev functional were pointed out by Dragomir and

Fedotov [4]. In order to approximate the Riemann-Stieltjes integral, they considered a
generalised Čebyšev functional

D( f ,u) :=
∫ b

a
f (t)du(t)− 1

b−a
[u(b)−u(a)]

∫ b

a
f (s)ds,
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where f is Riemann integrable and Stieltjes integrable with respect to a function u .
Some bounds for D , when u is monotonically nondecreasing, were obtained by Dra-
gomir [3]; and we summarised the results as follows:

1. If f : [a,b] → R is L -Lipschitzian on [a,b] , then

|D( f ,u;a,b)| � 1
2
L(b−a)

[
u(b)−u(a)− 4

(b−a)2

∫ b

a
u(t)

(
t − a+b

2

)
dt

]

� 1
2
L(b−a)[u(b)−u(a)],

and the constant 1
2 is best possible in both inequalities.

2. If f : [a,b] → R is a function of bounded variation on [a,b] , and
∫ b
a f (t)du(t)

exists, then

|D( f ,u;a,b)| �
[
u(b)−u(a)− 1

b−a

∫ b

a
sgn

(
t− a+b

2

)
dt

] b∨
a

( f )

� [u(b)−u(a)]
b∨
a

( f ),

where
∨b

a( f ) denotes the total variation of f on [a,b] ; and the first inequality is sharp.
In Section 4, we establish some sharp bounds for the generalised Čebyšev func-

tional D in order to approximate the Riemann-Stieltjes integral for differentiable con-
vex integrand and monotonically increasing integrator. The result follows by utilising
an Ostrowski type inequality. Then in Section 5, we apply this result for the Čebyšev
functional T , and the obtained bounds are sharp. A similar result is established for gen-
eral convex functions, and the obtained bounds are also sharp. By applying the result
for the p -HH-norms, we also obtain some upper and lower bounds for the difference
between ‖(x,y)‖p+q

p+q−HH and ‖(x,y)‖p
p−HH‖(x,y)‖q

q−HH (p,q � 1) . These bounds are
proven to be sharp.

2. Definitions and notation

Throughout this paper, we assume that all vector spaces are over the field of real
numbers and the measure that we consider is the Lebesgue measure.

Let x,y ∈ X, x �= y and define the segment [x,y] := {(1− t)x+ ty, t ∈ [0,1]} . Let
f : [x,y]→R and the associated function h : [0,1]→R , defined by h(t) := f [(1− t)x+
ty], t ∈ [0,1]. It is well known that the function h is convex on [0,1] if and only if f is
convex on [x,y] .

In any normed space X , the norm ‖ · ‖ is right-(left-)Gâteaux differentiable at
x ∈ X\ {0} , i.e. the following limits

(∇+(−)‖ · ‖(x))(y) := lim
t→0+(−)

‖x+ ty‖−‖x‖
t
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exist for all y ∈ X (cf. Megginson [12, p. 483–485]). The norm ‖ · ‖ is Gâteaux
differentiable at x ∈ X \ {0} if and only if (∇+‖ · ‖(x))(y) = (∇−‖ · ‖(x))(y) , for all
y ∈ X . The function f0(x) = 1

2‖x‖2 (x ∈ X) is convex and the following

(x,y)s(i) := (�+(−) f0(y))(x) = lim
t→0+(−)

‖y+ tx‖2−‖y‖2

2t
,

exist for any x,y∈X . They are called the superior (inferior) semi-inner products (s.i.p.)
associated with the norm ‖ · ‖ . We refer to the work by Dragomir [6] for further prop-
erties of these semi-inner products.

The function fp : X → R defined by fp(x) = ‖x‖p (1 � p < ∞) is also convex,
and the following limit(

∇ fp[(1− t)x+ ty]
)
(y− x) = p‖(1− t)x+ ty‖p−1(∇‖ · ‖[(1− t)x+ ty]

)
(y− x)

exists almost everywhere on [0,1] . Note that for any y �= 0,

(∇+‖ · ‖(x))(y) = (y,x)s and (∇−‖ · ‖(x))(y) = (y,x)i.

Therefore,(
∇ fp[(1− t)x+ ty]

)
(y− x) = p‖(1− t)x+ ty‖p−2(y− x,(1− t)x+ ty)s(i) (2.1)

exists almost everywhere on [0,1] , for any x,y∈X , whenever p � 2; otherwise it holds
for any linearly independent x,y ∈ X .

3. Grüss type inequality involving the p -HH-norms

In this section, we obtain some inequalities involving the p -HH-norms in the
Cartesian product space X2 from the results due to Grüss, Čebyšev, Ostrowski, and
Lupaş which have been stated in Section 1.

LEMMA 1. Let (X,‖ · ‖) be a normed space, x,y ∈ X , and p,q � 1 . Then,

‖(x,y)‖p+q
p+q−HH � ‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH . (3.1)

Equality holds in (3.1) for x = y.

Proof. Define fp(t) := ‖(1− t)x+ ty‖p , where t ∈ [0,1] . We claim that for any
p,q � 1, fp and fq are synchronous (similarly ordered, cf. Hardy, Littlewood, and
Polya [7, p. 43] on [0,1] . The proof is as follows: let t,s ∈ [0,1] and assume that
f1(t) � f1(s) (as for the other case, the proof follows similarly). Since f1(t) � 0 for
any t ∈ [0,1] , it implies that fp(t) � fp(s) , for any p � 1. Thus, for any t,s ∈ [0,1]
and p,q � 1, we have

[ fp(t)− fp(s)] [ fq(t)− fq(s)] � 0.
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Since f and g are synchronous, the Čebyšev inequality holds (cf. Hardy, Littlewood,
and Polya [7, p. 43])), i.e.,

∫ 1

0
fp(t) fq(t)dt �

∫ 1

0
fp(t)dt

∫ 1

0
fq(t)dt,

or, equivalently,

‖(x,y)‖p+q
p+q−HH � ‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH ,

as desired. It is easily shown that equality holds for x = y . �

THEOREM 1. Let (X,‖ · ‖) be a normed linear space, x,y ∈ X , p,q � 1 , and set

Tp,q(x,y) := ‖(x,y)‖p+q
p+q−HH −‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH � 0.

Then,

0 � Tp,q(x,y) � 1
12

pq‖y− x‖2max{‖x‖,‖y‖}p+q−2 =: Cp,q(x,y). (3.2)

The constant 1
12 in (3.2) is sharp.

Proof. Let x,y∈X , and define f (t) = ‖(1−t)x+ty‖p and g(t) = ‖(1−t)x+ty‖q

(t ∈ [0,1]) . By (2.1),

f ′(t) = ∇±‖ · ‖p[(1− t)x+ ty](y− x)= p‖(1− t)x+ ty‖p−2(y− x,(1− t)x+ ty)s(i),

and by the Cauchy-Schwarz inequality,

‖ f ′‖L∞ = sup
t∈[0,1]

p‖(1− t)x+ ty‖p−2|(y− x,(1− t)x+ ty)s(i)|

� p‖y− x‖ sup
t∈[0,1]

‖(1− t)x+ ty‖p−1 = p‖y− x‖max{‖x‖,‖y‖}p−1.

Similarly for g , we have ‖g′‖L∞ � q‖y−x‖max{‖x‖,‖y‖}q−1. Due to Čebyšev’s result
(1.3), we have

Tp,q(x,y) � 1
12

‖ f ′‖L∞‖g′‖L∞ � 1
12

pq‖y− x‖2max{‖x‖,‖y‖}p+q−2.

To prove the sharpness of the constant, we assume that the (3.2) holds for a con-
stant A > 0 instead of 1

12 , i.e.

‖(x,y)‖p+q
p+q−HH −‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH � A pq‖y− x‖2max{‖x‖,‖y‖}p+q−2.

Choose p = 1, q = 1, X = R , and 0 < x < y , to obtain

1
3

(
x2 + xy+ y2)−(

y+ x
2

)2

=
1
12

(y− x)2 � A(y− x)2.
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Since x �= y , then A � 1
12 ; and the proof is completed. �

For any x and y in the normed space (X,‖ ·‖) , we set the following quantities for
p,q � 1:

Gp,q(x,y) :=
1
4

max{‖x‖,‖y‖}p+q, Op,q(x,y) :=
1
8
q‖y− x‖max{‖x‖,‖y‖}p+q−1,

and Lp,q(x,y) :=
1
π2 pq‖y− x‖2‖(x,y)‖p−1

(2p−2)−HH‖(x,y)‖q−1
(2q−2)−HH .

The following proposition is due to the results by Grüss, Ostrowski, and Lupaş. How-
ever, these upper bounds are not yet proven to be sharp.

PROPOSITION 1. Under the assumptions of Theorem 1 and the above notation,
we have

0 � Tp,q(x,y) � Gp,q(x,y), 0 � Tp,q(x,y) � Op,q(x,y), and

0 � Tp,q(x,y) � Lp,q(x,y),

for any p,q � 1 and x,y ∈ X . �

Proof. Let x,y ∈ X , and define f (t) = ‖(1− t)x + ty‖p , and g(t) = ‖(1− t)x +
ty‖q , for t ∈ [0,1] . Since p,q � 1, we have 0 � f (t) � max{‖x‖,‖y‖}p and 0 � g(t) �
max{‖x‖,‖y‖}q . Then, due to Grüss’ result (1.2), we have

Tp,q(x,y) � 1
4

max{‖x‖,‖y‖}p+q = Gp,q(x,y).

Similarly to the proof of Theorem 1, we have ‖g′‖L∞ � q‖y−x‖max{‖x‖,‖y‖}q−1 . By
(1.4), we have

Tp,q(x,y) � 1
8

max{‖x‖,‖y‖}p‖g′‖L∞ � 1
8
q‖y− x‖max{‖x‖,‖y‖}p+q−1 = Op,q(x,y).

Note that for any p � 1, we have

‖ f ′‖L2 =
[∫ 1

0
|p‖(1− t)x+ ty‖p−2(y− x,(1− t)x+ ty)s(i)|2dt

] 1
2

� p ‖y− x‖
[∫ 1

0
‖(1− t)x+ ty‖2p−2dt

] 1
2

= p ‖y− x‖ ‖(x,y)‖p−1
(2p−2)−HH

by the Cauchy-Schwarz inequality; and similarly for q � 1, we have ‖g′‖L2 � q‖y−
x‖ ‖(x,y)‖q−1

(2q−2)−HH . Therefore, by Lupaş’ result (1.5), we obtain
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Tp,q(x,y) � 1
π2 ‖ f ′‖L2‖g′‖L2 � 1

π2 pq‖y− x‖2‖(x,y)‖p−1
(2p−2)−HH‖(x,y)‖q−1

(2q−2)−HH

= Lp,q(x,y). �

REMARK 1. We note that none of the upper bounds for Tp,q(x,y) that we have
obtained in Proposition 1 is better than the other ones, for each x,y ∈ X . For example,
choose X = R , p = q = 1, and x = 1. By utilising MAPLE, we obtain (see Figure
1(a))

G(1,y) � O(1,y) � L(1,y), y ∈ [0,1],
G(1,y) � L(1,y) � O(1,y), y ∈ [−3,−2],
L(1,y)) � G(1,y) � O(1,y), y ∈ [− 3

2 ,−1].

Again, by utilising MAPLE, for p = q = 2, and x = −1, we have (see Figure 1(b))

O(−1,y) � L(−1,y) � G(−1,y), y ∈ [ 3
5 , 4

5 ],

O(−1,y) � G(−1,y)(x,y) � L(−1,y), y ∈ [0, 2
5 ],

L(−1,y) � O(−1,y)(x,y) � G(−1,y), y ∈ [ 19
20 ,1].

1.5

1

0.5

y

2

0
-1 1-2-3 0

G(1,y)                  

O(1,y)                  

L(1,y)                  

(a) Case of p = q = 1

0.6

0.5

0.4

0.4

0.3

0.2

0.20

y

10.8

G(-1,y)                 

O(-1,y)                 

L(-1,y)                 

(b) Case of p = q = 2

Figure 1.

PROBLEM 1. Are the constants 1
4 , 1

8 and 1
π2 in Proposition 1 the best possible?

4. New bounds for the generalised Čebyšev functional D

The following result gives upper and lower bounds for the generalised Čebyšev
functional D(·, ·) in order to approximate the Riemann-Stieltjes integral.
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THEOREM 2. Let f : [a,b]→R be a differentiable convex function, and u : [a,b]→
R be a monotonically increasing function. Then,

b−a
2

[ f ′(a)u(b)+ f ′(b)u(a)]−
∫ b

a
u(t)

[
t −a
b−a

f ′(a)+
b− t
b−a

f ′(b)
]
dt

� D( f ,u) �
∫ b

a

(
t − b+a

2

)
f ′(t) du(t). (4.1)

The constants 1
2 and 1 in (4.1) are sharp.

Proof. Since f is a differentiable convex function on [a,b] , we have the following
Ostrowski type inequality (cf. Dragomir [5])

1
2

[
(b− t)2− (t−a)2] f ′(t) �

∫ b

a
f (s)ds− (b−a) f (t)

� 1
2

[
(b− t)2 f ′(b)− (t−a)2 f ′(a)

]
, (4.2)

for any t ∈ [a,b] . Since u is a monotonically increasing function on [a,b] , we may
integrate the inequality (4.2) (in the Riemann-Stieltjes sense) with respect to u , i.e.

1
2

∫ b

a

[
(b− t)2− (t−a)2] f ′(t)du(t) �

∫ b

a

[∫ b

a
f (s)ds− (b−a) f (t)

]
du(t) (4.3)

� 1
2

∫ b

a

[
(b− t)2 f ′(b)− (t−a)2 f ′(a)

]
du(t).

Note that

1
2

∫ b

a

[
(b− t)2− (t−a)2] f ′(t)du(t) = (b−a)

∫ b

a

(
b+a

2
− t

)
f ′(t)du(t),

and

∫ b

a

[∫ b

a
f (s)ds− (b−a) f (t)

]
du(t) =

∫ b

a
f (s)ds

∫ b

a
du(t)− (b−a)

∫ b

a
f (t)du(t)

= [u(b)−u(a)]
∫ b

a
f (s)ds− (b−a)

∫ b

a
f (t)du(t),

and, using integration by parts

1
2

∫ b

a

[
(b− t)2 f ′(b)− (t−a)2 f ′(a)

]
du(t)

=
1
2
(b−a)2[− f ′(b)u(a)− f ′(a)u(b)]+

∫ b

a
u(t)[(b− t) f ′(b)+ (t−a) f ′(a)]dt.
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Therefore, by (4.3) we get

(b−a)
∫ b

a

(
b+a

2
− t

)
f ′(t)du(t)

� [u(b)−u(a)]
∫ b

a
f (s)ds− (b−a)

∫ b

a
f (t)du(t) (4.4)

� 1
2
(b−a)2[− f ′(b)u(a)− f ′(a)u(b)]+

∫ b

a
u(t)[(b− t) f ′(b)+ (t−a) f ′(a)]dt,

and the proof follows by multiplying inequality (4.4) by
(− 1

b−a

)
.

The sharpness of the constants follows by a particular case which will be stated in
Corollary 3. �

COROLLARY 1. Under the assumptions of Theorem 2, if f ′(b) = − f ′(a) , then

f ′(a)
[
b−a

2
(u(b)−u(a))− 1

b−a

∫ b

a
u(t)(2t− (a+b))dt

]
(4.5)

� D( f ,u) �
∫ b

a

(
t− b+a

2

)
f ′(t) du(t).

REMARK 2. A common example of such function is a function defined on interval
[a,b] which is symmetric with respect to the midpoint a+b

2 , e.g. f (t) =
∣∣t− a+b

2

∣∣p
,

where p � 1.

COROLLARY 2. Under the assumptions of Theorem 2, if f ′(a) = − f ′(b) and f ′′
exists, then

f ′(a)
[
b−a

2
(u(b)−u(a))− 1

b−a

∫ b

a
u(t)(2t− (a+b))dt

]
(4.6)

� D( f ,u) �
(

b−a
2

)
f ′(b)[u(b)−u(a)]−

∫ b

a
u(t)

[
f ′(t)+

(
t− b+a

2

)
f ′′(t)

]
dt.

Proof. This is a particular case of Corollary 1. Note that

∫ b

a

(
t− b+a

2

)
f ′(t)du(t)

=
(

b−a
2

)
f ′(b)[u(b)−u(a)]−

∫ b

a
u(t)

[
f ′(t)+

(
t− b+a

2

)
f ′′(t)

]
dt,

and the details are omitted. �

PROBLEM 2. Are the inequalities in Corollaries 1 and 2 sharp?
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5. Application for the Čebyšev functional

In this section, we apply the result of Section 4 to obtain bounds for the classical
Čebyšev functional.

COROLLARY 3. Let f : [a,b] → R be a differentiable convex function, and g :
[a,b]→ R be a nonnegative Lebesgue integrable function. Then,

1
2

∫ b

a

[(
t−a
b−a

)2

f ′(a)−
(

b− t
b−a

)2

f ′(b)

]
g(t)dt (5.1)

� T ( f ,g) � 1
b−a

∫ b

a

(
t− b+a

2

)
f ′(t)g(t)dt.

The constants 1
2 and 1 in (5.1) are sharp.

Proof. Recall that Theorem 2 gives us

1
2(b−a)

∫ b

a
[(t−a)2 f ′(a)− (b− t)2 f ′(b)]du(t) (5.2)

� D( f ,u) �
∫ b

a

(
t− b+a

2

)
f ′(t)du(t).

Since g is nonnegative on [a,b] , u(t) =
∫ t
a g(s)ds is monotonically increasing on [a,b] .

Thus, inequality (5.1) follows by applying (5.2) to u and multiply the obtained in-
equality by 1

b−a . The sharpness of the constants in (5.1) is demonstrated by choosing
f (t) = g(t) = t on [a,b] , and the details are omitted. �

EXAMPLE 1. Let f (t) = g(t) = 1
t defined on [x,y] , where x,y > 0. Then by

Corollary 3, we obtain

0 �
(

1
G(x,y)

)2

−
(

1
L(x,y)

)2

�
(

y− x
2xy

)2

, (5.3)

where G(x,y) and L(x,y) are the geometric mean and logarithmic mean of x and y ,
respectively (note that G(x,y) =

√
xy and L(x,y) = x−y

logx−logy ). We do not consider the
lower bound in this case, as it is not always positive.

5.1. Čebyšev functional for convex functions

In Corollary 3, we assume that f is a differentiable convex function. However,
we can ‘drop’ the assumption of differentiability, and get a similar result for general
convex functions, where the derivative exists almost everywhere.



INEQUALITIES OF GRÜSS TYPE INVOLVING THE p-HH-NORMS 553

PROPOSITION 2. Let f : [a,b] → R be a convex function, and g : [a,b] → R be a
nonnegative Lebesgue integrable function. Then,

1
2

∫ b

a

[(
t−a
b−a

)2

f ′(a)−
(

b− t
b−a

)2

f ′(b)

]
g(t)dt (5.4)

� T ( f ,g) � 1
b−a

∫ b

a

(
t− b+a

2

)
f ′(t)g(t)dt.

The constants 1 and 1
2 in (5.4) are sharp.

Proof. Since f is a convex function on [a,b] , we have the following Ostrowski
type inequality for any t ∈ [a,b] (cf. Dragomir [5])

1
2

[
(b− t)2 f ′+(t)− (t−a)2 f ′−(t)

]
(5.5)

�
∫ b

a
f (s)ds− (b−a) f (t) � 1

2

[
(b− t)2 f ′−(b)− (t−a)2 f ′+(a)

]
We multiply the (5.5) by g(t) , take the integral over [a,b] and multiply it by − 1

(b−a)2

to obtain

1
2

∫ b

a

[(
t −a
b−a

)2

f ′+(a)−
(

b− t
b−a

)2

f ′−(b)

]
g(t)dt

� T ( f ,g) � 1
2

∫ b

a

[(
t−a
b−a

)2

f ′−(t)−
(

b− t
b−a

)2

f ′+(t)

]
g(t)dt

Since f is convex, then f ′ exists almost everywhere and we may write f ′(t) = f ′±(t) ,
for almost every t ∈ [a,b], and the details are omitted. The sharpness of the constants
follows by Remark 3. �

In a similar way, we have the generalised version of Theorem 2 as follows, and the
proof is omitted.

PROPOSITION 3. Let f : [a,b] → R be a convex function, and u : [a,b] → R be a
monotonically increasing function. Then,

b−a
2

[ f ′(a)u(b)+ f ′(b)u(a)]−
∫ b

a
u(t)

[
t −a
b−a

f ′(a)+
b− t
b−a

f ′(b)
]
dt

� D( f ,u) �
∫ b

a

(
t − b+a

2

)
f ′(t) du(t). (5.6)

The constants 1
2 and 1 in (5.6) are sharp.

The following result is a consequence of Proposition 2, for convex functions on
linear spaces.
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COROLLARY 4. Let X be a linear space and x,y be two distinct vectors in X .
Let g be a nonnegative functional on [x,y] such that

∫ 1
0 g[(1− t)x+ ty]dt < ∞ . Then,

for any convex function f defined on the segment [x,y] and t ∈ (0,1) , we have

1
2

∫ 1

0

[
t2(∇ f (x))(y− x)− (1− t)2(∇ f (y))(y− x)

]
g[(1− t)x+ ty]dt

�
∫ 1

0
f [(1− t)x+ ty]g[(1− t)x+ ty]dt

−
∫ 1

0
f [(1− t)x+ ty]dt

∫ 1

0
g[(1− t)x+ ty]dt

�
∫ 1

0

(
t− 1

2

)
(∇ f [(1− t)x+ ty])(y− x)g[(1− t)x+ ty]dt. (5.7)

The constants 1
2 and 1 in (5.7) are sharp.

Proof. Consider the functions h,k defined on [0,1] by h(t) = f [(1− t)x + ty]
and k(t) = g[(1− t)x + ty] . Since f is convex on the segment [x,y] , then h is also
convex on [0,1] . Thus we may apply Proposition 2 to h and k . Note that h′±(t) =
(∇± f [(1− t)x+ ty])(y− x) , by the chain rule; and since h is convex,

h′(t) := h′±(t) = (∇± f [(1− t)x+ ty])(y− x) =: (∇ f [(1− t)x+ ty])(y− x)

exists almost everywhere on [0,1] (we get a similar identity for k ). The proof for the
sharpness follows by the particular case given later in Corollary 5. �

5.2. Application to the p -HH-norms

Let (X,‖ · ‖) be a normed space. Recall from Lemma 1 that

Tp,q(x,y) := ‖(x,y)‖p+q
p+q−HH −‖(x,y)‖p

p−HH‖(x,y)‖q
q−HH � 0,

for any x,y ∈ X and p,q � 1.

COROLLARY 5. Under the above notation and assumptions, we have

1
2

p
∫ 1

0

[
t2‖x‖p−2(y− x,x)− (1− t)2‖y‖p−2(y− x,y)

]‖(1− t)x+ ty‖qdt (5.8)

� Tp,q(x,y) � p
∫ 1

0

(
t− 1

2

)
‖(1− t)x+ ty‖p+q−2(y− x,(1− t)x+ ty)dt,

for any x,y ∈ X whenever p � 2 . If 1 � p < 2 , then the inequality (5.8) holds for any
nonzero x,y ∈ X .

The constants 1
2 and 1 are sharp in (5.8).
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Proof. Define f [(1−t)x+ty] = ‖(1−t)x+ty‖p and g[(1−t)x+ty] = ‖(1−t)x+
ty‖q for t ∈ [0,1] . By (2.1), the following exists almost everywhere on [0,1] ,

(∇‖ · ‖p[(1− t)x+ ty])(y− x)= p‖(1− t)x+ ty‖p−2(y− x,(1− t)x+ ty)s(i),

provided that p � 2; otherwise, it holds for any linearly independent x and y . By
denoting (·, ·) := (·, ·)s(i) , we have

(∇‖ · ‖p[(1− t)x+ ty])(y− x)= p‖(1− t)x+ ty‖p−2(y− x,(1− t)x+ ty),

and we obtain the similar identity for g . Therefore, by Corollary 4,

1
2

p
∫ 1

0

[
t2‖x‖p−2(y− x,x)− (1− t)2‖y‖p−2(y− x,y)

]‖(1− t)x+ ty‖qdt

� Tp,q(x,y) � p
∫ 1

0

(
t− 1

2

)
‖(1− t)x+ ty‖p+q−2(y− x,(1− t)x+ ty)dt,

for any x,y ∈ X whenever p � 2; otherwise, it holds for any nonzero x,y ∈ X . The
proof for the sharpness of the constants follows by a particular case which will be stated
in Remark 3. �

REMARK 3. (Case of inner product space) Let (X,〈·, ·〉) be an inner product space
and x,y be two distinct vectors in X . Then, for any p,q � 1, we have

1
2

p
∫ 1

0
〈y− x,t2‖x‖p−2x− (1− t)2‖y‖p−2y〉‖(1− t)x+ ty‖qdt (5.9)

� Tp,q(x,y) � p
∫ 1

0

(
t− 1

2

)
‖(1− t)x+ ty‖p+q−2〈y− x,(1− t)x+ ty〉dt.

If p = q = 1, then

1
2

∫ 1

0
‖(1− t)x+ ty‖

〈
y− x,

t2

‖x‖x− (1− t)2

‖y‖ y

〉
dt (5.10)

� ‖(x,y)‖2
2−HH −‖(x,y)‖2

1−HH � 1
12

‖y− x‖2.

Note that when X = R , and x,y > 0 (some details are omitted),

1
2

∫ 1

0
((1− t)x+ ty)(y− x)

(
t2− (1− t)2)dt

=
y− x

2

∫ 1

0

(
t2(1− t)− (1− t)3)x+

(
t3− t(1− t)2)y dt

=
y− x

2

(
y− x

6

)
=

1
12

(y− x)2,

and

‖(x,y)‖2
2−HH −‖(x,y)‖2

1−HH =
y3− x3

3(y− x)
−

(
y+ x

2

)2

=
1
12

(y− x)2.

Therefore, we obtain equality in (5.10).
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REMARK 4. Although the inequality that we obtain in Corollary 5 is sharp, the
bounds are complicated to compute. We remark that the lower bound is not always
positive, e.g., take X = R , p = q = 1, x = −1,y = 1, we have

1
2

p
∫ 1

0

(
t2 |x|p−2 (y− x)x− (1− t)2 |y|p−2 (y− x)y

)
(|(1− t)x+ ty|)q dt = −3

8
.

In this case, the lower bound cannot be used to improve the Čebyšev inequality. We
obtain coarser but simpler upper bounds for Tp,q(x,y) , as follows:

0 � Tp,q(x,y) � p
∫ 1

0

(
t− 1

2

)
‖(1− t)x+ ty‖p+q−2(y− x,(1− t)x+ ty)dt,

� p‖y− x‖
∫ 1

0

∣∣∣∣t− 1
2

∣∣∣∣‖(1− t)x+ ty‖p+q−1dt,

� p‖y− x‖

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2‖(x,y)‖p+q−1

(p+q−1)−HH(
1

2s′ (s′+1)

) 1
s′ ‖(x,y)‖p+q−1

(p+q−1)s, s > 1, 1
s + 1

s′ = 1;

1
4 max{‖x‖,‖y‖}p+q−1.

(5.11)

REMARK 5. Although, in general, these upper bounds are not always better than
those obtained in Section 3, we remark that under certain conditions, they are better.
For example, when p � 1

2q , we have

1
4

p‖y− x‖max{‖x‖,‖y‖}p+q−1 � Op,q(x,y)

(recall that Op,q(x,y) := 1
8q‖y− x‖max{‖x‖,‖y‖}p+q−1). Also, when p � 1 and

‖y− x‖� max{‖x‖,‖y‖} , we have

1
4

p‖y− x‖max{‖x‖,‖y‖}p+q−1 � Gp,q(x,y)

(recall that Gp,q(x,y) := 1
4 max{‖x‖,‖y‖}p+q ).

PROBLEM 3. Are the constants 1
2 ,

(
1

2s′ (s′+1)

) 1
s′ , and 1

4 in (5.11) the best possi-

ble?
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D. S. Mitrinović and P. M. Vasić, Means and their inequalities, Reidel, Dordrecht].

[2] J.A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., 40, 3 (1936), 396–414.
[3] S.S. DRAGOMIR, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J.

Math., 26 (2004), 89–122.
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