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ESTIMATIONS OF THE ERROR FOR GENERAL SIMPSON
TYPE FORMULAE VIA PRE-GRUSS INEQUALITY

A. VUKELIC

Dedicated to Professor Josip Pecari¢
on the occasion of his 60th birthday

Abstract. Generalizations of estimations of general Simpson type formulae are given, by using
the pre-Griiss inequality.
1. Introduction
In the recent paper [8] N. Ujevic used the generalization of pre-Griiss inequality
to derive some better estimations of the error for Simpson’s quadrature rule. In fact, he

proved the next three theorems:

THEOREM 1. Let I C R be a closed interval and a,b € Intl, a<b. If f: 1 —R
is an absolutely continuous function with f' € Ly(a,b) then we have

‘b;a[f()+4f<a+b) } /f D] <
=17y ([rwa) - ([ rowmoa) o

and W(r) =1 — 52 Wo(1) = (1) /¥

b Ll)3/2

—FkKi, (LD

where

THEOREM 2. Let I C R be a closed interval and a,b € Intl, a<b. If f: 1 —R
is such that f' is an absolutely continuous function with f" € L,(a,b) then we have

o (45 ro] o] < B

b 2 b 2
=1 ([ roa) - ([ rovwa) . as
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{ 1, t€ [a, %]

‘P(t>: atb
—1,1€ (42,0]

(1.5)

and ¥o(t) =¥ (@)/['¥|l2-

THEOREM 3. Let I C R be a closed interval and a,b € Intl, a <b. If f:I —R
is such that " is an absolutely continuous function with " € Ly(a,b) then we have

s (452) r0] [ < S0

where
2

b
=15 ([ o dr) ([ ronoa) . an

{t 7a+3b, te [ %b]

t— 3a+7b, E(%b,b]

(1.8)

and ¥o(t) =¥ (@)/['¥|]2-

In this paper we will unify and generalize these results so that we will give the
results for general Euler-Simpson formula and for functions whose derivative of order
n, n>1,is from L,(0,1) space. We will also give related results for the general dual
Euler-Simpson formula. We will use interval [0, 1] because of simplicity and since it
involves no loss in generality.

2. Estimations of the error for general Euler-Simpson formula

In the recent paper [6] the following identity, named the general Euler-Simpson
formula, has been proved. For n > 1 and every ¢ € [0,1] we have

/O L H(0)d = D) — To(u,v) + Su(f) @.1)
where . |
D(u,v) = Tty [uf(O)—l—vf(i) +uf(l)} ,
To(u,v) =0 and
Tluy) = 51— 3 25 [13 ) = 130 0)] @2)
k=1 """

for 1 <m < n, while

_ 1
By = uBy(0) + vBy, <§> +uBi(l), k> 1,
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1 ! n
5.9 = G , G017 s

Qu+v
and |
G,(t) =2uB}(1 —1)+vB} (5 —t) ,t€R.

The identity holds for every function £ : [0,1] — R such that f(*~1) is a continuous
function of bounded variation on [0,1]. u,v € Z™ and the greatest common divisor of
u and v is 1. The functions Bi(f) are the Bernoulli polynomials, By = By (0) are the
Bernoulli numbers, and B (z), k > 0, are periodic functions of period 1, related to the
Bernoulli polynomials as

Bi(t)=Bi(t),0<t<1 and Bi(r+1)=Bi(t),r€R.

The Bernoulli polynomials By (), k > 0 are uniquely determined by the following
identities

Bi(t) = kBy1(1), k> 1; Bo(t) = 1, Bi(t+1) = By(t) = k"', k> 0.
For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have B(¢) = 1 and Bj(¢) is a discontinuous function with a
jump of —1 at each integer. It follows that By (1) = By(0) = By for k > 2, so that B;(¢)
are continuous functions for £ > 2. We get

BY(t) =kB_ (1), k> 1 2.3)

for every r € R when k > 3, and for every r € R\ Z when k= 1,2.
In the proof of our main result we shell use the following result of N. Ujevi¢ ([8]):

LEMMA 1. If g,h,¥ € L(0,1) and [, ¥(t)dt = 0 then we have
Sw(g,h)| < Sw(g,g)/2Sw(h,h)/?, (2.4)
where
1 1 1 1 1
Sulg.) = [ sonwar— [ o [ nwar— [ g ¥owar [ noeonar
and Wo(t) ="¥(t)/[¥]2.

THEOREM 4. If f:[0,1] — R is such that f""*~V) is absolutely continuous func-
tion with ") € L,(0,1) then we have

‘ /O ' H(0)dr — D) + To(u,v) 2.5)

1 {(—1)"1 12

< ity [4u2+v2—4uv(1 —21*2")] By,| K,
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173 ( | lf(")(t)dt)z _ (

v 1, t€[0,1],
(t)_{—l7te(%7l]7

where

2
£ (z)%(z)d:) . (2.6)

S—

For n even

while for n odd we have

I=ny,
o - { e 1€ 01])

o 21" (4—v)4-3v—6u 1
It = s | € (i’ 1] :

Proof. 1t is not difficult to verify that

/O1 G,(t)dt =0, 2.7
/0 () =0, 2.8)
/0 LG ()W (1)t = 0. 2.9)

From (2.1), (2.7) and (2.9) it follows that

/f 1)dt — D(u,v) + T, (u,v)

R 1 (n) _; 1 1 (n
(2”+V)( ~)/0 Gl ) (2u+v)(n!)/o Gn(z)dt/o L

_m/olGn(f)‘l’o(f)dt/olf(")(t)‘l’o(t)dz

_ 1 (n)
= GG ). (2.10)

Using (2.10) and (2.4) we get

1
/ f()dt —D(u,v) +T,(u,v)| < mS‘P(Gn,Gn)I/Zs\P(f(n)af(n))l/z-
(2.11)
‘We also have (see [6])
1 2 1 2
Sxy(Gn,Gn):Gn%—< / Gn(t)dt) —</O Gn(t)‘I’o(t)dt>
_(_ n—1(”!)2 2, .2 _Apl=2n
= (—1) [4u” +v* — 4uv(1 —2'72")] By, (2.12)

—~

2n)!
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and

1 2 1 2
se(r 1) == ([ swar) ([ roowina) =k @1
From (2.11)-(2.13) we easily get (2.5). U

REMARK 1. Function ¥(r) can be any function which satisfies conditions
Jo W(t)dt =0 and [} G,(t)¥(t)dr = 0. Since G,(1—1) = (—1)"G,(t) (see [6]), for n
we can even take function W(z) such that ¥(1 —¢) = —¥(¢). For n odd we have
to calculate W(r) and without lost of generality in our theorem we take the form

t+a,te0,1],
N e

t+b,re(3,1].

. 1/2
REMARK 2. The inequality (2.5) achieves minimum of (7(2120! 12_2”Bgn for

u=1 and v = 2 which is bitrapezoid formula (see [4]). For n =1 itis 1/ 44/3.

REMARK 3. For u =1 and v =4 in Theorem 4 we get Euler-Simpson formula
(see [3]) and then we have

! L= 3-2n 2
/0f(t)dt—D(1,4)+Tn(l74)’<§{ o (142 )]an] K, (214)
where
D)= ¢ [70)+47 (3 ) +500)].
and
T,(1,4) = ng 3(21k)' (1-22729)By; {f(zk_l)(l) —f(zk_l)(o)} :
k=2 '
For n even 1
1, t€|0,5],
ly(t):{—l7t€é7ﬂ7

while for n odd we have
27141 1
t+ 4(2—1—7:_1)’ re [07 Z:I )

3(1-27")

Y(r) =
l+m716(%,1].

For n =1, 2 and 3 in the inequality (2.14) we get inequalities (1.1), (1.3) and
(1.6) respectively.
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3. Estimations of the error for general dual Euler-Simpson formula

In the recent paper [7] the following identity, named the general dual Euler-Simpson
formula, has been proved. For n > 1 and every ¢ € [0,1] we have

/O L H(0)de = F(uw) — T2 (,v) + Ro(f) 3.1

= gifo(2) () 2)]

TP (u,v) =0 and

where

m pD
1 3 i_,; [f(2k—l)(1) _f(2k71)(0)] 7 (3.2)

k=1

T (w.v) = 2u—v

for 1 <m < n, while

. 1 1 3
BP = uBy (Z) —vBy (E) + uBy (Z) k=1,

1 1 n
Ry(x) = m/o G2 (1) f" (1) dr

1 1 3
GP(t) = uB; <Z—t) — VB <§—t> +uB, (Z_t> ,teR.

The identity holds for every function f: [0, 1] — R such that f (=1) i5 a continuous
function of bounded variation on [0,1]. u,v € Z", v < 2u and the greatest common
divisorof u and v is 1.

and

THEOREM 5. If f : [0,1] — R is such that f"*~V) is absolutely continuous func-
tion with f) € L,(0,1) then we have

‘ /0 1f(t)dr — F(u,v) + T, (u,v) (3.3)
< 1 {(_l)n_l [2u? +v* — (2u* —uv- 222" (1 22| B ]1/21{
S 2u—v| (2n)! n ’
where
1 2 1 2
== ([owa) - ([ movoa) . e
0 0
For n even
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while for n odd we have

27Mu(1-27")+ i
Wi — H—W’ re0,5],
( ) - P v(3—2’”+1)—2*”u(1—2*”) te (l 1]
H1o0) ’ 2

Proof. Similar as in Theorem 4. [J

REMARK 4. For u =2 and v =1 in Theorem 5 we get the dual Euler-Simpson
formula (see [5]) and then we have

nd—ranetPonl< LTED ™ o 6y _atomip |k

/of(t)t_ (’)+”(’)’\§{(2n)! [9-(8- )(1— )] Bon ,
(3.5)
where
1 1 1 3
ren=g 2 (3) - (3)+ (7))

and

TD(2 1)_L'§J 1 <8,2—4k_6,2—2k+1>B {f(2k—1)(1)_f(2k—1)(0)

nATTT A 3(2k)! 2% :
For n even

. 1, te0,1],
(I)_{—l,te(%,l],

while for n odd we have

211127141
t+ (21111)

3_ 22— n+21 2n
1+ (2 T—n_ 1) ) (

Y(r) =

For n =1, 2 and 3 we get inequalities

o (3) - (3) 21 (3)]- [ o
lé [2f (%) _fG) “f(%ﬂ —/Olf(t)dt‘ < %Kz
() G) e (5))- Lo ' T

respectively.

and
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