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ESTIMATIONS OF THE ERROR FOR GENERAL SIMPSON

TYPE FORMULAE VIA PRE–GRÜSS INEQUALITY

A. VUKELIĆ

Dedicated to Professor Josip Pečarić
on the occasion of his 60th birthday

Abstract. Generalizations of estimations of general Simpson type formulae are given, by using
the pre-Grüss inequality.

1. Introduction

In the recent paper [8] N. Ujevic used the generalization of pre-Grüss inequality
to derive some better estimations of the error for Simpson’s quadrature rule. In fact, he
proved the next three theorems:

THEOREM 1. Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R
is an absolutely continuous function with f ′ ∈ L2(a,b) then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−

∫ b

a
f (t)dt

∣∣∣∣ � (b−a)3/2

6
K1, (1.1)

where

K2
1 = ‖ f ′‖2

2−
1

b−a

(∫ b

a
f ′(t)dt

)2

−
(∫ b

a
f ′(t)Ψ0(t)dt

)2

(1.2)

and Ψ(t) = t− a+b
2 ,Ψ0(t) = Ψ(t)/‖Ψ‖2 .

THEOREM 2. Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R
is such that f ′ is an absolutely continuous function with f ′′ ∈ L2(a,b) then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−

∫ b

a
f (t)dt

∣∣∣∣ � (b−a)5/2

12
√

30
K2, (1.3)

where

K2
2 = ‖ f ′′‖2

2−
1

b−a

(∫ b

a
f ′′(t)dt

)2

−
(∫ b

a
f ′′(t)Ψ0(t)dt

)2

, (1.4)
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Ψ(t) =

{
1, t ∈ [

a, a+b
2

]
−1, t ∈ (

a+b
2 ,b

] (1.5)

and Ψ0(t) = Ψ(t)/‖Ψ‖2 .

THEOREM 3. Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R
is such that f ′′ is an absolutely continuous function with f ′′′ ∈ L2(a,b) then we have

∣∣∣∣b−a
6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−

∫ b

a
f (t)dt

∣∣∣∣ � (b−a)7/2

48
√

105
K3, (1.6)

where

K2
3 = ‖ f ′′′‖2

2−
1

b−a

(∫ b

a
f ′′′(t)dt

)2

−
(∫ b

a
f ′′′(t)Ψ0(t)dt

)2

, (1.7)

Ψ(t) =

{
t− 7a+3b

10 , t ∈ [
a, a+b

2

]
t− 3a+7b

10 , t ∈ (
a+b
2 ,b

] (1.8)

and Ψ0(t) = Ψ(t)/‖Ψ‖2 .

In this paper we will unify and generalize these results so that we will give the
results for general Euler-Simpson formula and for functions whose derivative of order
n, n � 1, is from L2(0,1) space. We will also give related results for the general dual
Euler-Simpson formula. We will use interval [0,1] because of simplicity and since it
involves no loss in generality.

2. Estimations of the error for general Euler-Simpson formula

In the recent paper [6] the following identity, named the general Euler-Simpson
formula, has been proved. For n � 1 and every t ∈ [0,1] we have

∫ 1

0
f (t)dt = D(u,v)−Tn(u,v)+Sn( f ) (2.1)

where

D(u,v) =
1

2u+ v

[
u f (0)+ v f

(
1
2

)
+u f (1)

]
,

T0(u,v) = 0 and

Tm(u,v) =
1

2u+ v

m

∑
k=1

B̃k

k!

[
f (2k−1)(1)− f (2k−1)(0)

]
, (2.2)

for 1 � m � n , while

B̃k = uBk(0)+ vBk

(
1
2

)
+uBk(1), k � 1,
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Sn(x) =
1

(2u+ v)(n!)

∫ 1

0
Gn (t) f (n)(t)dt

and

Gn(t) = 2uB∗
n(1− t)+ vB∗

n

(
1
2
− t

)
, t ∈ R.

The identity holds for every function f : [0,1]→R such that f (n−1) is a continuous
function of bounded variation on [0,1] . u,v ∈ Z+ and the greatest common divisor of
u and v is 1 . The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the
Bernoulli numbers, and B∗

k(t), k � 0, are periodic functions of period 1, related to the
Bernoulli polynomials as

B∗
k(t) = Bk(t), 0 � t < 1 and B∗

k(t +1) = B∗
k(t), t ∈ R.

The Bernoulli polynomials Bk(t), k � 0 are uniquely determined by the following
identities

B′
k(t) = kBk−1(t), k � 1; B0(t) = 1, Bk(t +1)−Bk(t) = ktk−1, k � 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have B∗

0(t) = 1 and B∗
1(t) is a discontinuous function with a

jump of −1 at each integer. It follows that Bk(1) = Bk(0) = Bk for k � 2, so that B∗
k(t)

are continuous functions for k � 2. We get

B∗′
k (t) = kB∗

k−1(t), k � 1 (2.3)

for every t ∈ R when k � 3, and for every t ∈ R\Z when k = 1,2.
In the proof of our main result we shell use the following result of N. Ujević ([8]):

LEMMA 1. If g,h,Ψ ∈ L2(0,1) and
∫ 1
0 Ψ(t)dt = 0 then we have

|SΨ(g,h)| � SΨ(g,g)1/2SΨ(h,h)1/2, (2.4)

where

SΨ(g,h) =
∫ 1

0
g(t)h(t)dt−

∫ 1

0
g(t)dt

∫ 1

0
h(t)dt−

∫ 1

0
g(t)Ψ0(t)dt

∫ 1

0
h(t)Ψ0(t)dt

and Ψ0(t) = Ψ(t)/‖Ψ‖2 .

THEOREM 4. If f : [0,1] → R is such that f (n−1) is absolutely continuous func-
tion with f (n) ∈ L2(0,1) then we have∣∣∣∣

∫ 1

0
f (t)dt −D(u,v)+Tn(u,v)

∣∣∣∣ (2.5)

� 1
2u+ v

[
(−1)n−1

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n

]1/2

K,
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where

K2 = ‖ f (n)‖2
2−

(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

. (2.6)

For n even

Ψ(t) =

{
1, t ∈ [

0, 1
2

]
,

−1, t ∈ (
1
2 ,1

]
,

while for n odd we have

Ψ(t) =

⎧⎨
⎩

t + 21−nu−2u+v
21−nv−22−nu+8u−4v

, t ∈ [
0, 1

2

]
,

t + 21−n(u−v)+3v−6u
21−nv−22−nu+8u−4v

, t ∈ ( 1
2 ,1

]
.

Proof. It is not difficult to verify that

∫ 1

0
Gn(t)dt = 0, (2.7)

∫ 1

0
Ψ(t)dt = 0, (2.8)

∫ 1

0
Gn(t)Ψ(t)dt = 0. (2.9)

From (2.1), (2.7) and (2.9) it follows that

∫ 1

0
f (t)dt−D(u,v)+Tn(u,v)

=
1

(2u+ v)(n!)

∫ 1

0
Gn(t) f (n)(t)dt− 1

(2u+ v)(n!)

∫ 1

0
Gn(t)dt

∫ 1

0
f (n)(t)dt

− 1
(2u+ v)(n!)

∫ 1

0
Gn(t)Ψ0(t)dt

∫ 1

0
f (n)(t)Ψ0(t)dt

=
1

(2u+ v)(n!)
SΨ(Gn, f (n)). (2.10)

Using (2.10) and (2.4) we get∣∣∣∣
∫ 1

0
f (t)dt −D(u,v)+Tn(u,v)

∣∣∣∣ � 1
(2u+ v)(n!)

SΨ(Gn,Gn)1/2SΨ( f (n), f (n))1/2.

(2.11)
We also have (see [6])

SΨ(Gn,Gn) = ‖Gn‖2
2−

(∫ 1

0
Gn(t)dt

)2

−
(∫ 1

0
Gn(t)Ψ0(t)dt

)2

= (−1)n−1 (n!)2

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n (2.12)
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and

SΨ( f (n), f (n)) = ‖ f (n)‖2
2−

(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

= K2. (2.13)

From (2.11)–(2.13) we easily get (2.5). �

REMARK 1. Function Ψ(t) can be any function which satisfies conditions∫ 1
0 Ψ(t)dt = 0 and

∫ 1
0 Gn(t)Ψ(t)dt = 0. Since Gn(1− t) = (−1)nGn(t) (see [6]), for n

we can even take function Ψ(t) such that Ψ(1− t) = −Ψ(t) . For n odd we have
to calculate Ψ(t) and without lost of generality in our theorem we take the form

Ψ(t) =

{
t +a, t ∈ [

0, 1
2

]
,

t +b, t ∈ (
1
2 ,1

]
.

REMARK 2. The inequality (2.5) achieves minimum of
[

(−1)n−1

(2n)! 2−2nB2n

]1/2
for

u = 1 and v = 2 which is bitrapezoid formula (see [4]). For n = 1 it is 1/4
√

3.

REMARK 3. For u = 1 and v = 4 in Theorem 4 we get Euler-Simpson formula
(see [3]) and then we have

∣∣∣∣
∫ 1

0
f (t)dt−D(1,4)+Tn(1,4)

∣∣∣∣ � 1
3

[
(−1)n−1

(2n)!
(
1+23−2n)

]
B2n

]1/2

K, (2.14)

where

D(1,4) =
1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
,

and

Tn(1,4) =
	n/2

∑
k=2

1
3(2k)!

(1−22−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

For n even

Ψ(t) =

{
1, t ∈ [

0, 1
2

]
,

−1, t ∈ ( 1
2 ,1

]
,

while for n odd we have

Ψ(t) =

⎧⎨
⎩

t + 2−n+1
4(2−1−n−1) , t ∈ [

0, 1
2

]
,

t + 3(1−2−n)
4(2−1−n−1) , t ∈ ( 1

2 ,1
]
.

For n = 1, 2 and 3 in the inequality (2.14) we get inequalities (1.1), (1.3) and
(1.6) respectively.
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3. Estimations of the error for general dual Euler-Simpson formula

In the recent paper [7] the following identity, named the general dual Euler-Simpson
formula, has been proved. For n � 1 and every t ∈ [0,1] we have

∫ 1

0
f (t)dt = F(u,v)−TD

n (u,v)+Rn( f ) (3.1)

where

F(u,v) =
1

2u− v

[
u f

(
1
4

)
− v f

(
1
2

)
+u f

(
3
4

)]
,

TD
0 (u,v) = 0 and

TD
m (u,v) =

1
2u− v

m

∑
k=1

B̃D
k

k!

[
f (2k−1)(1)− f (2k−1)(0)

]
, (3.2)

for 1 � m � n , while

B̃D
k = uBk

(
1
4

)
− vBk

(
1
2

)
+uBk

(
3
4

)
, k � 1,

Rn(x) =
1

(2u− v)(n!)

∫ 1

0
GD

n (t) f (n)(t)dt

and

GD
n (t) = uB∗

n

(
1
4
− t

)
− vB∗

n

(
1
2
− t

)
+uB∗

n

(
3
4
− t

)
, t ∈ R.

The identity holds for every function f : [0,1]→R such that f (n−1) is a continuous
function of bounded variation on [0,1] . u,v ∈ Z+, v < 2u and the greatest common
divisor of u and v is 1 .

THEOREM 5. If f : [0,1] → R is such that f (n−1) is absolutely continuous func-
tion with f (n) ∈ L2(0,1) then we have∣∣∣∣

∫ 1

0
f (t)dt −F(u,v)+TD

n (u,v)
∣∣∣∣ (3.3)

� 1
2u− v

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

]1/2

K,

where

K2 = ‖ f (n)‖2
2−

(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

. (3.4)

For n even

Ψ(t) =

{
1, t ∈ [

0, 1
2

]
,

−1, t ∈ (
1
2 ,1

]
,
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while for n odd we have

Ψ(t) =

⎧⎨
⎩

t + 2−nu(1−2−n)+v
4v(2−n−1−1) , t ∈ [

0, 1
2

]
,

t + v(3−2−n+1)−2−nu(1−2−n)
4v(2−n−1−1) , t ∈ ( 1

2 ,1
]
.

Proof. Similar as in Theorem 4. �

REMARK 4. For u = 2 and v = 1 in Theorem 5 we get the dual Euler-Simpson
formula (see [5]) and then we have

∣∣∣∣
∫ 1

0
f (t)dt−F(2,1)+TD

n (2,1)
∣∣∣∣� 1

3

[
(−1)n−1

(2n)!
[
9− (8−23−2n)(1−21−2n)

]
B2n

]1/2

K,

(3.5)
where

F(2,1) =
1
3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
,

and

TD
n (2,1) =

	n/2

∑
k=2

1
3(2k)!

(
8 ·2−4k−6 ·2−2k +1

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

For n even

Ψ(t) =

{
1, t ∈ [

0, 1
2

]
,

−1, t ∈ (
1
2 ,1

]
,

while for n odd we have

Ψ(t) =

⎧⎨
⎩

t + 21−n(1−2−n)+1
4(2−1−n−1) , t ∈ [

0, 1
2

]
,

t + 3−22−n+21−2n

4(2−1−n−1) , t ∈ (
1
2 ,1

]
.

For n = 1, 2 and 3 we get inequalities∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−

∫ 1

0
f (t)dt

∣∣∣∣ � 1

3
√

2
K1,

∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−

∫ 1

0
f (t)dt

∣∣∣∣ �
√

13

48
√

15
K2

and ∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−

∫ 1

0
f (t)dt

∣∣∣∣ �
√

13

192
√

70
K3

respectively.
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