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CONVERGENCE RATE IN MULTIDIMENSIONAL

IRREGULAR SAMPLING RESTORATION

ANDRIY YA. OLENKO AND TIBOR K. POGÁNY

Abstract. New magnitude of truncation error upper bound and convergence rate are obtained
for Whittaker–Kotel’nikov–Shannon (WKS) sampling restoration sum for Bernstein function
class Bq

π,d , q � 1, d ∈ N , when the sampled functions decay rate is unknown. The case of
multidimensional irregular sampling is discussed.

1. Introduction

The classical WKS sampling theorem has been extended to the case of nonuniform
sampling by numerous authors. For detailed information on the theory and its various
applications, we refer to [3, 6].

Most known irregular sampling results deal with Paley–Wiener functions which
have L2(R) restrictions on the real line. It seems that the best known nonuniform WKS
sampling results for entire functions in Lp –spaces were given in [4, 5, 19]. However,
there are no explicit truncation error upper bounds in multidimensional WKS recon-
structions in open literature. Recently the authors derived multidimensional Lp –WKS
sampling theorems with precise truncation error estimates, see [11, 12] for more details
and discussions.

In this paper we use methods developed in [11, 12] to investigate multidimensional
irregular sampling in Lp -spaces. New magnitude of truncation error upper bound and
convergence rate are obtained.

2. Multidimensional Plancherel–Pólya inequality

To prove the main theoremwe need the multidimensional analog of the Plancherel–
Pólya inequality, see [11].

Various multidimensional Plancherel–Pólya inequalities can be found e.g. in Trie-
bel’s book [18]; also, during last years several additional very far going generalizations
of the multidimensional Plancherel–Pólya inequality were obtained, among others in
[2] and [13]. Unfortunately, no explicit estimates of the Plancherel–Pólya constant
appeared neither in these articles, nor in articles referenced therein including [14].
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In course to expose our estimate upon the multidimensional Plancherel–Pólya con-
stant we make the following few conventions: (i) denote ‖ · ‖p the Lp -norm in finite
case (while ‖ · ‖∞ ≡ ess sup| · |) , and (ii) hereinafter Br

σσσσ ,d, r > 0 denotes the Bernstein
class [7] of d –variable entire functions of exponential type at most σσσσ = (σ1, · · · ,σd)
coordinatewise whose restriction to R

d is in Lr(Rd) .

THEOREM 1. [11, Theorem 1] Let T = {tn}n∈Zd , tn = (tn1 , ...tnd ) be real sepa-
rated sequence, i.e.

inf
n� �=m�

|tn�
− tm�

| � δ� > 0, � = 1,d .

Let f ∈ Br
σσσσ ,d, r � 1 . Then

∑
n∈Zd

| f (tn)|r � Bd,r‖ f‖r
r ,

where

Bd,r =
( 8

rπ

)d d

∏
�=1

erδ�σ�/2−1

σ�δ 2
�

.

3. Multidimensional irregular sampling

In this section we introduce the multidimensional sampling theorem for Br
σσσσ ,d func-

tional class. The theorem was proven in [12].
Let T := {tn = n+hn, math f rakh := (h1, · · · ,hn), N := (N1, · · · ,Nd) ∈ N

d , while

Jx :=
{

n :
d∧

j=1

(|x j −n j| � Nj)
}

and

S(x,tn) =
d

∏
j=1

GNj (x j,x j)
G′

Nj
(x j,tn j )(x j − tn j)

, (1)

where G′
N(x, t) denotes a derivative with respect to t , being

GN(x,t) = (t −h0)sinc(t) ∏
|x−k|�N

k �=0

(
1− hk

t− k

)
k
tk

, (2)

sinc(t) :=

⎧⎨⎩
sin(πt)
πt

if t �= 0 ,

1 if t = 0 .

Denote M=(M1, · · · ,Md), δδδδ =(δ1, · · · ,δd), M̃ :=max j=1,d Mj. Assume that tn j = n j +
hnj , |hnj | � Mj, j = 1,d ; for all n ∈ Jx .
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THEOREM 2. [12, Theorem 2] Let f ∈ Bq
σσσσ ,d, q � 1, σ j � π for all j, T =

{tn}n∈Zd be real separated sequence with

M̃ � 1
4

for q = 1 and M̃ <
1
4q

for 1 < q < ∞ . (3)

Then the sampling expansion

f (x) = ∑
n∈Zd

f (tn)
d

∏
j=1

GNj (x j,x j)
G′

Nj
(x j,tn j )(x j − tn j)

, (4)

holds uniformly on each bounded x–subset of R
d . Moreover, the series in (4) converges

absolutely too.

In this framework the sampling restoration procedure becomes of Lagrange–Yen
type [1, 6, 15, 21].

For the general case of multidimensional irregular sampling with window canoni-
cal product sampling function S(x,tn) we have time–jittered nodes outside Jx. Nonva-
nishing time-jitter h outside Jx leads to functions GN(x,t) given by formulae different
from (2), see [4]. However, in irregular sampling applications we would like to approx-
imate f (x) using only it’s values from sample nodes tn indexed by Jx. Therefore we
can try to use the truncated to Jxxxx sampling approximation sum

YJx( f ;x) = ∑
n∈Jx

f (tn)
d

∏
j=1

GNj (x j,x j)
G′

Nj
(x j,tn j)(x j − tn j)

(5)

with GN(x, t) (such that is given by (2)) even for arbitrary sample nodes outside Jx .
Under such assumptions the truncation error

‖TN,d( f ;x)‖∞ = ‖ f (x)−YJx( f ;x)‖∞
coincides with truncation error for the case given by (1)–(4). One can see that TN,d( f ;x)
depends on nonvanishing h in Jx due to multiplicative form of (4) and (5). Therefore,
the multidimensional sampling problems are more difficult than the one–dimensional
ones.

4. Truncation error upper bounds

In this section we obtain universal truncation bounds for multidimensional irregu-
lar sampling restoration procedure.

The most frequently appearing estimate of the truncation error is of the form

‖TJ( f ;x)‖∞ �
(
∑

n∈Zd\J
|S(x,tn)|p

)1/p(
∑

n∈Zd\J
| f (tn)|q

)1/q
=: Ap Bq , (6)

p,q being a conjugated Hölder pair, i.e. 1/p+1/q = 1.
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To obtain a class of truncation error upper bounds when the decay rate of the initial
signal function is not known one operates with the straightforward Bq � Cf ,T ‖ f‖q

where Cf ,T is suitable absolute constant. Thus (6) becomes

‖TJ( f ;x)‖∞ � Cf ,T Ap ‖ f‖q.

We are interested in estimates for Ap such that vanish with |Jx| → ∞. Therefore, the
obtained upper bounds really will be universal for wide classes of f (x) and T .

We will use the following two-sided bounds for a ratio of gamma functions, see
[16, 17, 20].

LEMMA 1. Let z > 0, b ∈ (0,1). Then

z
(z+b)1−b

� Γ(z+b)
Γ(z)

� zb. (7)

THEOREM 3. Let M̃ satisfy (3), f ∈ Bq
σσσσ ,d , q � 1, σ j � π for all j = 1,d . Then

we have
‖TN,d( f ,x)‖∞ � Kδδδδ (N,M) · ‖ f‖q (8)

where

Kδδδδ (N,M) =
( 8

qπ2

)d/q d

∏
j=1

(eqπδ j/2−1)1/q

δ 2/q
j

(
d

∑
k=1

{
C1(Nk,Mk)

×
d

∏
j=1
j �=k

(
C1(Nj,Mj)+C2(Mj,δ )C3(Nj,Mj)

)})1/p

, (9)

and

C1(N,M) :=
2Mp+2p+1π p(M +1/2)p

3pΓ2p(M +1/2)

(
1+

N
p−1

)(
(1+N)M(N−1/2)
N(N−M−1/2)

)p

(N +3/2)2Mp ;

C2(M,δ ) :=
(

3
4M

)p(π
2

)2Mp−p
(

e

M
√
δ

)4Mp

;

C3(N,M) := 2(M +3/2)4pM−p +
2(N +M +3/2)4pM−p+1−2(M +3/2)4pM−p+1

4pM− p+1
.

Proof. As we mentioned earlier, the function YJx( f ;x) does not depend on sam-
ples in T \ {tn : n ∈ Jx} and we assume that outside Jx it is h ≡ 0. Therefore, the
structure of {tn j : n j �∈ Jx j} becomes uniform tn j ≡ n j . In this case Theorem 2 guar-
antees that f (x) admits the representation (4), and the so evaluated model (6) gives
us∣∣TN,d( f ;x)

∣∣�( ∑
n∈Zd\Jx

d

∏
j=1

∣∣∣ GNj (x j,x j)
G′

Nj
(x j,tn j)(x j − tn j)

∣∣∣p)1/p(
∑

n∈Zd\Jx

| f (n)|q
)1/q

=: Ap ·Bq .
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The multiplicative structure of S(x,tn) enables to estimate Ap in the following way

Ap
p �

d

∑
k=1

∑
nk∈Z\Jxk

∣∣∣ GNk (xk,xk)
G′

Nk
(xk,nk)(xk −nk)

∣∣∣p d

∏
j=1
j �=k

∑
n j∈Z

∣∣∣ GNj (x j,x j)
G′

Nj
(x j, tn j )(x j − tn j)

∣∣∣p

=
d

∑
k=1

∑
nk∈Z\Jxk

∣∣∣ GNk(xk,xk)
G′

Nk
(xk,nk)(xk −nk)

∣∣∣p d

∏
j=1
j �=k

(
∑

n j∈Z\Jx j

∣∣∣ GNj (x j,x j)
G′

Nj
(x j,n j)(x j −n j)

∣∣∣p

+ ∑
n j∈Jx j

∣∣∣ GNj (x j,x j)
G′

Nj
(x j,tn j )(x j − tn j)

∣∣∣p) . (10)

Let us estimate ∑n∈Z\Jx

∣∣∣ GN (x,x)
G′

N(x,n)(x−n)

∣∣∣p. Note, that due to our assumptions

|ψN(n,x)| :=
∣∣∣∣ GN(x,x)
G′

N(x,tn)(x− tn)

∣∣∣∣=
∣∣∣∣∣ sin(πx)
π(x−n) ∏j∈Jx

(t j − x)( j−n)
(t j −n)( j− x)

∣∣∣∣∣ n ∈ Z\Jx .

Hence

|ψN(n,x)| =
∣∣∣∣∣sinc(x− jx)

(t jx − x)( jx −n)
(x−n)(t jx −n) ∏

| j−x|�N
j �= jx

(t j − x)( j−n)
(t j −n)( j− x)

∣∣∣∣∣
where jx denotes the index closest to x , i.e. jx −0.5 � x < jx +0.5 .

Due to |h jx | � M we have∣∣∣sinc(x− jx)
t jx − x

x−n

∣∣∣� M +1/2
|x−n| (11)

and ∣∣∣ jx −n
t jx −n

∣∣∣� 1+
M

|x−n|−M−1/2
� 1+

M
N−M−1/2

. (12)

Due to |h jx | � M and lemma 1 one concludes

∏
| j−x|�N

j �= jx

∣∣∣ t j − x

j− x

∣∣∣� ∏
| j−x|�N

j �= jx

| j− x|+M
| j− x| �

(
N

∏
j=0

j +1/2+M
j +1/2

)2

=
(

Γ(1/2)
Γ(M +1/2)

)2 (Γ(N +1+1/2+M)
Γ(N +1+1/2)

)2

� π
Γ2(M +1/2)

(N +3/2)2M. (13)
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Let k(n,x) := max(| jx −n|−N,1). Then by lemma 1 and |h jx | � M � 1/4 we have

∏
| j−x|�N

j �= jx

∣∣∣ j−n
t j −n

∣∣∣� ∏
| j−x|�N

j �= jx

| j−n|
| j−n|−M

=
k(n,x)+2N

∏
k=k(n,x)

k
k−M

=
Γ(k(n,x)+2N +1)

Γ(k(n,x))
Γ(k(n,x)−M)

Γ(k(n,x)+2N +1−M)

� (k(n,x)+2N +1−M)M
k(n,x)

(k(n,x)−M)(k(n,x))M

� 4
3

(
k(n,x)+2N +1

k(n,x)

)M

. (14)

Collecting all estimates (11)–(14), we deduce

∣∣ψN(n,x)
∣∣� 1

|x−n|
(

k(n,x)+2N +1
k(n,x)

)M 4π(M +1/2)
3Γ2(M +1/2)

N−1/2
N−M−1/2

(N +3/2)2M

and hence

∑
n∈Z\Jx

∣∣∣ GN(x,x)
G′

N(x,n)(x−n)

∣∣∣p = ∑
n∈Z\Jx

∣∣ψN(n,x)
∣∣p � ∑

n∈Z\Jx

1
|x−n|p

(
k(n,x)+2N +1

k(n,x)

)Mp

×
(

4π(M +1/2)
3Γ2(M +1/2)

N−1/2
N−M−1/2

)p

(N +3/2)2Mp .

Thus, we proceed evaluating

∑
n∈Z\Jx

1
|x−n|p

(
k(n,x)+2N +1

k(n,x)

)Mp

= ∑
n∈Z\Jx

1
|x−n|p

(
1+

2N +1
k(n,x)

)Mp

� 2(2+2N)Mp

Np +
∫ ∞

N

2
t p

(
1+

2N +1
t −N +1

)Mp

dt

=
2(2+2N)Mp

Np +2(2N +1)Mp
∫ ∞

N

1
t p

(
1

2N +1
+

1
t−N +1

)Mp

dt

� 2(2+2N)Mp

Np +
2(2N +1)Mp

(p−1)Np−1

(
1+

1
2N +1

)Mp

=
2Mp+1(1+N)Mp

Np

(
1+

N
p−1

)
,

such that gives

∑
n∈Z\Jx

∣∣∣ GN(x,x)
G′

N(x,n)(x−n)

∣∣∣p � C1(N,M).

Now, let us evaluate ∑n∈Jx |ψN(n,x)|p , the second addend in (10).
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We can rewrite the function GN(x,t) into

GN(x,t) = (t −h0)
∞

∏
n=1

(
1− t

t̃n

)(
1− t

t̃−n

)
,

where

t̃n =

{
tn, if |x−n|� N

n, else.

Hence all results derived in [19] are valid for our function GN(x,t). By [19, Lemma
1.4.4 (a)] and [19, inequality (3.7)] we obtain

|ψN(n,x)| � 3
4M

(π
2

)2M−1
(

e

M
√
δ

)4M

(|x− tn|+M +3/2)4M−1 .

Therefore

∑
n∈Jx

|ψN(n,x)|p �
(

3
4M

)p(π
2

)2Mp−p
(

e

M
√
δ

)4Mp

∑
n∈Jx

(|x− tn|+M +3/2)4pM−p

= C2(M,δ ) ∑
n∈Jx

(|x− tn|+M+3/2)4pM−p .

Finally for M satisfying (3) we have the estimate

∑
n∈Jx

(|x− tn|+M +3/2)4pM−p � 2

(
(M +3/2)4pM−p +

∫ N

0
(t +M +3/2)4pM−p dt

)

= 2

(
(M +3/2)4pM−p +

(N +M +3/2)4pM−p+1− (M +3/2)4pM−p+1

4pM− p+1

)
= C3(N,M) ,

such that gives

∑
n∈Jx

∣∣∣ GN(x,x)
G′

N(x,tn)(x− tn)

∣∣∣p � C2(M,δ )C3(N,M).

Therefore, by (10)

Ap
p �

d

∑
k=1

(
C1(Nk,Mk)

d

∏
j=1
j �=k

(
C1(Nj,Mj)+C2(Mj,δ )C3(Nj,Mj)

))
. (15)

To estimate Bq we use Theorem 1 with σ1 = · · · = σd = π . This results in

Bq
q � Bd,q =

(
8

qπ2

)d d

∏
j=1

eqπδ j/2−1

δ 2
j

.

Now, collecting all these involved estimates, we arrive at (8) and (9).
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REMARK 1. Theorem 3 gives new truncation error upper bounds and the method
to obtain them, compare with results in [12]. However, it has to be pointed out that
there are many different bounds on the so-called Gautschi–Kershaw ratio of two gamma
functions [17]. Applying instead of the Lemma 1 other estimates we obtain a set of
truncation error upper bounds. We used (7) since its simplicity and elegance.

Denote here, and in what follows δ := min j=1,d δ j, δ := max j=1,d δ j.

COROLLARY 3.1. Suppose that the conditions of Theorem 3 are satisfied. Then,
we have

‖TN,d( f ,x)‖∞ � K̃δ ,δ (N,M̃)‖ f‖q

where

K̃δ ,δ (N,M̃) =
( 8

qπ2

)d/q
(

d

∑
k=1

{
C1(Nk,M̃)

d

∏
j=1
j �=k

(
C1(Nj,M̃)

+C2(M̃,δ )C3(Nj,M̃)
)})1/p(

max

{
eqπδ/2−1

δ 2 ,
eqπδ/2−1

δ
2

})d/q

. (16)

Proof. If we make use of the estimate (15) for Ap with M̃ instead of all Mj and
δ instead of all other δ j , T could contain some additional tn which might causes only
increasing Ap .

It was shown in [12] that

Bd
1/d � max

{
8(eqπδ/2−1)

qπ2δ 2 ,
8(eqπδ/2 −1)

qπ2δ 2

}
.

Collecting the involved estimates, we arrive at (16).

THEOREM 4. Suppose that the conditions of Theorem 3 are satisfied. Let Ñ =
min
j=1,d

Nj → ∞ in such way that max
k, j=1,d

Nj/Nk = O(1). Then it holds

‖TN,d( f ;x)‖∞ = O
(
Ñ 3M̃p−p+1)→ 0.

Proof. According to definitions of Cj, j = 1,3 from Theorem 3, letting Ñ → ∞ ,
we get

C1(N,M) = O
(
N3Mp−p+1); C2(M,δ ) = O(1); C3(N,M) = O

(
1+N4Mp−p+1) .

Having in mind these facts by (16) we deduce

K̃ p
δ ,δ

(N,M̃) ∼
d

∑
k=1

{
O
(
N3M̃p−p+

k

) d

∏
j=1
j �=k

(
O
(
N3M̃p−p+1

j

)
+O

(
1+N4M̃p−p+1

j

))}
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∼ O
(
Ñ 3M̃p−p+1) d

∏
j=1

Nj �=Ñ

(
O
(
N3M̃p−p+1

j

)
+O

(
1
))}∼ O

(
Ñ 3M̃p−p+1) ,

when Ñ → ∞ if M̃ satisfies (3). The proof is complete.

REMARK 2. Theorem 4 improves the results on convergence rates derived in [12].
Namely, by specifying the sampling size numbers Ñ and the irregular sampling devi-
ation bound M̃ , involving the Gautschi–Kershaw inequality for the ratio of Gamma
functions (Lemma 1), and Voss’s upper bound on ψN(n,x), we

• relax the conditions upon M̃, with respect to the earlier condition

M̃ <
1

q(4d−1)
;

• obtain a better rate of convergence, with respect to the earlier one

O
(
Ñ 3M̃p−p+1 ·N4M̃(d−1))

appearing in [12, Corollary 3.2].

5. Final remarks

Methods proposed by authors give an opportunity to obtain approximation error
estimates for wide functional classes without strong assumptions on functions/signals
decay rate behaviour.

In this article new magnitude of truncation error upper bounds and rates of conver-
gence were obtained in ‖ · ‖∞–norm sampling theorem; the case of multidimensional
irregular sampling was considered.

All presented results and the numerical simulations such that illustrate the achieved
results open few new interesting and important problems:

1. To obtain sharp estimates in Theorem 3 (for uniform sampling and p = 2 such
sharp estimates were derived in [10]);

2. To obtain the best possible rate of convergence in Theorem 4;

3. To apply the obtained results to irregular sampling restoration for random fields,
see [8, 9].

RE F ER EN C ES

[1] FLORNES K.M., LYUBARSKII YU. AND SEIP K., A direct interpolation method for irregular sam-
pling, Appl. Comput. Harmon. Anal., 8, 1 (2000), 113–121.
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[3] HIGGINS J. R., Sampling in Fourier and Signal Analysis: Foundations, Clarendon Press, Oxford,
1996.

[4] HINSEN G., Irregular sampling of bandlimited Lp -functions, J. Approx. Theory, 72 (1993), 346–364.
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Math. Helv., 10 (1937), 110–163.
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