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Abstract. We prove that a set-valued map F : X → P0(Y ) satisfying the functional inclusion
F(x)♦F(y) ⊆ F(x∗ y) admits, in appropriate conditions, a unique selection f : X → Y satisfy-
ing the functional equation f (x) � f (y) = f (x ∗ y) , where (X ,∗) , (Y,�) are square-symmetric
grupoids and ♦ is the extension of � to the collection P0(Y ) of all nonempty parts of Y .

1. Introduction

In the theory of functional equations one of the main topics is Hyers-Ulam stabil-
ity. The first result on this topic was given by D.H. Hyers who obtained the following
result concerning the Cauchy functional equation [4]:

“Let X be a linear normed space, Y a Banach space, ε > 0 and f : X → Y a
function satisfying the inequality

‖ f (x+ y)− f (x)− f (y)‖� ε, x,y ∈ X . (1.1)

Then there exists a unique additive function g : X → Y such that

‖ f (x)−g(x)‖ � ε, x ∈ X .′′ (1.2)

The previous result is an answer given to a problem proposed by S.M. Ulam in
1940 in a talk to a conference at Wisconsin University (see [5], [6]). W. Smajdor [16]
and R. Ger, Z. Gajda [3] observed that if f is a solution of (1.1), then the set-valued
map F : X → P0(Y ) defined by the relation

F(x) = f (x)+B(0,ε), x ∈ X (1.3)

is subadditive, i.e.
F(x+ y) ⊆ F(x)+F(y), x,y ∈ X (1.4)

and the function g from the relation (1.2) satisfies the relation g(x) ∈ F(x) , i.e. is a
selection of F . (P0(Y ) is the collection of all nonempty subsets of Y and B(0,ε) is
the closed ball of center 0 and radius ε in Y ).

Now one may ask under what conditions a subadditive set-valued map admits an
additive selection. A first answer to this question was given by Z. Gajda and R. Ger [3].
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Furthermore the result of Gajda and Ger was extended to set-valued maps satisfying
general linear inclusions by D. Popa [11]. A new step on this direction was made by D.
Popa [12] and K. Nikodem, D. Popa [8] who considered set-valued maps F satisfying
functional inclusions of the form

F(x∗ y) ⊆ F(x)♦F(y), x,y ∈ X , (1.5)

where (X ,∗) , (Y,�) are square-symmetric grupoids and ♦ is a square-symmetric op-
eration on P0(Y ) determined by � . More precisely, D. Popa proved in [12] that in
appropriate conditions a set-valued map satisfying (1.5) admits a selection f with the
property

f (x∗ y) = f (x)� f (y), x,y ∈ X . (1.6)

The purpose of this paper is to obtain an analogous result for set-valued maps
satisfying the converse functional inclusion

F(x)♦F(y) ⊆ F(x∗ y), x,y ∈ X . (1.7)

Some results on this direction, for particular cases of the functional inclusion (1.7),
were obtained by W. Smajdor and A. Smajdor [15], [17].

Let us recall that J. Ratz [14] pointed out the role of square-symmetry for the
stability of functional equations and Zs. Páles [9], Zs. Páles, P. Volkmann, R.D. Luce
[12] considered the stability of the Cauchy functional equation on square-symmetric
grupoids. In this paper we will use some ideas and terminology from [10] and [12].

A grupoid (X ,∗) is called square-symmetric if

(x∗ y)∗ (x∗ y) = (x∗ x)∗ (y∗ y) (1.8)

for all x,y ∈ X . An operation ∗ on X is square-symmetric if and only if the function
σ∗ : X → X given by

σ∗(x) = x∗ x, x ∈ X (1.9)

is an endomorphism of (X ,∗) . The grupoid (X ,∗) is called divisible if σ∗ is an au-
tomorphism of (X ,∗) . The triple (Y,∗,d) is called a metric grupoid if (Y,∗) is a
grupoid, (Y,d) is a metric space and ∗ is a continuous operation with respect to the
topology of (Y,d) . For a nonempty set Y we denote by P0(Y ) the collection of all
nonempty subsets of Y . If (Y,d) is a metric space by cl(Y ) we denote the collection
of all nonempty closed subsets of Y . In a linear normed space (Y,‖ · ‖) we define the
following families of sets:

c(Y ) := {A | A ∈ P0(Y ), A is convex set}
ccl(Y ) := {A | A ∈ P0(Y ), A is closed and convex set}
cc(Y ) := {A | A ∈ P0(Y ), A is compact and convex set}.

(1.10)

Let (Y,d) be a metric space. The diameter of a set A ∈ P0(Y ) is defined by

δ (A) := sup{d(x,y) | x,y ∈ A}. (1.11)

The Lipschitz modulus of a function f : Y → Y is the smallest real extended
number L with the property

d( f (x), f (y)) � Ld(x,y), x,y ∈ Y. (1.12)
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The Lipschitz modulus of a function f is denoted by Lip f . Finally recall that a
selection of a set-valued map F : X → P0(Y ) is a single-valued map f : X → Y with
the property f (x) ∈ F(x) for all x ∈ X .

2. Main results

In this section we denote by N0 = {0,1,2, . . .} the set of all nonnegative integers.
First we recall some notions and results from [12].
Let (Y,�,d) be a metric grupoid. We extend the operation � to an operation ♦ on

P0(Y ) as follows

A♦B = {x| x = a � b, a ∈ A, b ∈ B}, A,B ∈ P0(Y ). (2.1)

If � is a square-symmetric operation on Y , then ♦ is not necessary square-symmetric
on P0(Y ) . For the square-symmetry of ♦ it suffices that � satisfies the condition of
bisymmetry introduced by J. Aczél [1]. The following result holds.

LEMMA 2.1. [12] Let (Y,�) be a a grupoid with a bisymmetric operation, i.e.

(x1 � y1)� (x2 � y2) = (x1 � x2)� (y1 � y2) (2.2)

for all x1,x2,y1,y2 ∈ Y . Then σ♦ is an increasing endomorphism of (P0(Y ),♦,⊆) .

The main results of this paper are contained in the next theorems.

THEOREM 2.2. Let (X ,∗) be a square-symmetric divisible grupoid, (Y,�,d) a
complete metric bisymmetric divisible grupoid and F : X → P0(Y ) a set-valued map
with the property

F(x)♦F(y) ⊆ F(x∗ y), x,y ∈ X . (2.3)

If
σn

♦ ◦F ◦σ−n
∗ (x) ∈ cl(Y ), x ∈ X , n ∈ N0 (2.4)

and
lim
n→∞

δ (F ◦σ−n
∗ (x))Lip(σn

� ) = 0, x ∈Y (2.5)

then there exists a unique selection f : X → Y of F with the property

f (x)� f (y) = f (x∗ y), x,y ∈ X . (2.6)

Proof. Existence. Replacing y = x in (2.3) we get

σ♦(F(x)) ⊆ F(σ∗(x)), x ∈ X (2.7)

and applying σn
♦ to (2.7) it follows, in view of Lemma 2.1

σn+1
♦ ◦F(x) ⊆ σn

♦ ◦F ◦σ∗(x), x ∈ X , n ∈ N0. (2.8)
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Now we replace x from (2.8) with σ−n−1∗ (x) to obtain:

σn+1
♦ ◦F ◦σ−n−1

∗ (x) ⊆ σn
♦ ◦F ◦σ−n

∗ (x), x ∈ X , n ∈ N. (2.9)

Let x ∈ X be fixed. Define the sequence (Fn(x))n�0 by

Fn(x) = σn
♦ ◦F ◦σ−n

∗ (x), n ∈ N0. (2.10)

The sequence (Fn(x))n�0 is decreasing in view of (2.9). We prove that

lim
n→∞

δ (Fn(x)) = 0. (2.11)

Let u,v ∈ Fn(x) . It follows

σ−n
� (u) ∈ F ◦σn

∗ (x), σ−n
� (v) ∈ F ◦σ−n

∗ (x) (2.12)

Denote σ−n� (u) = s , σ−n� (v) = t . We get:

d(u,v) = d(σ�(s),σ�(t)) � Lip(σn
� ) ·d(s,t)

= Lip(σn
� )δ (F ◦σ−n

∗ (x)) (2.13)

which leads to
δ (Fn(x)) � Lip(σn

� ) ·δ (F ◦σ−n
∗ (x)). (2.14)

Now taking account of (2.5) it follows lim
n→∞

δ (Fn(x)) = 0.

The sequence of sets (Fn(x))n�0 satisfies the conditions of the Cantor theorem in
the complete metric space (Y,d) , hence

∞⋂

n=0

Fn(x) (2.15)

is a singleton f (x) . The function f : X → Y is a selection of F since f (x) ∈ F0(x) =
F(x) for every x ∈ X . Let us prove that f satisfies the equation (2.6). First we will
prove that

Fn(x)♦Fn(y) ⊆ Fn(x∗ y), x,y ∈ X , n ∈ N0. (2.16)

In (2.3) replace x by σ−n∗ (x) , y by σ−n∗ (y) to get

(F ◦σ−n
∗ (x))♦(F ◦σ−n

∗ (y)) ⊆ F ◦σ−n
∗ (x∗ y), x,y ∈ X (2.17)

and applying σn
♦ to (2.17) follows (2.16).

Since { f (x)} =
∞⋂

n=0

Fn(x) , x ∈ X , we have f (x) � f (y) ∈ Fn(x)∩ Fn(y) , for all

n ∈ N0 , x,y ∈ X , hence, in view of (2.16) we get

d( f (x)� f (y), f (x∗ y)) � δ (Fn(x∗ y)), x,y ∈ X , n ∈ N0. (2.18)
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Taking account of (2.11) we get by (2.18)

f (x)� f (y) = f (x∗ y), x,y ∈ X . (2.19)

The existence is proved.
Uniqueness. Suppose that F admits two selections f , g satisfying

f (x)� f (y) = f (x∗ y)
g(x)� f (y) = g(x∗ y) , x,y ∈ X . (2.20)

From (2.20) follows

σ−n� ◦ f (x) = f ◦σ−n∗ (x),
σ−n� ◦ g(x) = g ◦σ−n∗ (x) , x ∈ X , n ∈ N0. (2.21)

Let x ∈ X be fixed. Then

d(σ−n
� ◦ f (x),σ−n

� ◦ g(x)) = d( f ◦σ−n
∗ (x),g ◦σ−n

∗ (x))

� δ (F ◦σ−n
∗ (x)), x ∈ X , n ∈ N0.

Put σ−n� ◦ f (x) = s , σ−n� ◦ g(x) = t . Then f (x) = σn� (s) , g(x) = σn� (t) and

d( f (x),g(x)) = d(σn
� (s),σn

� (t)) � Lip(σ−n
� )d(s,t)

� Lip(σ−n
� )δ (F ◦σn

∗ (x)). (2.22)

Letting n tends to infinity in (2.22) we get f (x) = g(x) , in view of (2.5). The
uniqueness is proved.

THEOREM 2.3. Let (X ,∗) be a square-symmetric divisible grupoid, (Y,�,d) a
metric bisymmetric divisible grupoid and A a divisible subgrupoid of (P0(Y ),♦) .
Suppose that F : X → A is a set-valued map with the property

F(x)♦F(y) ⊆ F(x∗ y), x,y ∈ X . (2.23)

If
lim
n→∞

δ (F ◦σn
∗ (x))Lip(σ−n

� ) = 0 (2.24)

for every x ∈ X , then F is single valued and

F(x)�F(y) = F(x∗ y), x,y ∈ X . (2.25)

Proof. For y = x in (2.23) we get

σ♦(F(x)) ⊆ F(σ∗(x)), x ∈ X . (2.26)

Replacing in (2.26) x by σn∗ (x) , n ∈ N0 , and applying σ−n−1
♦ to both sides of

(2.26) we obtain
σ−n

♦ ◦F ◦σn
∗ (x) ⊆ σ−n−1

♦ ◦F ◦σn+1
∗ (x) (2.27)
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taking account that σ♦ is increasing.
Let x ∈ X be fixed. The sequence of sets (Fn(x))n�0

Fn(x) = σ−n
♦ ◦F ◦σn

∗ (x), n � 0, (2.28)

is increasing. Then (δ (Fn(x))n�0 is an increasing sequence of nonnegative numbers.
As in the proof of Theorem 2.2 one obtains

δ (Fn(x)) � δ (F ◦σn
∗ (x))Lip(σ−n

� ), n � 0. (2.29)

Then δ (Fn(x)) = 0 for every n ∈ N0 , in view of (2.24) and the monotonicity of
(Fn(x))n�0 . It follows that Fn(x) is single-valued for all n ∈ N0 and F0(x) = F(x)
satisfies the relation F(x)�F(y) = F(x∗ y) , for all x,y ∈ X . The theorem is proved.

Now we will give some consequences of the previous theorems, concerning linear
inclusions, analogous to the results obtained in [12].

Suppose that Y is a Banach space over R and � is defined by

x� y = px+qy, x,y ∈ Y, (2.30)

where p,q ∈ R are given numbers. The triple (Y,�,‖ · ‖) is a metric grupoid with a
bisymmetric operation.

For all U,V ∈ P0(Y ) the operation ♦ is defined by

U♦V = pU +qV. (2.31)

COROLLARY 2.4. Let (X ,∗) be a square-symmetric divisible grupoid, (Y,‖·‖) a
Banach space over R , p,q ∈ R , p+q �= 0 , p+q �= 1 , and F : X → c(Y ) a set-valued
map with the property

pF(x)+qF(y) ⊆ F(x∗ y), x,y ∈ X . (2.32)

Suppose that the following conditions are satisfied:

1) F ◦σ−n
∗ (x) ∈ cl(Y ), x ∈ X , n ∈ N0. (2.33)

2) There exists M > 0 such that δ (F(x)) � M, x ∈ X.

Then there exists a unique selection f : X → Y of F such that

p f (x)+q f (y) = f (x∗ y), x,y ∈ X . (2.34)

Proof. We have σ♦(U)= (p+q)U , U ∈ c(Y ) , σ♦ is an automorphismof (c(Y ),♦) ,
σn� (x) = (p+q)nx , x ∈ X , n ∈ Z and

Lip(σn
� ) = |p+q|n, n ∈ Z.

i) If |p+q|< 1 we have

σn
♦ ◦F ◦σ−n

∗ (x) = (p+q)nF ◦σ−n
∗ (x) ∈ cl(Y )
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and
δ (F ◦σ−n

∗ (x))Lip(σn
� ) � M|p+q|n, x ∈ X , n ∈ N0,

hence there exists a unique selection of F satisfying (2.34), in view of Theorem 2.2.
ii) If |p+q|> 1 we have

δ (F ◦σn
∗ )Lip(σ−n

� ) � M
|p+q|n , x ∈ X , n ∈ N0,

thus F is single-valued, according with Theorem 2.3.
Corollary 2.4 leads to the following stability result for the general linear equation.

COROLLARY 2.5. Let (X ,∗) be a square-symmetric divisible grupoid, (Y,‖ · ‖)
a Banach space over R , p,q,ε > 0 , p+q < 1 , and b ∈Y . Suppose that f : X → Y is
a function satisfying

‖ f (x∗ y)− p f (x)−q f (y)−b‖� ε, x,y ∈ X . (2.35)

Then there exists a unique function g : X → Y satisfying

g(x∗ y) = pg(x)+qg(y)+b, x,y ∈ X (2.36)

and
‖ f (x)−g(x)‖ � ε

1− p−q
, x ∈ X . (2.37)

Proof. Define the set-valued map F : X → ccl(Y ) by

F(x) = f (x)+
1

1− p−q
(B(0,ε)−b), x ∈ X .

We have

pF(x)+qF(y) = p f (x)+
p

1− p−q
(B(0,ε)−b)

+q f (y)+
q

1− p−q
(B(0,ε)−b)

⊆ f (x∗ y)+ (B(0,ε)−b)+
p+q

1− p−q
(B(0,ε)−b)

= f (x∗ y)+
1

1− p−q
(B(0,ε)−b) = F(x∗ y)

for every x,y ∈ X . On the other hand it is obvious that

δ (F(x)) � 2ε
1− p−q

therefore the conditions of Corollary 2.4 are satisfied. It follows that F has a unique
selection h satisfying

h(x∗ y) = ph(x)+qh(y), x,y ∈ X .
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The function g : X → Y , g(x) = h(x)+
b

1− p−q
satisfies the equation (2.36) and

(2.37).
The result obtained in Corollary 2.5 crosses with a more general result, obtained

by Zs. Páles in [9], on the stability of the general linear equation and a result obtained
by Z. Brzdek and A. Pietrzyk in [2] (see also [8]). It is also connected with a problem
in [13] and corresponds also to some results in [7].
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