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Abstract. We prove that a set-valued map F : X — (YY) satisfying the functional inclusion
F(x)OF (y) C F(xx*y) admits, in appropriate conditions, a unique selection f:X — Y satisfy-
ing the functional equation f(x)o f(y) = f(x*y), where (X,*), (Y,0) are square-symmetric
grupoids and ¢ is the extension of ¢ to the collection Z)(Y) of all nonempty parts of Y.

1. Introduction

In the theory of functional equations one of the main topics is Hyers-Ulam stabil-
ity. The first result on this topic was given by D.H. Hyers who obtained the following
result concerning the Cauchy functional equation [4]:

“Let X be a linear normed space, Y a Banach space, € >0 and f: X — Y a
function satisfying the inequality

Ifet+y) = f) - Ol <& xyeX. (1.1)

Then there exists a unique additive function g : X — Y such that

1f(0) —g@) <e, xex.” (1.2)

The previous result is an answer given to a problem proposed by S.M. Ulam in
1940 in a talk to a conference at Wisconsin University (see [5], [6]). W. Smajdor [16]
and R. Ger, Z. Gajda [3] observed that if f is a solution of (1.1), then the set-valued
map F : X — Z(Y) defined by the relation

F(x) = f(x)+B(0,e), x€X (1.3)

is subadditive, i.e.
Fx+y)CF(x)+F(y), xyeX (1.4)

and the function g from the relation (1.2) satisfies the relation g(x) € F(x), i.e. is a
selection of F. (Z)(Y) is the collection of all nonempty subsets of ¥ and B(0,¢) is
the closed ball of center O and radius € in Y).

Now one may ask under what conditions a subadditive set-valued map admits an
additive selection. A first answer to this question was given by Z. Gajda and R. Ger [3].
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Furthermore the result of Gajda and Ger was extended to set-valued maps satisfying
general linear inclusions by D. Popa [11]. A new step on this direction was made by D.
Popa [12] and K. Nikodem, D. Popa [8] who considered set-valued maps F satisfying
functional inclusions of the form

F(xxy) CF(x)0F(y), x,y€X, (1.5)

where (X, %), (Y,o) are square-symmetric grupoids and ¢ is a square-symmetric op-
eration on Zy(Y) determined by ¢. More precisely, D. Popa proved in [12] that in
appropriate conditions a set-valued map satisfying (1.5) admits a selection f with the
property
f(x*)’):f(x)of(})), x,yeX. (1.6)
The purpose of this paper is to obtain an analogous result for set-valued maps
satisfying the converse functional inclusion

F(x)OF(y) CF(xxy), x,y€X. (L.7)

Some results on this direction, for particular cases of the functional inclusion (1.7),
were obtained by W. Smajdor and A. Smajdor [15], [17].

Let us recall that J. Ratz [14] pointed out the role of square-symmetry for the
stability of functional equations and Zs. Péles [9], Zs. Pdles, P. Volkmann, R.D. Luce
[12] considered the stability of the Cauchy functional equation on square-symmetric
grupoids. In this paper we will use some ideas and terminology from [10] and [12].

A grupoid (X, ) is called square-symmetric if

(a0 ) % (e y) = (xx) * (y*y) (1.8)
for all x,y € X. An operation * on X is square-symmetric if and only if the function
o. : X — X given by

o.(x)=xxx, x€X (1.9)
is an endomorphism of (X,*). The grupoid (X,*) is called divisible if o, is an au-
tomorphism of (X,*). The triple (¥,*,d) is called a metric grupoid if (¥,*) is a
grupoid, (¥,d) is a metric space and * is a continuous operation with respect to the
topology of (Y,d). For a nonempty set ¥ we denote by Z7(Y) the collection of all
nonempty subsets of Y. If (Y,d) is a metric space by c¢/(Y) we denote the collection
of all nonempty closed subsets of Y. In a linear normed space (Y, || -||) we define the
following families of sets:

c(Y):={A]|A e P(Y), Alis convex set}
cc(Y):={A|A € Py(Y), Ais closed and convex set} (1.10)
ce(Y):={A|A € Py(Y), Ais compact and convex set}.

Let (Y,d) be a metric space. The diameter of a set A € Z)(Y) is defined by
O(A) :=sup{d(x,y) | x,y € A}. (L.1D)

The Lipschitz modulus of a function f:Y — Y is the smallest real extended
number L with the property

d(f(x),f(y)) <Ld(x,y), xy€VY. (1.12)
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The Lipschitz modulus of a function f is denoted by Lipf. Finally recall that a
selection of a set-valued map F : X — Z(Y) is a single-valued map f: X — Y with
the property f(x) € F(x) forall x€ X.

2. Main results

In this section we denote by No = {0,1,2,...} the set of all nonnegative integers.

First we recall some notions and results from [12].

Let (Y,¢,d) be a metric grupoid. We extend the operation ¢ to an operation { on
Py (Y) as follows

AOB={x|x=aob,ac A, beB}, A,Bc Py(Y). 2.1)

If © is a square-symmetric operation on Y, then ¢ is not necessary square-symmetric
on Zy(Y). For the square-symmetry of ¢ it suffices that ¢ satisfies the condition of
bisymmetry introduced by J. Aczél [1]. The following result holds.

LEMMA 2.1. [12] Let (Y,o) be a a grupoid with a bisymmetric operation, i.e.

(x1oy1)o(x20y2) = (x10x2) 0 (y10y2) (2.2)
Sforall x1,x2,y1,y2 €Y. Then oy is an increasing endomorphism of (%y(Y),0,C).

The main results of this paper are contained in the next theorems.

THEOREM 2.2. Let (X,*) be a square-symmetric divisible grupoid, (Y,o,d) a
complete metric bisymmetric divisible grupoid and F : X — Py(Y) a set-valued map
with the property

F(x)OF(y) CF(xxy), x,y€X. (23)
If
oyoFoo,"(x)€cl(Y), xeX,neNy 2.4)
and
lim 6 (F oo, "(x))Lip(c}) =0, x€Y (2.5)

then there exists a unique selection f:X — Y of F with the property
fx)ofly)=flxy), xyeX. (2.6)
Proof. Existence. Replacing y = x in (2.3) we get
0, (F(x) € F(0.(x)), xeX @.7)
and applying oy to (2.7) it follows, in view of Lemma 2.1

G<’§+10F(x)§o'<’§OFOO'*(x), x€X, neN. (2.8)
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Now we replace x from (2.8) with 6" ~!(x) to obtain:
GgHOFOG,:"*l(x)gagoFoof"(x), xeX,neN (2.9)

Let x € X be fixed. Define the sequence (Fy(x)),>0 by
Fy(x) =050Fo00,"(x), né&N. (2.10)

The sequence (F,(x)),>0 is decreasing in view of (2.9). We prove that

lim & (F,(x)) = 0. 2.11)
Let u,v € F,(x). It follows
o,"(u) e Fooy(x), o,"(v)eFoo,"(x) (2.12)

Denote o, "(u) =s, 0, "(v) =t. We get:
d(u,v) = d(0,(s),0,(t)) < Lip(ay) - d(s,1)

— Lip(c")8(F 0 0" (x)) 2.13)

which leads to
8(F(x)) < Lip(al)-8(F o 0, " (x)). (2.14)

Now taking account of (2.5) it follows lim & (F,(x)) = 0.
n—oo

The sequence of sets (Fy(x)),>o satisfies the conditions of the Cantor theorem in
the complete metric space (Y,d), hence

) Fa(x) (2.15)

is a singleton f(x). The function f: X — Y is a selection of F since f(x) € Fy(x) =
F(x) for every x € X. Let us prove that f satisfies the equation (2.6). First we will
prove that

F,(x)OF,(y) C Fy(xxy), x,ye€X, neN. (2.16)

In (2.3) replace x by o, "(x), y by o, "(y) to get
(Foo,"(x))0(Foo,"(y)) CFoo,"(x*y), x,y€X (2.17)
and applying oy to (2.17) follows (2.16).
Since {f(x)} = ﬂ Fy(x), x € X, we have f(x)o f(y) € F,(x) N F,(y), for all

neNy, x,yeX, hence 1n view of (2.16) we get

d(f(x) o f(y),f(xxy)) < S(Fu(x+y)), xy€X, neNy. (2.18)
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Taking account of (2.11) we get by (2.18)

fx)of(y) =flxxy), xyeX. (2.19)

The existence is proved.
Uniqueness. Suppose that F' admits two selections f, g satisfying

f(x)of(y)=f(x*y)

g(0)of(y) =glexy)” 7 €x. (220)
From (2.20) follows
g{nzg((;)):;sgfn(%)z xeX, neN. 2.21)

Let x € X be fixed. Then
d(o," o f(x),0,"0g(x)) =d(fo0,"(x),g00,"(x))
<O(Foo,"(x)), xeX, neNy.
Put 0,"0 f(x) =s, 0,"og(x) =¢. Then f(x) = c%(s), g(x) = 6(¢) and
d(f(x),8(x)) = d(05(s),05(1)) < Lip(0s")d(s1)
< Lip(0;")8(F 0 67 (x)). (2.22)

Letting n tends to infinity in (2.22) we get f(x) = g(x), in view of (2.5). The
uniqueness is proved.

THEOREM 2.3. Let (X,*) be a square-symmetric divisible grupoid, (Y,o,d) a
metric bisymmetric divisible grupoid and A a divisible subgrupoid of (Zy(Y),).
Suppose that F : X — A is a set-valued map with the property

F(x)OF(y) CF(xx*y), x,yeX. (2.23)
If
lim §(F o 67(x))Lip(0;") =0 (2.24)

forevery x € X, then F is single valued and

F(x)oF(y)=F(xxy), x,ye€X. (2.25)

Proof. For y=x in (2.23) we get
0o (F(x) C F(o.(x), x€X. (2.26)

Replacing in (2.26) x by o!(x), n € No, and applying o, "=1 to both sides of
(2.26) we obtain
U&nOFOO':(X) C O'O_"_IOFOO':'H(X) (2.27)
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taking account that oy, is increasing.
Let x € X be fixed. The sequence of sets (F;,(x)),>0

Fy(x) :U&HOFOO',:[()C), n=0, (2.28)

is increasing. Then (O (Fy(x)),>0 is an increasing sequence of nonnegative numbers.
As in the proof of Theorem 2.2 one obtains

8(Fu(x) < 8(F o 0(x))Lip(0, ™), n>0. (2.29)

Then & (F,(x)) =0 for every n € Ny, in view of (2.24) and the monotonicity of
(Fu(x))n=0. It follows that Fy(x) is single-valued for all n € Ny and Fy(x) = F(x)
satisfies the relation F(x) o F(y) = F(xx*y), for all x,y € X. The theorem is proved.

Now we will give some consequences of the previous theorems, concerning linear
inclusions, analogous to the results obtained in [12].

Suppose that Y is a Banach space over R and ¢ is defined by

xoy=px+qy, x,yev, (2.30)

where p,q € R are given numbers. The triple (¥,o,||-||) is a metric grupoid with a
bisymmetric operation.
For all U,V € £2y(Y) the operation ¢ is defined by

UOV = pU +gV. 2.31)

COROLLARY 2.4. Let (X,*) be a square-symmetric divisible grupoid, (Y,|-]) a
Banach space over R, p,q R, p+q+#0, p+q#1,and F : X — ¢(Y) a set-valued
map with the property

PF(x)+qF(y) CF(x*y), x,ye€X. (2.32)
Suppose that the following conditions are satisfied:

1) Foo,"(x)ecl(Y), xeX,neN. (2.33)
2)  There exists M > 0 such that 8 (F(x)) < M, x € X.

Then there exists a unique selection f:X — Y of F such that

pf(x)+qf(y) = fxxy), xyeX. (2.34)

Proof. Wehave o,(U) = (p+q)U, U €c(Y), 0y is an automorphismof (¢(Y),0),
ol(x)=(p+q)"x,x€X,n€Zand

Lip(o) = |p+q|", neZ.
D If [p+¢| <1 we have

ogoFo0."(x)=(p+q)'Foo"(x) ecl(Y)
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and
§(Foo."(x))Lip(cy) <M|p+q|", x€X,neN,

hence there exists a unique selection of F satisfying (2.34), in view of Theorem 2.2.
i) If [p+¢g| > 1 we have

8(Foo}l)Lip(o,") <

—— x€X,ne€Ny,
S p gl

thus F is single-valued, according with Theorem 2.3.
Corollary 2.4 leads to the following stability result for the general linear equation.

COROLLARY 2.5. Let (X,*) be a square-symmetric divisible grupoid, (Y,||-||)

a Banach space over R, p,q,€ >0, p+q<1,and b €Y. Supposethat f: X —Y is
a function satisfying

1f(exy) =pf(x) —qf(y) —bl| <&, xyeX. (2.35)

Then there exists a unique function g : X — Y satisfying

glxxy)=pg(x) +qg(y)+b, x,y€X (2.36)
and c
[f(x) =gl < m’ xeX. (2.37)

Proof. Define the set-valued map F : X — ccl(Y) by

FO) =0+ T (BO.€)=b). xeX
We have
PF()+4F () = pf () + 1= — (B(0.£) =)
+af0)+ = —(B0.£) =)
C )+ (B0.) ~b) + T2 (B0.€) - b)
= fxe) + T (BO.€) =) = Flx+)

for every x,y € X. On the other hand it is obvious that

2¢e
O(F(x)) L ———
(FO) < 7=,—
therefore the conditions of Corollary 2.4 are satisfied. It follows that F' has a unique
selection A satisfying

h(xxy) = ph(x)+qh(y), x,y€X.
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The function g: X — Y, g(x) =h(x)+

DORIAN POPA

— satisfies the equation (2.36) and
l—p—q

(2.37).

The result obtained in Corollary 2.5 crosses with a more general result, obtained

by Zs. Péles in [9], on the stability of the general linear equation and a result obtained
by Z. Brzdek and A. Pietrzyk in [2] (see also [8]). It is also connected with a problem
in [13] and corresponds also to some results in [7].
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