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Abstract. Some new inequalities are obtained relating to the generalized trapezoid and midpoint
rules for the Riemann–Stieltjes integral with a convex integrand and monotone nondecreasing
integrator. Results are deduced for the special case of weighted Riemann integrals.

1. Introduction

There is a long and substantial history on approximation of the Riemann–Stieltjes
integral, which precludes other than a limited overview within the page limits of the
present article. We note, for example, that the seminal paper of Darst and Pollard [9],
although not the first in the area, goes back nearly 40 years.

In considering the approximation of the Riemann–Stieltjes integral
∫ b
a f (t) du(t)

(a < b finite) by the generalized trapezoid formula

[u(b)−u(x)] f (b)+ [u(x)−u(a)] f (a) , x ∈ [a,b] , (1)

it is convenient to define the error functional

T ( f ,u;a,b;x) :=
∫ b

a
f (t)du(t)− [u(b)−u(x)] f (b)− [u(x)−u(a)] f (a) .

Suppose that
(a) f : [a,b] → R is of bounded variation on [a,b] , and
(b) u : [a,b] → R is of r -H -Hölder type

(that is, |u(t)−u(s)| � H |t− s|r for any t,s ∈ [a,b] , where r ∈ (0,1] and H > 0 are
given).

In [15], the authors showed that if (a) and (b) hold, then

|T ( f ,u;a,b;x)| � H

[
1
2

(b−a)+
∣∣∣∣x− a+b

2

∣∣∣∣
]r b∨

a

( f ) , x ∈ [a,b] ,
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where as usual
∨b

a ( f ) denotes the total variation of f on the interval [a,b] .
The dual case, in which f is of q−K –Hölder type and u of bounded variation,

was treated in [5]. The authors obtained the bound

|T ( f ,u;a,b;x)| � K

[
(x−a)q

x∨
a

(u)+ (b− x)q
b∨
x

(u)

]

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K [(x−a)q +(b− x)q]
[

1
2

∨b
a (u)+ 1

2

∣∣∣∨x
a (u)−∨b

x (u)
∣∣∣]

K
[
(x−a)qα +(b− x)qα

] 1
α

[
[
∨x

a (u)]β −
[∨b

x (u)
]β] 1

β

if α > 1, 1
α + 1

β = 1

K
[ 1

2 (b−a)+
∣∣x− a+b

2

∣∣]q ∨b
a (u)

for any x ∈ [a,b] .
The coresponding situations where bounded variation is replaced by monotonicity

were considered by Cheung and Dragomir in [8], while the cases in which one function
was of Hölder type and the other Lipschitzian were considered in [3]. For other recent
results estimating the error T ( f ,u;a,b,x) for absolutely continuous integrands f and
integrators u of bounded variation, see [6] and [4].

In seeking an Ostrowski type inequality for the Riemann–Stieltjes integral, Dragomir
established the following result in [10].

THEOREM 1. Suppose (a) and (b) hold. Then for any x ∈ [a,b] ,

∣∣∣∣[u(b)−u(x)] f (x)−
∫ b

a
f (t)du(t)

∣∣∣∣ � H

[
(x−a)r

x∨
a

( f )+ (b− x)r
b∨
x

( f )

]

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H[(x−a)r +(b− x)r]
[

1
2

∨b
a ( f )+ 1

2

∣∣∣∨x
a ( f )−∨b

x ( f )
∣∣∣]

H [(x−a)qr +(b− x)qr]
1
q

[
(
∨x

a ( f ))p +
(∨b

x ( f )
)p] 1

p

if p > 1, 1
p + 1

q = 1

H
[ 1

2 (b−a)+
∣∣x− a+b

2

∣∣]r ∨b
a ( f ) .

The dual case was considered in [13] and can be stated as follows.

THEOREM 2. Let u : [a,b] → R be of bounded variation and f : [a,b] → R of
r−H –Hölder type. Then

∣∣∣∣[u(b)−u(x)] f (x)−
∫ b

a
f (t)du(t)

∣∣∣∣ � H

[
1
2

(b−a)+
∣∣∣∣x− a+b

2

∣∣∣∣
]r b∨

a

(u)

for any x ∈ [a,b] .

Recently Mercer [19] has addressed the question of how x should be chosen
in the general trapezoidal formula (1) to provide an analogue and generalization of
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Hadamard’s inequality. He found that the choice x =
∫ b
a f (t)du(t)/(b−a) is appropri-

ate for the second Hadamard inequality. Our Theorem 4 gives a shorter derivation of
this result. Mercer’s generalization of mid–point quadrature, corresponding to the first
Hadamard inequality, appears as our Remark 3.

For some related Čebyšev and Grüss type results, see Anastassiou [1], [2], Dragomir
[11], [14], Dragomir and Fedotov [16], [17], Zheng Liu [18] (which sharpens [16]) and
Rakhmail [20].

In this paper we derive several broadly related results connected with the general-
ized trapezoid and midpoint rules for the Riemann–Stieltjes integral. The situation of
weighted Riemann integrals arises in the special case when the integrator u possesses
a derivative. This case, often pertinent to applications, is treated in corollaries. We
begin in Section 2 with an inequality linking the integral means of two functions over
a common interval. This derives from a Čebyšev–type inequality established for the
Riemann–Stieltjes integral and is a prelude to Section 3, in which a related result is
proved involving a Riemann–Stieltjes integral. Theorem 4 in Section 3 is concerned
with an upper bound to the Riemann–Stieltjes integral. In Section 4 we derive lower
bounds involving subgradients.

2. Intertwining Means

THEOREM 3. Let f ,g : [a,b]→ R , with f convex and g monotonic nondecreas-
ing. If either

(i) g is concave and f (b) > f (a) or

(ii) g is convex and f (b) < f (a) ,

then [
g(b)− 1

b−a

∫ b

a
g(t)dt

]
f (a) +

[
1

b−a

∫ b

a
g(t)dt−g(a)

]
f (b)

� g(b)−g(a)
b−a

∫ b

a
f (t)dt. (2)

Proof. For h,u : [a,b] → R with h monotonic nondecreasing and u convex, we
have the Čebyšev–type inequality

∫ b

a
h(t)du(t) � u(b)−u(a)

b−a

∫ b

a
h(t)dt (3)

established in [12] for the Riemann–Stieltjes integral. This provides
∫ b

a
(t− x)d f (t) � f (b)− f (a)

b−a

∫ b

a
(t− x)dt

=
(

a+b
2

− x

)
[ f (b)− f (a)]

for any x ∈ [a,b] .
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Coupled with the equality

(b− x) f (b)+ (x−a) f (a)−
∫ b

a
f (t)dt =

∫ b

a
(t− x)d f (t)

established for any x ∈ [a,b] in [7], this gives

(b− x) f (b)+ (x−a) f (a)−
∫ b

a
f (t)dt �

(
a+b

2
− x

)
[ f (b)− f (a)] (4)

for any x ∈ [a,b] .
Since g is monotonic nondecreasing, integrating (4) in the Riemann–Stieltjes

sense over g leads to

f (b)
∫ b

a
(b− x)dg(x) + f (a)

∫ b

a
(x−a)dg(x)− [g(b)−g(a)]

∫ b

a
f (t)dt

� [ f (b)− f (a)]
∫ b

a

(
a+b

2
− x

)
dg(x) . (5)

If (i) holds, then by (3)∫ b

a

(
a+b

2
− x

)
dg(x) =

∫ b

a

(
x− a+b

2

)
d (−g(x))

� g(a)−g(b)
b−a

∫ b

a

(
x− a+b

2

)
dx

= 0

and thus

[ f (b)− f (a)]
∫ b

a

(
a+b

2
− x

)
dg(x) � 0. (6)

Similarly (6) holds under (ii).
By (5) and (6) we conclude that under (i) or (ii)

f (b)
∫ b

a
(b− x)dg(x)+ f (a)

∫ b

a
(x−a)dg(x) � [g(b)−g(a)]

∫ b

a
f (t)dt

and since ∫ b

a
(b− x)dg(x) =

∫ b

a
g(t)dt− (b−a)g(a)

and ∫ b

a
(x−a)dg(x) = (b−a)g(b)−

∫ b

a
g(t)dt,

we derive the desired inequality (2). �

REMARK 1. For the function g(t) = t, t ∈ [a,b] , which is both convex and con-
cave, we obtain from (2) the second part of the Hermite–Hadamard inequality

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2

that holds for the convex function f : [a,b]→ R .
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COROLLARY 1. Suppose g(t) =
∫ t
a w(s)ds with w(s) � 0, s ∈ [a,b] . Then if

either
(i) f (b) > f (a) and w is decreasing, or
(ii) f (b) < f (a) and w in increasing,
we have that

f (a)
∫ b

a
(t−a)w(t)dt + f (b)

∫ b

a
(b− t)w(t)dt �

∫ b

a
w(s)ds ·

∫ b

a
f (t)dt.

Proof. We have ∫ b

a
g(t)dt =

∫ b

a

(∫ t

a
w(s)ds

)
dt

= t
∫ t

a
w(s)ds

∣∣∣∣
b

a
−

∫ b

a
tw(t)dt

= b
∫ b

a
w(s)ds−

∫ b

a
tw(t)dt,

whence
1

b−a

∫ b

a
g(t)dt−g(a) =

1
b−a

∫ b

a
(b− t)w(t)dt. (7)

Similarly

g(b)− 1
b−a

∫ b

a
g(t)dt =

∫ b

a
w(s)ds− 1

b−a

[
b

∫ b

a
w(s)ds−

∫ b

a
tw(t)dt

]

=
1

b−a

∫ b

a
(t−a)w(t)dt. (8)

Substitution from (7) and (8) into (2) and use of g(b)− g(a) =
∫ b
a w(s)ds gives the

result. �

3. An Upper Bound for the R–S Integral

The following result is complementary to Theorem 3 and does not involve the
supplementary conditions (i), (ii). Theorem 4 is due to Mercer [19, Theorem 1]. Our
proof is slightly shorter.

THEOREM 4. Let f : [a,b] → R be convex and g : [a,b] → R monotonic nonde-
creasing. Then

f (a)
[

1
b−a

∫ b

a
g(t)dt−g(a)

]
+ f (b)

[
g(b)− 1

b−a

∫ b

a
g(t)dt

]

�
∫ b

a
f (t)dg(t) . (9)

Proof. Since f is convex, we have for any t ∈ [a,b] that

(b− t) f (a)+ (t−a) f (b)
b−a

� f

[
(b− t)a+(t−a)b

b−a

]
= f (t) .
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Integrating in the Riemann–Stieltjes sense with the integrator g, we have

1
b−a

[
f (a)

∫ b

a
(b− t)dg(t)+ f (b)

∫ b

a
(t−a)dg(t)

]
�

∫ b

a
f (t)dg(t) . (10)

However ∫ b

a
(b− t)dg(t) =

∫ b

a
g(t)dt− (b−a)g(a)

and ∫ b

a
(t−a)dg(t) = (b−a)g(b)−

∫ b

a
g(t)dt

and by (10) we deduce the desired result (9). �

REMARK 2. As noted by Mercer [19], if g(t) = t, then we get from (9) the second
Hermite–Hadamard inequality

f (a)+ f (b)
2

� 1
b−a

∫ b

a
f (t)dt.

COROLLARY 2. If g(t) =
∫ t
a w(s)ds, with w(s) � 0 for s ∈ [a,b] , then

f (a)
b−a

∫ b

a
(b− t)w(t)dt +

f (b)
b−a

∫ b

a
(t −a)w(t)dt �

∫ b

a
f (t)w(t)dt. (11)

Proof. The result follows from substitution from (7) and (8) (the proofs of which
do not depend on conditions (i) and (ii) of Corollary 1) into (9). �

4. Lower Bounds for the R–S Integral

The results of this section involve subgradients.

THEOREM 5. Let f : [a,b] → R be convex and g : [a,b] → R monotonic nonde-
creasing. Then for any λ ∈ [

f ′−
(

a+b
2

)
, f ′+

(
a+b
2

)]
, we have

1
g(b)−g(a)

∫ b

a
f (t)dg(t)− f

(
a+b

2

)

� λ
g(b)−g(a)

[
g(a)+g(b)

2
(b−a)−

∫ b

a
g(t)dt

]
. (12)

Proof. Since f is convex, then for any t ∈ [a,b]

f (t)− f

(
a+b

2

)
� λ

(
t− a+b

2

)
.

On integrating in the Riemann–Stieltjes sense with the monotone nondecreasing
integrator g, we have∫ b

a
f (t)dg(t)− f

(
a+b

2

)
[g(b)−g(a)] � λ

∫ b

a

(
t − a+b

2

)
dg(t)

= λ
[
g(a)+g(b)

2
(b−a)−

∫ b

a
g(t)dt

]
,

which proves the desired inequality (12). �
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COROLLARY 3. Let f and g be as in Theorem 5. If

(a) 0 ∈ [
f ′−

(
a+b
2

)
, f ′+

(
a+b
2

)]
, or

(b) 0 < f ′−
(

a+b
2

)
and g is convex, or

(c) f ′+
(

a+b
2

)
< 0 and g is concave,

then
1

g(b)−g(a)

∫ b

a
f (t)dg(t) � f

(
a+b

2

)
.

COROLLARY 4. If g(t) =
∫ t
a w(s)ds, t ∈ [a,b] with w(s) � 0, then for any λ ∈[

f ′−
(

a+b
2

)
, f ′+

(
a+b
2

)]
we have

1∫ b
a w(s)ds

∫ b

a
f (t)w(t)dt− f

(
a+b

2

)

� λ∫ b
a w(s)ds

[∫ b

a

(
t− a+b

2

)
w(t)dt

]
.

THEOREM 6. Let f : [a,b]→ R be a continuous convex function and u : [a,b]→
R a monotonic nondecreasing function on [a,b] . Then for any x ∈ (a,b) and λ (x) ∈[
f ′− (x) , f ′+ (x)

]
, we have

∫ b

a
f (t)du(t) � [u(b)−u(a)] f (x)

+λ (x)
[
(b− x)u(b)+ (x−a)u(a)−

∫ b

a
u(t)dt

]
(13)

or, equivalently,

u(b) [ f (b)− f (x)]+u(a) [ f (x)− f (a)]

+λ (x)
[∫ b

a
u(t)dt− (b− x)u(b)− (x−a)u(a)

]

�
∫ b

a
u(t)d f (t) . (14)

Proof. The function f , being convex, satisfies the gradient inequality

f (t)− f (x) � λ (x)(t− x) for any t ∈ [a,b] , (15)

where λ (x) ∈ ∂ ( f ) (x) =
[
f ′− (x) , f ′+ (x)

]
.

Since the Stieltjes integral
∫ b
a f (t)du(t) exists, we get on integrating (15) that

∫ b

a
[ f (t)− f (x)]du(t) � λ (x)

∫ b

a
(t − x)du(t) ,
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which, on observing that

∫ b

a
(t− x)du(t) = (b− x)u(b)+ (x−a)u(a)−

∫ b

a
u(t)dt

and ∫ b

a
[ f (t)− f (x)]du(t) =

∫ b

a
f (t)du(t)− f (x) [u(b)−u(a)] ,

leads to the desired inequality (13).
The integration by parts formula for the Stieltjes integral provides

∫ b

a
f (t)du(t) − [u(b)−u(a)] f (x)

= u(b) [ f (b)− f (x)]+u(a) [ f (x)− f (a)]−
∫ b

a
u(t)d f (t) ,

which leads to the equivalence of (13) and (14). �

COROLLARY 5. With the assumptions of Theorem 6 for f and u and λ
(

a+b
2

) ∈[
f ′−

(
a+b
2

)
, f ′+

(
a+b
2

)]
, we have the inequalities

∫ b

a
f (t)du(t) � [u(b)−u(a)] f

(
a+b

2

)

+λ
(

a+b
2

)[
u(a)+u(b)

2
(b−a)−

∫ b

a
u(t)dt

]

and

u(b)
[

f (b)− f

(
a+b

2

)]
+u(a)

[
f

(
a+b

2

)
− f (a)

]

+λ
(

a+b
2

)[∫ b

a
u(t)dt− u(a)+u(b)

2
(b−a)

]

�
∫ b

a
u(t)d f (t) .

REMARK 3. Since u is monotone nondecreasing, we have by the second mean–
value theorem for integrals that there exists c ∈ [a,b] for which

(b− c)u(b)+ (c−a)u(a) =
∫ b

a
u(t)dt.

If u(b) > u(a) , we have

c =
bu(b)−au(a)− ∫ b

a u(t)dt
u(b)−u(a)
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and (13) provides

∫ b

a
f (t)du(t) � [u(b)−u(a)] f

[
bu(b)−au(a)− ∫ b

a u(t)dt
u(b)−u(a)

]
. (16)

This has been shown by Mercer [19], who uses it to give a lower bound for
∫ b
a f (t)du(t) .

For u(t) = t , (16) reduces to the lower Hadamard inequality

∫ b

a
f (t)dt � (b−a) f

(
a+b

2

)

relating to mid–point quadrature.
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