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INEQUALITIES INVOLVING THE

KHATRI–RAO PRODUCT OF MATRICES
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Abstract. We shall show several complementary inequalities to Jensen’s type inequality involv-
ing the Khatri-Rao product of maps on positive definite matrices. They are applied to extend
some known inequalities involving powers of the Khatri-Rao product. Finally, we have general-
ized some known results for the Hadamard product of operators.

1. Introduction

Let Mn be the space of n× n matrices with complex entries. Let Hn be the
real space of n× n Hermitian matrices and H

+
n be its open subset of positive definite

matrices.

We denote by
k◦

i = 1

Ai ,
k⊗

i = 1

Ai ,
k∗

i = 1

Ai and
k�

i = 1

Ai the Hadamard, Kronecker, Khatri-

Rao and Tracy-Singh product, respectively, of matrices Ai ∈ Mn(i) , i = 1, . . . ,k . The
Hadamard product is an operation on matrices of the same size, the Tracy-Singh prod-
uct is an operation on partitioned matrices and the Khatri-Rao product is an operation
on compatibly partitioned matrices [6]. The Khatri-Rao product can be viewed as a gen-
eralization of the Hadamard product and the Tracy-Singh product as a generalization of
the Kronecker product, since A∗B = A⊗B and A�B = A◦B hold for nonpartitioned
matrices A and B .

Let Ai ∈Hn(i) , i = 1, . . . ,k , be partitioned as Ai =
(
A(i)

jl

)
jl

where A(i)
j j ∈ Hn(i) j

for

i = 1, . . . ,k , j = 1, . . . ,t and ∑t
j=1 n(i) j = n(i) for i = 1, . . . ,k . Then we say that the

k -tuple (A1, . . . ,Ak) of matrices Ai ∈ Hn(i) is compatibly partitioned.
The following relationship between the Khatri-Rao and the Tracy-Singh product

holds (for special cases involving the Hadamard and Kronecker products) [2, Corollary
2.2], [12, Lemma 2.2]:

k∗
i = 1

Ai = ZT

(
k�

i = 1

Ai

)
Z, (1)
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where an k -tuple (A1, . . . ,Ak) is compatibly partitioned and Z is a matrix of zeros and
ones such that ZT Z = I . Also, the following relationship between the Tracy-Singh and
the Kronecker product holds [5]:

k�
i = 1

Ai = PT

(
k⊗

i = 1

Ai

)
P, (2)

where P is a permutation square matrix.
For a matrix A ∈ H

+
n , we denote by λ1(A) and λn(A) the largest and smallest

eigenvalue of A , respectively. If (A1, . . . ,Ak) is an k -tuple of compatibly partitioned
matrices Ai ∈ H

+
n(i) , then [2, Lemma 2.5.]:

k�
i = 1

Ai ∈ H
+
n , λ1

(
k�

i = 1

Ai

)
=

k

∏
i=1

λ1(Ai), λn

(
k�

i = 1

Ai

)
=

k

∏
i=1

λn(Ai).

S. Liu [7] showed Jensen’s type inequality on the Khatri-Rao product and its con-
verses for functions f (t) = t−1 and f (t) = t2 . X. Cao, Z.-P. Zhang and C.-G. Yang in
[2] generalized these results which are given in the next theorem:

THEOREM A. [2, Theorem 3.1] Let (A1, . . . ,Ak) be an k -tuple of compatibly
partitioned matrices Ai ∈ H

+
n(i) . Then

i)

(
k∗

i = 1

As
i

)1/s

�
(

k∗
i = 1

Ar
i

)1/r

,

where r and s are two real numbers such that s > r , and either s �∈ (−1,1) and
r �∈ (−1,1) or 1/2 � r � 1 � s or r � −1 � s � −1/2 ;

ii)

(
k∗

i = 1

As
i

)1/s

� Δ(r,s)

(
k∗

i = 1

Ar
i

)1/r

,

where r and s are two real numbers such that s > r , and either s �∈ (−1,1) or r �∈
(−1,1) , Δ(r,s) =

{
r(δ s−δ r)

(s−r)(δ r−1)

}1/s { s(δ r−δ s)
(r−s)(δ s−1)

}− 1
r
, δ = W

w , w = ∏k
i=1λ1(Ai) ,

W = ∏k
i=1λm(i)(Ai);

iii)

(
k∗

i = 1

As
i

)1/s

−
(

k∗
i = 1

Ar
i

)1/r

� Δ(r,s)I,

where Δ(r,s) = maxθ∈[0,1]
{
[θWs +(1−θ )ws]1/s− [θWr +(1−θ )wr]1/r

}
, and

r , s , w, W and δ are as in (ii) .

The aim of this paper is to obtain Jensen’s type inequality on the Khatri-Rao prod-
uct of maps and its converses. Next, we can obtain bounds of a power mean version
on the Khatri-Rao product for any two real numbers r,s �= 0, which extend the results
given in Theorem A. Finally, we shall generalize results given in [1, 3, 10, 4] for the
Hadamard product of operators.
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2. Jensen’s type inequality and its converses

We recall that a real function f is supermultiplicative (resp. submultiplicative) on
an interval I if f (xy) � f (x) f (y) (resp. f (xy) � f (x) f (y)) for every x,y ∈ I .

Let (A1, . . . ,Ak) be an k -tuple of compatibly partitioned matrices Ai ∈ Hn(i) and
(Φ1, . . . ,Φk) be an k -tuple of normalized positive linear maps Φi : Hn(i) → Hñ(i) . If
(Φ1(A1), . . . ,Φk(Ak)) is an k -tuple of compatibly partitioned matrices, then we say that
(Φ1, . . . ,Φk) is an k -tuple of compatible maps.

In the next two theorems we give Jensen’s type inequality on the Khatri-Rao prod-
uct and its converses.

THEOREM 2.1. Let (A1, . . . ,Ak) be an k -tuple of compatibly partitioned matrices
Ai ∈ H

+
n(i) and (Φ1, . . . ,Φk) be an k -tuple of compatible maps Φi : H

+
n(i) → H

+
ñ(i) . If f

is a submultiplicative matrix convex function on (0,∞) , then

f

(
k∗

i = 1

Φi(Ai)

)
�

k∗
i = 1

Φi( f (Ai)). (3)

In the dual case (when f is a supermultiplicative matrix concave function on (0,∞))
the opposite inequality holds in (3).

Proof. We show the submultiplicative matrix convex case only. Using [4, Lemma
6.2] we obtain

f

(
k⊗

i = 1

Ai

)
�

k⊗
i = 1

f (Ai). (4)

Using Jensen’s inequality for a matrix map [4, Theorem 1.20] we have f (Φi(Ai)) �
Φi( f (Ai)) . Next, using (4) and monotonity of Kronecker product we obtain

f

(
k⊗

i = 1

Φi(Ai)

)
�

k⊗
i = 1

f (Φi(Ai)) �
k⊗

i = 1

Φi( f (Ai)).

It follows from (2) that

f

(
k�

i = 1

Φi(Ai)

)
� f

(
PT

(
k⊗

i = 1

Φi(Ai)

)
P

)
� PT f

(
k⊗

i = 1

Φi(Ai)

)
P

� PT

(
k⊗

i = 1

Φi( f (Ai))

)
P =

k�
i = 1

Φi( f (Ai)).

Finally, using (1) we obtain the desired inequality (3). �
We introduce some notations. For an k -tuple (A1, . . . ,Ak) positive definite matri-

ces Ai ∈ H
+
n(i) with Sp(Ai) ⊆ [wi,Wi] , 0 < wi � Wi , we denote:

w =
k

∏
i=1

wi, W =
k

∏
i=1

Wi, Xω =
k⋃

i=1

[wi,Wi]∪ [w,W ].
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For a real valued function f we define:

μ f =
f (W )− f (w)

W −w
and ν f =

W f (w)−wf (W )
W −w

. (5)

THEOREM 2.2. Let (A1, . . . ,Ak) be an k -tuple of compatibly partitioned matri-
ces Ai ∈ H

+
n(i) and Sp(Ai) ⊆ [wi,Wi] for some scalars 0 < wi � Wi . Let (Φ1, . . . ,Φk)

be an k -tuple of compatible maps Φi : H
+
n(i) → H

+
ñ(i) . Let f ∈ C (Xω) , g ∈ C ([w,W ])

and F(u,v) be a real valued continuous function defined on U ×V , matrix monotone
in u, where U ⊃ {∏k

i=1 f (ti) : ti ∈ [wi,Wi]} , V ⊃ {g(s) : s ∈ [w,W ]} . If f is a super-
multiplicative convex function on Xω , then

F

[
k∗

i = 1

Φi( f (Ai)),g

(
k∗

i = 1

Φi(Ai)

)]
� max

t∈[w,W ]
F [μ f t +ν f ,g(t)]I. (6)

In the dual case (when f is submultiplicative concave) the opposite inequality holds in
(6) with min instead of max .

Proof. We obtain this theorem by using Mond-Pečarić method and two connec-
tions (1) and (2). We give a proof for the sake of completeness. We consider the case
when f is a supermultiplicative convex function. Using f (A)⊗ f (B) � f (A⊗B) (see
[4, Lemma 6.2]), we obtain:

k⊗
i = 1

Φi( f (Ai)) � f

(
k⊗

i = 1

Φi(Ai)

)
.

Since f is convex, then f (t) � μ f t +ν f holds for any t ∈ [w,W ] . It follows that

f

(
k⊗

i = 1

Φi(Ai)

)
� μ f

(
k⊗

i = 1

Φi(Ai)

)
+ν f I,

because wiI � Φi(Ai) � WiI imply wI �
k⊗

i = 1

Φi(Ai) � WI . It follows from (2) that

k�
i = 1

Φi( f (Ai)) = PT

(
k⊗

i = 1

Φi( f (Ai))

)
P � PT f

(
k⊗

i = 1

Φi(Ai)

)
P

� PT

(
μ f

(
k⊗

i = 1

Φi(Ai)

)
+ν f I

)
P = μ f

(
k�

i = 1

Φi(Ai)

)
+ν f I.

Next, using (1), we obtain

k∗
i = 1

Φi( f (Ai)) � μ f

(
k∗

i = 1

Φi(Ai)

)
+ν f I.
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Finally, using the monotonicity of F(·,v) we obtain the desired inequality (6). �

Applying Theorem 2.2 for the function F(u,v) = αu− v , we obtain the following
corollary.

COROLLARY 2.3. Let (A1, . . . ,Ak) and (Φ1, . . . ,Φk) be as in Theorem 2.2. Let
f ∈ C (Xω) be a supermultiplicative convex function and α �= 0 be a real number. If
αg : [m,M] → R is a strictly convex differentiable function, then the inequality

k∗
i = 1

Φi( f (Ai)) � αg

(
k∗

i = 1

Φi(Ai)

)
+β I (7)

holds for β = μ f t0 +ν f −αg(t0), where

t0 =

⎧⎪⎨
⎪⎩

the unique solution of g′(t) = μ f
α if αg′(w) � μ f � αg′(W ),

W if μ f > αg′(W ),
w if αg′(w) > μ f .

If αg is a concave function, then (7) holds for

t0 =

{
W if μ f � αμg,

w if μ f < αμg.

In the case when f is a submultiplicative concave function the opposite inequality
holds in (7) with the same β but the opposite condition while determining t0 .

3. Inequalities involving powers of the Khatri-Rao product

In this section, we shall give a power mean version on the Khatri-Rao product and
we find the best bounds among those we obtain by using the Mond-Pečarić method.

The constant μp and νp are the constants μ f and μ f associated with the function
f (t) = t p in (5).

For the sake of convenience, we denote areas from (i) to (iv) as in Figure 1.

3.1. Difference type inequalities

THEOREM 3.1. Let (A1, . . . ,Ak) be an k -tuple of compatibly partitioned matrices
Ai ∈ H

+
n(i) and Sp(Ai)⊆ [wi,Wi] for some scalars 0 < wi �Wi . Let (Φ1, . . . ,Φk) be an

k -tuple of compatible maps Φi : H
+
n(i) → H

+
ñ(i) . Let r,s ∈ R , r � s and rs �= 0 .

If (i), then

0 �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ̃(w,W,0)I,
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1/2

1/2

(i)

(ii) s 1, -1 < r < 1/2, r 0
r -1, -1/2 < s < 1, s 0,or

<

=
=

(iii)

r s, s (-1,1), r (-1,1)
1/2 r 1 s
r -1 s -1/2,

or

or

� �i� �i

-s r s/2, r 0, 0 < s 1,=

1/2

1/2

1

1 1

1

� �i i� �i i

�
�

i i i
1

�
�

i i i
1

�
�

iv
1

�
�

iv
1

� �i i� �i i

� �i v� �i v

� �i i i� �i i i

� �i� �i

� �i� �i

(iii)1

2 s r s, -1 r < 0.(iv)1

r s 2 r, 0 < s 1,

(iv) r/2 s -r, s 0, -1 r < 0,=

Figure 1. Areas

if (ii) and

Ws −ws

Wr −wr ·min{wr,Wr}+
(
1− s

r

)( r
s
Ws−ws

Wr −wr

) s
s−r

> 0,

Wr −wr

Ws −ws ·min{ws,Ws}+
(
1− r

s

)( s
r
Wr −wr

Ws−ws

) r
r−s

> 0,

then

Δ̃(w,W,d)I �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ̃(w,W,0)I,

if (iii), then

−C (wr,Wr,1/r)I �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

�
(
Δ̃(w,W,0)+C (ws,Ws,1/s)

)
I,

if (iv) or (iii)1 or (iv)1 , then

−C (ws,Ws,1/s) I �
(

k∗
i=1

Φi(As
i )

)1/s

−
(

k∗
i=1

Φi(Ar
i )

)1/r

�
(
Δ̃(w,W,0)+C (ws,Ws,1/s)

)
I,

where

Δ̃(m,M,0) = max
θ∈[0,1]

{
[θMs +(1−θ )ms]1/s− [θMr +(1−θ )mr]1/r

}
,

Δ̃(m,M,d)= min
θ∈[0,1]∪[d/(Mr−mr),1+d/(Mr−mr)]

{
[θMs+(1−θ )ms]1/s−[θMr+(1−θ )mr−d]1/r

}
,

d ≡ d(m,M,r,s) =
Msmr −Mrms

Ms −ms −
(
1− r

s

)( s
r
Mr −mr

Ms −ms

)r/(r−s)
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and a constant C(w,W, p) [4, §2.7, Lemma 2.59] is defined as

(∗ ) C(w,W, p) = (p−1)
(

1
p

W p−wp

W−w

)p/(p−1)
+ Wwp−wW p

W−w for all p ∈ R.

In order to prove Theorem 3.1, we need some preliminary results.

LEMMA 3.2. Let (A1, . . . ,Ak) and (Φ1, . . . ,Φk) be as in Theorem 3.1.
If 0 < p � 1 , then

μp

k∗
i = 1

Φi(Ai)+νpI �
k∗

i = 1

Φi(A
p
i ) �

(
k∗

i = 1

Φi(Ai)

)p

, (8)

if −1 � p < 0 or 1 � p � 2 , then(
k∗

i = 1

Φi(Ai)

)p

�
k∗

i = 1

Φi(A
p
i ) � μp

k∗
i = 1

Φi(Ai)+νpI, (9)

while if p < −1 or p > 2 , then

μp

k∗
i = 1

Φi(Ai)+ (1− p)(μp/p)p/(p−1) I �
k∗

i = 1

Φi(A
p
i ) � μp

k∗
i = 1

Φi(Ai)+νpI. (10)

Proof. The the right hand inequality in (8) and the left hand inequality in (9) fol-
lows from Theorem 2.1. The left hand inequality in (8) and the right hand inequality
in (9) and (10) follows from Corollary 2.3. Finally, the left hand inequality in (10)
follows by using inequality Ap

i − μpAi � β I if p < −1 or p > 2, ( i = 1, . . . ,k ), where
β = max

gs� f
min

w�t�W

{
gs(t)− μpt

}
, gs(t) = f (s)+ f ′(s)(t − s) . �

LEMMA 3.3. Let (A1, . . . ,Ak) and (Φ1, . . . ,Φk) be as in Theorem 3.1.
(a) If r � s � −1 or 1 � s � −r or 0 < r � s � 2r , s � 1 , then

(
k∗

i = 1

Φi(Ar
i )

)1/r

�
(

k∗
i = 1

Φi(As
i )

)1/s

�
(
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I

)1/s

.

(b) If 0 < −r � s, s � 1 or 0 < 2r � s, s � 1 , and

Ws −ws

Wr −wr ·min{wr,Wr}+
(
1− s

r

)( r
s
Ws−ws

Wr −wr

) s
s−r

> 0,

then

(
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃∗I

)1/s

�
(

k∗
i = 1

Φi(As
i )

)1/s

�
(
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I

)1/s

.
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(c) If r � s, −1 � s < 0 or s � −r , 0 < s � 1 or 0 < r � s � 2r , s � 1 ,
then (

k∗
i = 1

Φi(Ar
i )

)1/r

− C (ws,Ws,1/s) I �
(

k∗
i = 1

Φi(As
i )

)1/s

�
(
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I

)1/s

+ C(ws,Ws,1/s)I.

(d) If 0 < −r � s � 1 or 0 < 2r � s � 1 , and

Ws −ws

Wr −wr ·min{wr,Wr}+
(
1− s

r

)( r
s
Ws−ws

Wr −wr

) s
s−r

> 0,

then (
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃∗I

)1/s

− C(ws,Ws,1/s)I �
(

k∗
i = 1

Φi(As
i )

)1/s

�
(
μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I

)1/s

+ C(ws,Ws,1/s)I,

where we denote

μ̃ =
Ws−ws

Wr −wr , ν̃ =
Wrws −Wswr

Wr −wr and ν̃∗ =
(
1− s

r

)( r
s
μ̃
)s/(s−r)

.

Proof. This lemma follows from Lemma 3.2 and the following inequalities which
preserve or reverse the operator order [9, 11]:

– If A � B > 0 and the spectrum Sp(B) ⊆ [w,W ] for some scalars 0 < w < W ,
then

Ap +C(w,W, p)1 � Bp for all p � 1, (11)

where the constant C(w,W, p) defined by (∗ ).

– If A � B > 0 and the spectrum Sp(A) ⊆ [w,W ] , 0 < w < W , then

Bp +C(w,W, p)1 � Ap for all p � −1. (12)

– The function f (t) = t p is operator monotone for p ∈ [0,1] (the Löwner-Heinz
theorem).

We use the same technique as in the proof of [8, Theorem 3.1] and we give the short
proof for the sake of completeness.

Putting p = s/r in (8)–(10) and replacing Ai by Ar
i ( i = 1, . . . ,n ), we obtain the

following statements:
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(I) If r � s < 0, then

μ̃
k∗

i = 1

Φi(Ar
i )+ ν̃∗I �

k∗
i = 1

Φi(As
i ) �

(
k∗

i = 1

Φi(Ar
i )

)s/r

.

(II) If 0 < s � −r or 0 < r � s � 2r , then

(
k∗

i = 1

Φi(Ar
i )

)s/r

�
k∗

i = 1

Φi(As
i ) � μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃∗I.

(III) If 0 < −r � s or 0 < 2r � s , then

μ̃
k∗

i = 1

Φi(Ar
i )+ ν̃∗I �

k∗
i = 1

Φi(As
i ) � μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I.

Now, applying the Löwner-Heinz theorem for the function f (t) = t1/s , s � 1 and
s � −1, we obtain (a) and (b), respectively. Using (11) for p = 1/s > 1 we obtain (c),
since

wsI � μ̃
k∗

i = 1

Φi(Ar
i ) � WsI and wsI � μ̃

k∗
i = 1

Φi(Ar
i )+ ν̃I � WsI.

Similarly, using (12) for p = 1/s < −1 we obtain (d). �

REMARK 3.4. Putting p = r/s in (8)–(10) and replacing Ai by As
i ( i = 1, . . . ,n ),

we can obtain similar inequalities as in Lemma 3.3. For example,
(a1) If 1 � r � s or −s � r � −1 or 2s � r � s < 0, r � −1, then

(
μ

k∗
i = 1

Φi(As
i )+νI

)1/r

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

�
(

k∗
i = 1

Φi(As
i )

)1/s

,

where

μ =
Wr −wr

Ws−ws , ν =
Wswr −Wrws

Ws −ws

etc.

Proof of Theorem 3.1. Using Lemma 3.3 in the case (a) we obtain the following
statement:

If r � s � −1 or 1 � s � −r or 0 < r � s � 2r , s � 1, then

0 �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� max
t∈T 1

{
(μ̃ t + ν̃)1/s− t1/r

}
I
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holds, where T 1 denotes the closed interval joining wr to Wr . Setting t = θWr +(1−
θ )wr for some θ ∈ [0,1] , we obtain max

t∈T 1

{
(μ̃ t + ν̃)1/s− t1/r

}
= Δ̃(w,W,0) .

Similarly, we can obtain inequalities in areas (b), (c), (d) of Lemma 3.3 and in all
areas in Remark 3.4.

Now, comparing all obtained inequalities and using the fact that a function (Fig-
ure 2)

C(r) ≡C(mr,Mr,1/r) :=
1− r

r

(
r

M−m
Mr −mr

)1/(1−r)

+
Mrm−mrM

Mr −mr

is strictly decreasing for all r ∈ R and M > m > 0 [8, Lemma 3.2],

C(r)

r

M-m

m-M

1

L(m,M) lnS(M/m)

Figure 2. Function C(r) ≡C(mr,Mr,1/r)

we obtain desired inequalities. �

REMARK 3.5. (Added in proofs.) We can obtain bounds in Theorem 3.1 in the

case (ii) without the conditions Ws−ws

Wr−wr ·min{wr,Wr}+
(
1− s

r

)(
r
s

Ws−ws

Wr−wr

) s
s−r

> 0 and

Wr−wr

Ws−ws ·min{ws,Ws}+
(
1− r

s

)(
s
r

Wr−wr

Ws−ws

) r
r−s

> 0.

By using inequality f (t) � f (y) + l(y)(t − y) for every t,y ∈ [w,W ] for convex
function, we give the following generalization of (10):

pyp−1
k∗

i = 1

Φi(Ai)+ (1− p)(1− p)ypI �
k∗

i = 1

Φi(A
p
i ) � μp

k∗
i = 1

Φi(Ai)+νpI, (13)

p < −1 or p > 2 .

Putting y = (μp/p)1/(p−1) ∈ [w,W ] we obtain (10), but putting y = w or y = W we
obtain that the operator in LHS of (13) is positive. By using the same technique as in
proofs of Lemma 3.3 and Theorem 3.1, we obtain the following inequalities:

If s � 1, −1 < r < 1/2, r �= 0, then

C1I �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ̃(w,W,0)I,
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where C1 = m
(

s
r

Mr

mr +1− s
r

)1/s−M , and if r � −1, −1/2 < s < 1, s �= 0, then

C2I �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ̃(w,W,0)I,

where C2 := m−M
(

r
s

ms

Ms +1− r
s

)1/r
.

So if (r,s) belongs to (ii), then

min{C1,C2}I �
(

k∗
i = 1

Φi(As
i )

)1/s

−
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ̃(w,W,0)I.

Under the assumptions of Theorem 3.1 it can be proven that the bounds C1 and
C2 are worse than the lower bound Δ̃(w,W,d) in this theorem (see [8, Corollary 3.4]).

3.2. Ratio type inequalities

THEOREM 3.6. Let (A1, . . . ,Ak) be an k -tuple of compatibly partitioned matrices
Ai ∈ H

+
n(i) and Sp(Ai) ⊆ [wi,Wi] for some scalars 0 < wi � Wi . Let (Φ1, . . . ,Φk) be

an k -tuple of compatible maps Φi : H
+
n(i) → H

+
ñ(i) . Let r,s ∈ R , r � s and rs �= 0 and

areas (i) – (iv) be as in Figure 1.
If (i), then

Δ(h,r,s)−1

(
k∗

i = 1

Φi(As
i )

)1/s

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

�
(

k∗
i = 1

Φi(As
i )

)1/s

,

if (ii), then

Δ(h,r,s)−1

(
k∗

i = 1

Φi(As
i )

)1/s

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

� Δ(h,r,s)

(
k∗

i = 1

Φi(As
i )

)1/s

,

if (iii), then

Δ(h,s,1)−1Δ(h,r,s)−1

(
k∗

i = 1

Φi(As
i )

)1/s

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

�Δ(h,r,1)

(
k∗

i = 1

Φi(As
i )

)1/s

,

if (iv) or (iii)1 or (iv)1 , then

Δ(h,s,1)−1Δ(h,r,s)−1

(
k∗

i = 1

Φi(As
i )

)1/s

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

�Δ(h,s,1)

(
k∗

i = 1

Φi(As
i )

)1/s

,

where a generalized Specht ratio Δ(h,r,s) [4, § 2.7] is defined as

Δ(h,r,s) =
{

r(hs−hr)
(s− r)(hr −1)

}1/s { s(hr −hs)
(r− s)(hs −1)

}−1/r

, h =
W
w

.
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In order to prove Theorem 3.6, we need the following lemma.

LEMMA 3.7. Let (A1, . . . ,Ak) and (Φ1, . . . ,Φk) be as in Theorem 3.6.
(a) If 0 < p � 1 , then

K(w,W, p)

(
k∗

i = 1

Φi(Ai)

)p

�
k∗

i = 1

Φi(A
p
i ) �

(
n

∑
i=1

k∗
i = 1

)p

.

(b) If −1 � p < 0 or 1 � p � 2 , then

(
k∗

i = 1

Φi(Ai)

)p

�
k∗

i = 1

Φi(A
p
i ) � K(w,W, p)

(
k∗

i = 1

Φi(Ai)

)p

.

(c) If p < −1 or p > 2 , then

K(w,W, p)−1

(
k∗

i = 1

Φi(Ai)

)p

�
k∗

i = 1

Φi(A
p
i ) � K(w,W, p)

(
k∗

i = 1

Φi(Ai)

)p

,

where a generalized Kantorovich constant K(w,W, p) [4, §2.7] is defined as

K(w,W, p) :=
wW p−Wwp

(p−1)(W −w)

(
p−1

p
W p−wp

wW p−Wwp

)p

for all p ∈ R . (∗∗)

Proof. The the right hand inequality in (a) and the left hand inequality in (b) fol-
lows from Theorem 2.1. The left hand inequality in (a) and the right hand inequality in
(b) and (c) follows from Corollary 2.3. Finally, the left hand inequality in (c) follows
by using inequality Ap

i � spI + psp−1(Ai− sI) if p < −1 or p > 2, ( i = 1, . . . ,k ). �

Proof of Theorem 3.6. This theorem follows from Lemma 3.7, the Löwner-Heinz
theorem and the following inequalities which preserve or reverse the operator order
[9, 11]: If A,B ∈B+(H) , A � B > 0 such that Sp(A) ⊆ [n,N] and Sp(B)⊆ [m,M] for
some scalars 0 < n < N and 0 < m < M , then

K(n,N, p)Ap � Bp > 0 for all p > 1, (14)

K(m,M, p)Ap � Bp > 0 for all p > 1, (15)

K(n,N, p)Bp � Ap > 0 for all p < −1, (16)

K(m,M, p)Bp � Ap > 0 for all p < −1. (17)

Finally, we choose better bounds by using the fact that a function (Figure 3)

Δ(r) ≡ Δ(h,r) :=
r(h−hr)

(1− r)(hr−1)

(
hr −h

(r−1)(h−1)

)−1/r

, h =
M
m

, (18)

is strictly decreasing for all r ∈ R and M > m > 0 [8, Lemma 3.2].
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�(r)

r

h

1/h

S(h)

1

Figure 3. Function Δ(r) ≡ Δ(h,r,1)

We use the same technique as in the proof of [8, Theorem 3.2] and we give the
short proof for the sake of completeness.

Applying Lemma 3.7 for p = s/r and using (14)–(17) and K (mr,Mr,s/r)1/s

= K (Mr,mr,s/r)1/s = Δ(h,r,s) , we obtain the following statement:
If r � s � −1 or 1 � s � −r or 0 < r � s � 2r , s � 1, then

(
k∗

i = 1

Φi(Ar
i )

)1/r

�
(

k∗
i = 1

Φi(As
i )

)1/s

� Δ(h,r,s)

(
k∗

i = 1

Φi(Ar
i )

)1/r

.

But, applying Lemma 3.7 for p = r/s and using (14)–(17) and K (ms,Ms,r/s)1/r

= (Ms,ms,r/s)1/r = Δ(h,r,s)−1 , we obtain the following:
If 1 � r � s or −s � r � −1 or 2s � r � s < 0, r � −1, then

Δ(h,r,s)−1

(
k∗

i = 1

Φi(As
i )

)1/s

�
(

k∗
i = 1

Φi(Ar
i )

)1/r

�
(

k∗
i = 1

Φi(As
i )

)1/s

.

Similarly, we can obtain inequalities in other areas.
Finally, we choose better bounds by using monotonicity of the function (18). �

4. Remarks for the Hadamard product of operators

We recall that all results given for the Khatri-Rao product of matrices lead to re-
sults involving the Hadamard product of matrices, as a special case, for nonpartitioned
matrices.

We assume that H and K are Hilbert spaces and B(H) and B(K) are C*-
algebras of all bounded linear operators on the appropriate Hilbert space.

All results given in Theorem 2.1, Theorem 2.2, Corollary 2.3, Theorem 3.1 and
Theorem 3.6 hold for the Hadamard product of operators. Instead of the Khatri-Rao
product, k -tuple (A1, . . . ,Ak) of compatibly partitioned matrices and k -tuple (Φ1, . . . ,Φk)
of compatible maps, we place the Hadamard product, k -tuple (A1, . . . ,Ak) of positive
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operators Ai ∈ B(H) and k -tuple (Φ1, . . . ,Φk) of normalized positive linear maps
Φi : B(H) → B(K) , respectively. The proofs are omitted. We use the same technique
as in the sections above.

These results are a generalization of results [1, 3, 10] and [4, Theorem 6.28].
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Electrical Engineering Department

Polytechnic of Zagreb
Konavoska 2

10000 Zagreb
Croatia

e-mail: jmicic@tvz.hr

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


