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OPTIMAL LYAPUNOV INEQUALITIES

FOR BOUNDARY VALUE PROBLEMS

ANTONIO CAÑADA, SALVADOR VILLEGAS

Abstract. This work is devoted to review some recent results on Lp Lyapunov-type inequalities
(1 � p � ∞ ) for resonant differential equations. In the case of Ordinary Differential Equations,
we consider Neumann boundary conditions and an explicit optimal result is obtained. Moreover,
it is also treated the case in which the resonance appears at higher eigenvalues. We also study
mixed boundary conditions. From this study, and under some natural restrictions on the linear
coefficient, the relation between Neumann boundary conditions and disfocality arises in a natural
way. For Partial Differential Equations it is proved that the relation between the quantities p and
N/2 plays a crucial role in order to obtain Lp Lyapunov-type inequalities, for resonant linear
problems with Neumann boundary conditions on a bounded domain Ω⊂ R

N . This fact shows a
deep difference with respect to the ordinary case. Combining these linear results with Schauder
fixed point theorem, we can obtain some new results about the existence and uniqueness of
solutions for resonant nonlinear problems. Finally, we comment some conclusions on systems
of equations.

Mathematics subject classification (2000): 34B05, 34B15, 35J25, 35J65.
Keywords and phrases: Linear boundary problems, Lyapunov inequalities, ordinary differential equa-

tions, partial differential equations, nonlinear resonant problems.

RE F ER EN C ES

[1] P. W. BATES, Solutions of nonlinear elliptic systems with meshed spectra, Nonlinear Anal., 4 (1979),
1023–1030.

[2] R.C. BROWN AND D.B. HINTON, Lyapunov inequalities and their applications, Survey on Classical
Inequalities, T.M. Rassias, ed. Kluwer, Dordrecht, 2000, 1–25.
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