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Abstract. By using the integral representation of Gaussian hypergeometric function, we obtain
Hilbert type inequalities with some fractional kernels and non-conjugate parameters. Such in-
equalities include the constant factors expressed in terms of hypergeometric functions. Further,
we obtain the best possible constants for some general cases, in conjugate case.

1. Introduction

Let p and q be the real parameters such that

p > 1, q > 1,
1
p

+
1
q

� 1, (1)

and let p′ and q′ respectively be their conjugate exponents, that is, 1
p + 1

p′ = 1 and
1
q + 1

q′ = 1. It is obvious that p′,q′ > 1.
Further, define

λ :=
1
p′

+
1
q′

(2)

and note that 0 < λ � 1, for all p and q as in (1). Especially, λ = 1 holds if and
only if q = p′ , that is, only when p and q are mutually conjugate. Otherwise, we have
0 < λ < 1, and in such case p and q will be referred to as non-conjugate exponents.

Considering p , q and λ as in (1) and (2), Hardy, Littlewood and Pólya (see
[4]), proved that there exist a constant C dependent only on the parameters p and
q , such that the following Hilbert-type inequality holds for all non-negative functions
f ∈ Lp(R+) and g ∈ Lq(R+) :∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)λ

dxdy � C|| f ||Lp(R+)||g||Lq(R+). (3)
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However, the original proof did not bring any information about the value of the best
possible constant C . That problem was improved by Levin, [8], who obtained an ex-
plicit upper bound for C ,

C �
(
πcosec

π
λ p′

)λ
. (4)

This was an interesting result since the right hand side of (4) reduces to the previ-
ously known sharp constant πcosec π

p′ in the conjugate case.
A simpler proof of (3), based on a single application of Hölder’s inequality, was

given later by Bonsall, [2]. He reduced the case of two non-conjugate parameters to
the case of three conjugate parameters. Bonsall has also generalized such conditions to
the case of n non-conjugate parameters. Bonsall’s idea, used in the proof of (3), has
guided us in the research we present here.

During decades, the Hilbert-type inequalities were generalized in many different
directions and also the numerous mathematicians reproved them using various technics.
Some possibilities of generalizing such inequalities are, for example, various choices
of non-negative measures, kernels, sets of integration, extension to multi-dimensional
case etc.

Some recent generalizations and extensions of Hilbert’s inequality ([5, 6, 7], see
also [10]) include the constants which are expressed in terms of beta and gamma func-
tions.

The main objective in this paper are some new Hilbert type inequalities with frac-
tional kernels, which involve the constants expressed in terms of hypergeometric func-
tions. Namely, by using integral representation of Gaussian hypergeometric function
we obtain such inequalities. We also consider equivalent form of Hilbert-type inequal-
ity, usually called Hardy-Hilbert type inequality, which includes only one measurable
function (see [4]).

We also consider the problem of the best possible constant factor in Hilbert-type
inequalities, but only in the conjugate case. As we know, the problem of the best
possible constant in (3) seems to be very difficult and still remains open. We obtain
the best possible constant, in conjugate case, for some general cases.

Before presenting our idea and results, we introduce the notion of Gaussian hyper-
geometric functions.

2. Hypergeometric functions

We consider hypergeometric series in a power series in z with three parameters,
defined as follows in terms of rising factorial powers:

F

(
a,b
c

∣∣∣ z

)
= ∑

k�0

akbk

ck
· zk

k!
, a,b,c,z ∈ R, |z| < 1. (5)

To avoid division by zero, c is neither zero nor negative integer. The series (5) is
often called Gaussian hypergeometric, because many of its subtle properties were first
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proved by Gauss. In fact, it was the only hypergeometric series until the second half of
nineteenth century, when everything was generalized to arbitrary number of upper and
lower parameters. Although, hypergeometric series are defined for complex numbers,
and many properties hold even for complex numbers, we shall only be interested in the
case of real numbers. For more results and properties about general hypergeometric
functions reader can consult [3].

Gaussian hypergeometric function can be expressed as an integral, in the following
way (see [1]):

F

(
a,b
c

∣∣∣ z

)
=

1
B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt, (6)

where c > b > 0, |z| < 1 and B is standard beta function.
We shall use previous integral to obtain some inequalities of Hilbert type with

fractional kernels. In the next lemma we give a form of (6), more suitable for our
computation.

LEMMA 1. Suppose a,b,c,α,γ ∈R are such that a+c > b > 0 and 0 < α < 2γ.
Then ∫ ∞

0

xb−1

(1+αx)a(1+ γx)c dx = γ−bB(b,a+ c−b)F
(

a,b
a+ c

∣∣∣ γ−α
γ

)
. (7)

Proof. We start with the integral I =
∫ 1
0 tb−1(1− t)c−b−1(1− zt)−adt . By using the

substitutions 1− t = 1
1+u , u = γx , γ > 0, and a label α = (1− z)γ we obtain

I = γb
∫ ∞

0

xb−1

(1+αx)a(1+ γx)c−a dx.

Now, by using the relation (6) we have∫ ∞

0

xb−1

(1+αx)a(1+ γx)c−a dx = γ−bB(b,c−b)F
(

a,b
c

∣∣∣ γ−α
γ

)
.

Finally, if we replace c−a with c in the previous formula, we obtain (7). �

REMARK 1. By changing the roles of the parameters a and c , and also α and γ ,
where 0 < γ < 2α , we obtain relation∫ ∞

0

xb−1

(1+αx)a(1+ γx)c dx = α−bB(b,a+ c−b)F
(

c,b
a+ c

∣∣∣ α− γ
α

)
. (8)

By equalizing the identities (7) and (8) we obtain the relation

F

(
a,b
a+ c

∣∣∣ γ−α
γ

)
=

( γ
α

)b
F

(
c,b
a+ c

∣∣∣ α− γ
α

)
. (9)
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Previous relation gives so called Pfaff’s reflection law, discovered in 1797. Let’s state
that transformation in more appropriate form:

F

(
a,b
c

∣∣∣ −z
1− z

)
= (1− z)aF

(
a,c−b

c

∣∣∣ z

)
, where z �= 1. (10)

This is formal identity in power series. On the other hand, whenever we replace z by
a particular numerical value, we have to be sure that the infinite sum is well defined.

Since
∣∣α−γ

α
∣∣ < 1 and

∣∣∣ γ−αγ ∣∣∣ < 1, the relation (9) is well defined.

Further, by applying reflection law again to (10), we obtain so called Euler’s iden-
tity

F

(
a,b
c

∣∣∣ z

)
= (1− z)c−a−bF

(
c−a,c−b

c

∣∣∣ z

)
. (11)

We shall use transformations (10) and (11) in obtaining the best possible constants.
�

REMARK 2. Every hypergeometric series always has the value 1 when z = 0.
Gaussian hypergeometric series (5) converges also for z = 1 if b is non-positive integer
or c > a+b. Furthermore, the following identity holds (see [3]):

F

(
a,b
c

∣∣∣ 1

)
=

Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b)

, (12)

where Γ is gamma function. So, by using (12), the relation (7) also holds for α = 0
and reduces to the well known formula for beta function:∫ ∞

0

xb−1

(1+ γx)c dx = γ−bB(b,c−b), where c > b > 0. (13)

So, we shall omit such special cases in this paper, because they reduce to many previ-
ously known results from the literature. �

3. Main results

Our main goal in this section is to find further generalizations of the inequality (3).
Hence, we shall replace the kernel (x+y)−1 contained in the left-hand side of (3), with
the kernel

K(x,y) = (x+α1y)−s1(x+α2y)−s2 , (14)

where α1,α2 > 0, 1
2 < α1

α2
< 2 and s1 + s2 > 0.

Before we state and prove the main result, we need to define some weighted func-
tions.

We define F : (0,∞) �→ R by

F(x) =

[∫ ∞

0

y−q′A2

(x+α1y)s1(x+α2y)s2
dy

] 1
q′

, (15)
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where α1,α2 > 0, 1
2 < α1

α2
< 2, s1 + s2 > 0 and A2 ∈

(
1−s1−s2

q′ , 1
q′

)
.

We also define G : (0,∞) �→ R by

G(y) =

[∫ ∞

0

x−p′A1

(x+α1y)s1(x+α2y)s2
dx

] 1
p′

, (16)

where α1,α2 > 0, 1
2 < α1

α2
< 2, s1 + s2 > 0 and A1 ∈

(
1−s1−s2

p′ , 1
p′

)
.

Clearly, by using Lemma 1 we can compute the integrals in definitions of weighted
functions F and G . So, we easily obtain the following result:

LEMMA 2. Suppose α1,α2 > 0 , 1
2 < α1

α2
< 2 and s1 + s2 > 0. Further, let A1

and A2 be real parameters such that A1 ∈ ( 1−s1−s2
p′ , 1

p′ ) and A2 ∈ ( 1−s1−s2
q′ , 1

q′ ). If the
functions F and G are defined by (15) and (16) respectively, then

F(x) = k(F) · x
1−s1−s2

q′ −A2 , (17)

G(y) = k(G) · y
1−s1−s2

p′ −A1 , (18)

where

k(F) = α2
A2− 1

q′ B
1
q′ (1−q′A2,s1 + s2 +q′A2−1)F

1
q′

(
s1,1−q′A2

s1 + s2

∣∣∣ α2 −α1

α2

)
,

k(G)=α1

1−s1
p′ −A1α2

− s2
p′ B

1
p′ (1− p′A1,s1+s2+ p′A1−1)F

1
p′

(
s2,1− p′A1

s1 + s2

∣∣∣ α2 −α1

α2

)
.

Now we are able to state and prove our main result. We suppose that all integrals
converges and shall omit these types of conditions.

THEOREM 1. Let parameters p, q , p′ , q′ , λ be as in (1) and (2). Suppose
α1,α2 > 0 , 1

2 < α1
α2

< 2 and s1 + s2 > 0. If f and g are non-negative measurable
functions on (0,∞) , then the following inequalities∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

� K

[∫ ∞

0
x

p
q′ (1−s1−s2)+p(A1−A2) f p(x)dx

] 1
p

·
[∫ ∞

0
y

q
p′ (1−s1−s2)+q(A2−A1)gq(y)dy

] 1
q

, (19)[∫ ∞

0
y

q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

] 1
q′

� K

[∫ ∞

0
x

p
q′ (1−s1−s2)+p(A1−A2) f p(x)dx

] 1
p

(20)
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hold for any A1 ∈ ( 1−s1−s2
p′ , 1

p′ ) and A2 ∈ ( 1−s1−s2
q′ , 1

q′ ), where

K = α1

1−s1
p′ −A1α2

A2− 1
q′ −

s2
p′ B

1
q′ (1−q′A2,s1+s2+q′A2−1)B

1
p′ (1−p′A1,s1+s2+p′A1−1)

·F
1
q′

(
s1,1−q′A2

s1 + s2

∣∣∣ α2 −α1

α2

)
F

1
p′

(
s2,1− p′A1

s1 + s2

∣∣∣ α2 −α1

α2

)
. (21)

Moreover, inequalities (19) and (20) are equivalent.

Proof. The left-hand side of (19) can be written as

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy =
∫ ∞

0

∫ ∞

0
I1

1
q′ (x,y)I

1
p′
2 (x,y)I31−λ (x,y)dxdy

where

I1(x,y) =
Fp−q′(x) f p(x)

(x+α1y)s1(x+α2y)s2
· xpA1

yq′A2
,

I2(x,y) =
Gq−p′(y)gq(y)

(x+α1y)s1(x+α2y)s2
· yqA2

xp′A1
,

I3(x,y) = xpA1F p(x)yqA2Gq(y) f p(x)gq(y)

and the functions F and G are defined by (15) and (16). Now, since the exponents
satisfy identity 1

p′ +
1
q′ +(1−λ )= 1, we can use Hölder’s inequality with the exponents

p′ , q′ and 1
1−λ on the above transformation. So by using that inequality, Fubini’s

theorem and the definitions (15) and (16) of the functions F and G respectively, we
obtain the inequality:

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

�
[∫ ∞

0
xpA1F p(x) f p(x)dx

] 1
q′

[∫ ∞

0
yqA2Gq(y)gq(y)dy

] 1
p′

·
[(∫ ∞

0
xpA1F p(x) f p(x)dx

)(∫ ∞

0
yqA2Gq(y)gq(y)dy

)]1−λ
.

Now, by using Lemma 2 and since 1
q′ +1−λ = 1

p , 1
p′ +1−λ = 1

q , the inequality (19)
holds.

Let us show that the inequalities (19) and (20) are equivalent. Suppose that the
inequality (19) is valid. If we put the function g̃ : (0,∞) �→ R , defined by

g̃(y) = y
q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

) q′
q
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into the inequality (19), we obtain

∫ ∞

0
y

q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

=
∫ ∞

0

∫ ∞

0

f (x)g̃(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

� K

[∫ ∞

0
x

p
q′ (1−s1−s2)+p(A1−A2) f p(x)dx

] 1
p

·
[∫ ∞

0
y

q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

] 1
q

,

what gives inequality (20).
It remains to prove that the inequality (19) is a consequence of the inequality (20).

Then the left hand side of the inequality (19) can be transformed in the following way:∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

=
∫ ∞

0
y

1−s1−s2
p′ +A2−A1g(y)

(
y

s1+s2−1
p′ +A1−A2

∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)
dy.

Now, by applying Hölder’s inequality with conjugate exponents q and q′ on that trans-
formation, we have∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

�
[∫ ∞

0
y

q
p′ (1−s1−s2)+q(A2−A1)gq(y)dy

] 1
q

·
[∫ ∞

0
y

q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

] 1
q′

,

and the result follows from (20). Hence, we have showed that the inequalities (19) and
(20) are equivalent, what completes the proof. �

Clearly, if α1 = α2 in Theorem 1, then the hypergeometric part of the constant
K takes value 1 (see Remark 2) and the inequalities (19) and (20) reduces to some
previously known from the literature. Such results can be found in the papers [5, 6, 7]
for appropriate choices of the real parameters A1 and A2 . For example, by putting
α1 = α2 = 1, s1 = s2 = 1

2 , A1 = A2 = 1
λ p′q′ in Theorem 1, the constant K reduces to

(πcosec π
λ p′ )

λ , so we obtain the inequality (3).
On the other hand, if α1 = 0 or α2 = 0, then by using the relation (13), we can

obtain the inequalities involving the constant expressed only in terms of beta function.
Here, they are omitted.
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It is very interesting to investigate under which assumptions holds the equality in
(19) and (20). The answer on that question is given in the following result:

THEOREM 2. The equality in (19) and (20) holds if and only if at least one of the
functions f or g is equal to zero.

Proof. The equality in (19) holds if and only if the functions I1(x,y) , I2(x,y) and
I3(x,y) , defined in proof of Theorem 1, are effectively proportional. Hence, there exist
non-negative real numbers A and B not both equal to zero, such that

F p−q′(x) f p(x)
(x+α1y)s1(x+α2y)s2

· xpA1

yq′A2
= A

Gq−p′(y)gq(y)
(x+α1y)s1(x+α2y)s2

· yqA2

xp′A1
(22)

and
F p−q′(x) f p(x)

(x+α1y)s1(x+α2y)s2
· xpA1

yq′A2
= BxpA1Fp(x)yqA2Gq(y) f p(x)gq(y). (23)

Now, if we suppose that the functions f and g are not equal to zero, from the condition
(22), we have

x(p+p′)A1F p−q′(x) f p(x) = Ay(q+q′)A2Gq−p′(y)gq(y). (24)

Since the left-hand side of the previous equality is dependent only on the variable x ,
while the right-hand side is dependent only on y , it follows that the both sides of the
equality (24) are constant. By applying that fact to the condition (23), we obtain that
there exist constant C such that

1
(x+α1y)s1(x+α2y)s2

= CFq′(x)Gp′(y).

That is a contradiction, since on the right-hand side we have a function with a separated
variables. �

4. The best possible constants in the conjugate case

In this section we shall take an attention to the case of conjugate exponent, to
obtain the best possible constants in Theorem 1, for some general cases. As we know,
in the conjugate case holds p′ = q , q′ = p and λ = 1.

However, we shall deal with an appropriate forms of the inequalities obtained in
the previous section, in conjugate case. The main idea is to simplify the constant K
defined by (21), i.e. to obtain the constant without exponents. For that sake, it is natural
to consider the real parameters A1 and A2 satisfying

pA2 +qA1 = 2− s1− s2. (25)

So, if the parameters A1 and A2 satisfy constraint (25) then the constant K becomes

K = α1

1−s1
q −A1α2

A2− 1
p−

s2
q B(1− pA2,1−qA1)

·F 1
p

(
s1,1− pA2

s1 + s2

∣∣∣ α2 −α1

α2

)
F

1
q

(
s2,1−qA1

s1 + s2

∣∣∣ α2−α1

α2

)
.
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Further, if we apply Pfaff’s reflection law (10) twice, i.e. Euler identity (11), the con-
stant K reduces to

K∗ = α2
pA2−1B(1− pA2,1−qA1)F

(
s1,1− pA2

s1 + s2

∣∣∣ α2 −α1

α2

)
, (26)

and we shall see that K∗ is the best possible constant. In that case inequalities (19) and
(20) become ∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)s1(x+α2y)s2

dxdy

� K∗
[∫ ∞

0
xpqA1−1 f p(x)dx

] 1
p
[∫ ∞

0
ypqA2−1gq(y)dy

] 1
q

(27)

and ∫ ∞

0
yp−1−p2A2

(∫ ∞

0

f (x)
(x+α1y)s1(x+α2y)s2

dx

)p

dy

� K∗
∫ ∞

0
xpqA1−1 f p(x)dx. (28)

In what follows, we shall see that the constant K∗ in (27) and (28) is the best possible
in the sense that one can’t replace that constant K∗ in inequalities (27) and (28) with
the smaller constant, so that inequalities are fulfilled for all non-negative measurable
functions on (0,∞) .

THEOREM 3. If conjugate parameters satisfy constraint (25), then the constant
K∗ is the best possible in both inequalities (27) and (28).

Proof. Let’s suppose that the constant factor K∗ given by (26) is not the best possible
in the inequality (27). Then, there exist a positive constant K1 < K∗ , such that (27) is
still valid when we replace K∗ by K1 .

For this purpose, with 0 < ε < 1, set f (x) = x−qA1 in (ε, 1
ε ) , f (x) = 0 elsewhere,

and g(y) = y−pA2 in (ε, 1
ε ) , g(y) = 0 elsewhere.

Now, we shall put these functions in the inequality (27) with the constant K1 .
Since the parameters A1 and A2 satisfy (25) and by using substitution y = xt , the left-
hand side of the inequality (27) becomes

I =
∫ 1

ε

ε

∫ 1
ε

ε

x−qA1y−pA2

(x+α1y)s1(x+α2y)s2
dxdy =

∫ 1
ε

ε

dx
x

∫ 1
εx

ε
x

t−pA2

(1+α1t)s1(1+α2t)s2
dt.

Further, the left-hand side of (27) can be written as

I =
∫ 1

ε

ε

dx
x

∫ ∞

0

t−pA2

(1+α1t)s1(1+α2t)s2
dt−R1−R2,
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where

R1 =
∫ 1

ε

ε

dx
x

∫ ε
x

0

t−pA2

(1+α1t)s1(1+α2t)s2
dt

R2 =
∫ 1

ε

ε

dx
x

∫ ∞

1
εx

t−pA2

(1+α1t)s1(1+α2t)s2
dt.

Now, by using Lemma 1, straightforward computations shows that

∫ 1
ε

ε

dx
x

∫ ∞

0

t−pA2

(1+α1t)s1(1+α2t)s2
dt = 2ln

(
1
ε

)
K∗,

so, the left-hand side of (27) is

I = 2ln

(
1
ε

)
K∗ −R1−R2. (29)

Since the function f (t) = (1+α1t)−s1(1+α2t)−s2 is continuous on interval [0,∞) and
since f (0) = 1, limt→∞ f (t) = 0, it follows that there exist the positive constant M
such that f (t) < M , t ∈ [0,∞). Hence,

R1 < M
∫ 1

ε

ε

dx
x

∫ ε
x

0
t−pA2dt = M

1− εs1+s2+qA1−pA2

(1− pA2)2 = M
1− ε2(1−pA2)

(1− pA2)2 . (30)

On the other hand, since g(t) = (1 + α1t)s1(1 + α2t)s2 = O(ts1+s2) , there exist the
positive constant N such that

R2 < N
∫ 1

ε

ε

dx
x

∫ ∞

1
εx

t−pA2−s1−s2dt = N
1− εs1+s2−qA1+pA2

(1−qA1)2 = N
1− ε2(1−qA1)

(1−qA1)2 . (31)

Now, by using (29), (30) and (31) we have inequality

I > 2ln

(
1
ε

)
K∗ −M

1− ε2(1−pA2)

(1− pA2)2 −N
1− ε2(1−qA1)

(1−qA1)2 . (32)

For above choice of functions f and g , the right-hand side of the inequality (27), with
the constant K1 , become 2ln

(
1
ε
)
K1. So, by using (32) we have

−M
1− ε2(1−pA2)

(1− pA2)2 −N
1− ε2(1−qA1)

(1−qA1)2 < 2(K1−K∗)2ln

(
1
ε

)
, (33)

and we obtain contradiction by letting ε → 0. Hence, the constant factor in the inequal-
ity (27) is the best possible.

Finally, equivalence of the inequalities (27) and (28) means that the constant K∗
is also the best possible in the inequality (28). That completes the proof. �
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5. Some examples

If we put A1 = 1−s1
p′ , A2 = 1−s2

q′ , s1,s2 > 0 in Theorem 1 we obtain:

COROLLARY 1. Let parameters p, q , p′ , q′ , λ be as in (1) and (2). Suppose
α1,α2 > 0 , 1

2 < α1
α2

< 2 and s1,s2 > 0. If f and g are non-negative measurable func-
tions on (0,∞) , then the following inequalities hold and are equivalent:∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

� L

[∫ ∞

0
x−λ s1p+p−1 f p(x)dx

] 1
p
[∫ ∞

0
y−λ s2q+q−1gq(y)dy

] 1
q

, (34)[∫ ∞

0
yλ s2q

′−1
(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

] 1
q′

� L

[∫ ∞

0
x−λ s1p+p−1 f p(x)dx

] 1
p

, (35)

where the constant L is defined by

L = α2
−λ s2Bλ (s1,s2)Fλ

(
s1,s2

s1 + s2

∣∣∣ α2 −α1

α2

)
. (36)

�
Further, if we put A1 = 2−s1−s2

2p′ , A2 = 2−s1−s2
2q′ in Theorem 1 we obtain the in-

equalities similar as those in Corollary 1, with the constant M instead L , defined by

M = α2
− λ

2 (s1+s2)Bλ
(

s1 + s2

2
,
s1 + s2

2

)
Fλ

(
s1,

s1+s2
2

s1 + s2

∣∣∣ α2 −α1

α2

)
. (37)

REMARK 3. Both pairs of the parameters A1 and A2 , defined in this section,
satisfy constraint p′A1 + q′A2 = 2− s1 − s2 , which reduces to (25) in the conjugate
case. Hence, in the conjugate case, the constants L and M are the best possible.
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