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Abstract. We characterize maps f between ordered fields satisfying one of the following five
sets of conditions for all x,y :

(A) f (xy) = f (x) f (y), and f (x+ y) � f (x)+ f (y) ,
(B1) f (xy) = f (x) f (y), and f (x+ y) � f (x)+ f (y) ,
(B2) f (xy) � f (x) f (y), and f (x+ y) = f (x)+ f (y) ,
(B3) f (xy) � f (x) f (y), and f (x+ y) = f (x)+ f (y) .
(C) f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y) .
Also we pose a problem.

The aim of this note is to comment some obstructions to the definition of field
homomorphisms in ordered fields. For generalities on ordered fields see [2], [5] or [9].

Let K,L be two fields. Recall that a nonzero map f : K → L is a homomorphism
if

f (x+ y) = f (x)+ f (y), and f (xy) = f (x) f (y),

for all x,y ∈ K . Assume that L is an ordered field. Then f is an absolute value (on K
with values in L ) if

(N1) f (0) = 0 and f (x) > 0 for x �= 0.
(N2) f (xy) = f (x) f (y) for all x,y .
(N3) f (x+ y) � f (x)+ f (y) , for all x,y ∈ K .

THEOREM 1. Let K be a field, let L be an ordered field and let f : K → L be a
nonzero map.

(A) Assume that f (xy) = f (x) f (y), and f (x+ y) � f (x)+ f (y) , for all x,y in K .
Then f is an injective homomorphism of fields (embedding), a constant map

f (x) := 1 for all x , or an absolute value.
(B) Assume that f satisfies one of the following three conditions for all x,y in K :
(B1) f (xy) = f (x) f (y), and f (x+ y) � f (x)+ f (y) ,
(B2) f (xy) � f (x) f (y), and f (x+ y) = f (x)+ f (y) ,
(B3) f (xy) � f (x) f (y), and f (x+ y) = f (x)+ f (y) .
Then f is an injective homomorphism of fields.

Proof. (A) By f (xy) = f (x) f (y) and f �= 0 we get f (1) = 1 and f (−1) = ±1.
Also, from f (0) = f (0) f (x) we get that f (x) = 1 for all x (which satisfies the condi-
tions) or f (0) = 0. From now we have f (0) = 0.

Mathematics subject classification (2000): 12J15, 39B72.
Keywords and phrases: ordered field; homomorphism.

c© � � , Zagreb
Paper JMI-03-63

657



658 IVICA GUSIĆ

If f (−1) = −1 then f (−x) = − f (x) for all x , hence

f (x) = f (x+ y− y) � f (x+ y)− f (y), and so f (x+ y) � f (x)+ f (y), for all x,y ∈ K.

Now f is a homomorphism of fields. It is injective since it is nonzero. Namely, if
f (t) = 0 for some t �= 0, then f (x) = f (xtt−1) = f (x) f (t) f (t−1) = 0 for all x .

If f (−1) = 1 then f (−x) = f (x) for all x . Therefore 0 = f (0) � f (−x)+ f (x) =
2 f (x) , which implies that f (x) � 0 for all x , and so f is an absolute value.

(B1) Similarly as in (A) if f (−1) = −1 then f is an injective homomorphism
of fields. Namely f (x) = f (x + y− y) � f (x + y)− f (y), and so f (x + y) � f (x) +
f (y), for all x,y ∈ K.

The case f (−1) = 1 is impossible. Namely, it implies f (−x) = f (x) for all x ,
from which we get 0 = f (0) = f (−x + x) � 2 f (x) , i.e. f (x) � 0 for all x ∈ K (a
contradiction with f (1) = 1).

(B2) By f (x+ y) = f (x)+ f (y) we get f (0) = 0, from which it follows f (−x) =
− f (x) for all x ∈ K . Now, from f (−xy) � f (−x) f (y) , we get f (xy) � f (x) f (y) ,
hence f is a homomorphism of fields.

(B3) Analogously as B2. �

REMARK 1. The characterization of the maps f from the theorem is far away
from an explicit description. For example, if K = Q , the field of rational numbers, then
the identity is the unique embedding of K in R . Further, the absolute values (with
values in the field R of real numbers) are described by the Ostrowski theorem (see [3]
or [5]):

Each absolute value f on Q is either the trivial absolute value defined by f (x) =
1 for x �= 0 and f (0) = 0, or equivalent to the ordinary absolute value, i.e. of the
form f (x) = |x|α with α real and 0 < α � 1, and | | the ordinary absolute value (the
Archimedean case) or equivalent to a p -adic absolute value, i.e. of the form f (x) =
cvp(x) , for some prime number p , where vp is the discrete valuation at p and c is real
number with 0 < c < 1 (non Archimedean or p -adic cases).

Here if x �= 0 and x = pr m
n with m,n relatively prime and not divisible by p we

define vp(x) := r . Also, we define vp(0) = +∞ . The p -adic absolute value | |p is
defined by |x|p := p−vp(x) .
We have an analogous description for all algebraic number fields K (of a finite degree
over Q ). If n is the degree of K over Q , then there are exactly n embeddings of K
in C (and at most n real embeddings). Also, there is an extension of the Ostrowski
theorem (here prime ideals of the ring of integers stay instead of prime numbers).

REMARK 2. The field K should not be necessarily ordered. However, in case (B)
of Theorem 1., K has a natural ordering if we regard it as a subfield of L (under the
embedding f ). In case (A) we have a new moment. For example, if K := Q(i) the
field of Gaussian numbers, then K can not be ordered, and so there is no nontrivial
homomorphism of K into an ordered field. Nevertheless, K has a lot of absolute values
(which are explicitly described by an extension of the Ostrowski theorem).

REMARK 3. The situation becomes more complicated if we allow to add transcen-
dental numbers. Assume, for example, that K = Q(T ) is the field of rational functions
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over Q , and that f : Q(T )→R is an absolute value. Then, by Remark 1, the restriction
of f on Q is

(i) the trivial absolute value,
(ii) equivalent to the ordinary absolute value,
(iii) or equivalent to a p -adic absolute value.
For (i) there is an analogue of the Ostrowski theorem, which gives an explicit

description of all such f .
For (ii) note that for every complex transcendental number α there is a field iso-

morphism Q(T ) ∼= Q(α) . Composing by the ordinary absolute value on C we get
different absolute values on Q(T ) for different complex-conjugate pairs {α,α} .

The following construction provides new examples. Let α = c0 + c1i+ c2j+ c3k
be a real Hamilton’s quaternion such that the set {1,α,α2, ...} is linearly independent
over Q . We define an absolute value | | on the ring Q[T ] by |g(T )| := ||g(α)|| , where
|| || is the norm on the algebra of real quaternions, defined by

||d0 +d1i+d2j+d3k|| :=
√

d2
0 +d2

1 +d2
2 +d2

3.

It is easy to see that this absolute value has a unique extension from the ring Q[T ] to
the field Q(T ) . However, we may use suitable generalized quaternions, too (see, for
example, [6]). Note also that the construction works on the algebra of real octonions
(Cayley algebra), which is a normed division algebra (and provides new examples).
Namely, although this algebra is not associative, the ring Q[α] is well-defined for each
octonion α .

For (iii) note that there are infinitely many embeddings of K in the field Qp of
p -adic numbers. Similarly as in (ii) we may compose by p -adic absolute values. How-
ever, neither this list is complete. To see it we may use the fact that the fields Qp are not
algebraically closed. To be more precise, the p -adic absolute value has a unique exten-
sion to the algebraic closure Qp . However, Qp is not complete, but its completion Cp

is both complete and algebraic closed. We may carry out the above construction with
transcendental elements of Cp .

Note that in this setting there are essentially different examples. For instance, we
may extend a p -adic absolute value | |p on Q to the ring of polynomials Q[T ] as
follows. Let g(T ) := b0 +b1T + ...+bnTn be a polynomial over Q . We define

|g(T )|p := max{|b0|p, ..., |bn|p}

(here we note that p -adic absolute values satisfy the ultrametric inequality: |x+ y|p �
max{|x|p, |y|p} ). This absolute value has a unique extension from the ring Q[T ] to the
field Q(T ) .

Finally, let us note that the situation becomes simple if the field of constants is
finite. For example if K := Fp(T ) , for a prime number p , then there is no homomor-
phism from K to R . Further, each absulute value should be trivial on Fp , and one may
prove that there is a full analogue of the Ostrowski theorem which describes completely
all absolute values on K .
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Recall that the map f was given by one equality and one inequality. It is a question
what happens if we replace the equality with an inequality. The following theorem is a
stronger version of Theorem 1 (B3).

THEOREM 2. Assume that a nonzero map f : K → L satisfies the conditions
f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y) .

Then f is an injective homomorphism.

Proof. We see that f (0) � 0, hence

f (x)+ f (−x) � 0 (1)

for all x . It means that at least one of f (x) and f (−x) is negative (or zero). Especially,
there exists t ∈ K such that f (t) < 0. Now, from f (t) � f (t) f (1) we get f (1) � 1,
and so f (−1) < 0. By (1) we see:

f (xy) � − f (−xy) � − f (−x) f (y) � f (x) f (y) (2)

provided f (y) � 0.
Similarly, f (xy) � f (x) f (y) , provided f (x) � 0.
Note at this moment that f (1) > 1 implies f (x) � 0 for all x . Therefore, in that

case, by (2), we have f (xy) � f (x) f (y) for all x,y ∈ K , and so f (xy) = f (x) f (y) for
all x,y . By theorem 1 (B1), f is a field homomorphism.

It remains the case f (1) = 1. Since f (−1) < 0, we have, by (2), 1 = f (−1 ·−1)�
f (−1)2 , hence f (−1)2 = 1, and so f (−1) = −1. It implies f (−x) = − f (x) for all
x ∈ K . Now, from f (−xy) � f (x) f (−y) we get f (xy) � f (x) f (y) for all x,y . Again,
by theorem 1 (B1), we see that f is a field homomorphism. �

REMARK 4. Theorem 2. was proved in [7] for K = L = R as a special case and
extended in [4] to the functions from a ring K to the ordered ring L with property: if
z ∈ B and z �= 0 then z2 > 0. Implicitly, this condition is also in the core of the proof
from [7] as well as from [8] where L is the ring of real valued functions on a set (see
also [1], Exercises 14, 16, pp. 70–71). Our proof works over rings, too and eliminates
that condition (which, for example, is not satisfied for ultra-metric ordered fields or
rings).

The following example shows that in other cases appear new functions.

EXAMPLE. (I) Let f : R→ R be a map given by f (x) = 1+ |x| . Then f satisfies
the conditions

f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y).

(II) Let f : R → R be a map given by f (x) = −|sinx| . Then f satisfy the condi-
tions

f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y).

(III) Let f : R → R be a map given by f (x) = c , for a real constant c with 0 <
c < 1. Then f satisfy the conditions

f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y).
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However these maps are not field homomorphisms nor absolute values.

PROBLEM. Give a characterization (at least for subfields of R) of maps f from a
field K to an ordered field L satisfying one of the following sets of conditions:

(I) f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y) .
(II) f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y) .
(III) f (xy) � f (x) f (y), and f (x+ y) � f (x)+ f (y) .

Acknowledgement. I am thankful to the referee who pointed out me to the history
of Theorem 2.
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