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Abstract. We characterize maps f between ordered fields satisfying one of the following five
sets of conditions for all x,y:

(A) flxy) =f()f(y), and flx+y) < f(X) + (),

B flxy) = f(x)f(v), and f(x+y) = f(x)+ f()
(B2) f(xy) < f(x)f(y), and f(x+y) = f(x) + f(¥).
(B3) f(xy) = f(x)f(y), and f(x+y) = f( )+f()y)

(©) f) = f()f(y), and f(x+y) = f(x) + f(y

Also we pose a problem.

The aim of this note is to comment some obstructions to the definition of field
homomorphisms in ordered fields. For generalities on ordered fields see [2], [5] or [9].

Let K, L be two fields. Recall that a nonzero map f : K — L is a homomorphism
if

flx+y) = f(x)+ f(y), and f(xy) = f(x) f(v),

for all x,y € K. Assume that L is an ordered field. Then f is an absolute value (on K
with values in L) if

(N1) f(0) =0 and f(x) >0 for x #0.

(N2) f(xy) = f(x)f(y) forall x,y.

(N3) f(x+y) < f(x)+ f(y), forall x,y € K.

THEOREM 1. Let K be a field, let L be an ordered field and let f : K — L be a
nonzero map.

(A) Assume that f(xy) = f(x)f(y), and f(x+y) < f(x)+ f(y), forall x,y in K.

Then f is an injective homomorphism of fields (embedding), a constant map
f(x):=1 forall x, or an absolute value.

(B) Assume that f satisfies one of the following three conditions for all x,y in K :

(BI) f(xy) = f(x)f(y), and f(x+y) = f(x) + f (),

(B2) f(xy) < f(x)f(y), and f(x+y) = f(x) + f(),

(B3) f(xy) = f(x)f(y), and f(x+y) = f(x) + f(y).

Then f is an injective homomorphism of fields.

Proof. (A) By f(xy) = f(x)f(y) and f #0 we get f(1) =1 and f(—1) = =£1.
Also, from f(0) = f(0)f(x) we get that f(x) = 1 for all x (which satisfies the condi-
tions) or f(0) = 0. From now we have f(0) =0.
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If f(—1)=—1 then f(—x) = —f(x) for all x, hence

) =fx+y=y) <flx+y) = f(y), and so fx+y) = f(x) + f(y), forall x,y € K.

Now f is a homomorphism of fields. It is injective since it is nonzero. Namely, if
f(¢) =0 for some t # 0, then f(x) = f(xtt=™') = f(x)f(t)f(t~') =0 forall x.

If f(—1)=1 then f(—x) = f(x) forall x. Therefore 0 = f(0) < f(—x)+ f(x) =
2f(x), which implies that f(x) > 0 for all x, and so f is an absolute value.

(B1) Similarly as in (A) if f(—1) = —1 then f is an injective homomorphism
of fields. Namely f(x) = f(x+y—y) = f(x+y) — f(y), andso f(x+y) < f(x) +
f(), forallx,y € K.

The case f(—1) =1 is impossible. Namely, it implies f(—x) = f(x) for all x,
from which we get 0 = f(0) = f(—x+x) > 2f(x), i.e. f(x) <0 forall x€K (a
contradiction with f(1) = 1).

(B2) By f(x+y) = f(x)+ f(y) we get £(0) =0, from which it follows f(—x) =
—f(x) for all x € K. Now, from f(—xy) < f(—x)f(y), we get f(xy) = f(x)f(y),
hence f is a homomorphism of fields.

(B3) Analogously as B2. [

REMARK 1. The characterization of the maps f from the theorem is far away
from an explicit description. For example, if K = Q, the field of rational numbers, then
the identity is the unique embedding of K in R. Further, the absolute values (with
values in the field R of real numbers) are described by the Ostrowski theorem (see [3]
or [5]):

Each absolute value f on Q is either the trivial absolute value defined by f(x) =
1 for x # 0 and f(0) =0, or equivalent to the ordinary absolute value, i.e. of the
form f(x) = |x|* with a real and 0 < o < 1, and | | the ordinary absolute value (the
Archimedean case) or equivalent to a p-adic absolute value, i.e. of the form f(x) =
cvf’("), for some prime number p, where v, is the discrete valuation at p and c is real
number with 0 < ¢ < 1 (non Archimedean or p-adic cases).

Here if x # 0 and x = p"%* with m,n relatively prime and not divisible by p we

define v,(x) :=r. Also, we define v,(0) = +eo. The p-adic absolute value | |, is
defined by |x|, := p~"»™).
We have an analogous description for all algebraic number fields K (of a finite degree
over Q). If n is the degree of K over Q, then there are exactly n embeddings of K
in C (and at most n real embeddings). Also, there is an extension of the Ostrowski
theorem (here prime ideals of the ring of integers stay instead of prime numbers).

REMARK 2. The field K should not be necessarily ordered. However, in case (B)
of Theorem 1., K has a natural ordering if we regard it as a subfield of L (under the
embedding f). In case (A) we have a new moment. For example, if K := Q(i) the
field of Gaussian numbers, then K can not be ordered, and so there is no nontrivial
homomorphism of K into an ordered field. Nevertheless, K has a lot of absolute values
(which are explicitly described by an extension of the Ostrowski theorem).

REMARK 3. The situation becomes more complicated if we allow to add transcen-
dental numbers. Assume, for example, that K = Q(T') is the field of rational functions
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over Q, and that f : Q(T) — R is an absolute value. Then, by Remark 1, the restriction
of fon Qis

(i) the trivial absolute value,

(ii) equivalent to the ordinary absolute value,

(iii) or equivalent to a p-adic absolute value.

For (i) there is an analogue of the Ostrowski theorem, which gives an explicit
description of all such f.

For (ii) note that for every complex transcendental number « there is a field iso-
morphism Q(7) = Q(o). Composing by the ordinary absolute value on C we get
different absolute values on Q(7') for different complex-conjugate pairs {a,a}.

The following construction provides new examples. Let o = ¢g+ c1i+ cpj + c3k
be a real Hamilton’s quaternion such that the set {1, o, &%, ...} is linearly independent
over Q. We define an absolute value | | on the ring Q[T] by |g(T)| := ||g(c)||, where
[| || is the norm on the algebra of real quaternions, defined by

||do + dii+doj + dsk|| := \/d3 + d} + d3 +d3.

It is easy to see that this absolute value has a unique extension from the ring Q7] to
the field Q(T). However, we may use suitable generalized quaternions, too (see, for
example, [6]). Note also that the construction works on the algebra of real octonions
(Cayley algebra), which is a normed division algebra (and provides new examples).
Namely, although this algebra is not associative, the ring Q[c] is well-defined for each
octonion .

For (iii) note that there are infinitely many embeddings of K in the field Q, of
p-adic numbers. Similarly as in (ii)) we may compose by p-adic absolute values. How-
ever, neither this list is complete. To see it we may use the fact that the fields Q,, are not
algebraically closed. To be more precise, the p-adic absolute value has a unique exten-
sion to the algebraic closure Q - However, Q p is not complete, but its completion C,
is both complete and algebraic closed. We may carry out the above construction with
transcendental elements of Cp,.

Note that in this setting there are essentially different examples. For instance, we
may extend a p-adic absolute value | [, on Q to the ring of polynomials Q[7] as
follows. Let g(T) :=bo+ b1 T + ...+ b,T" be a polynomial over Q. We define

18(T)]p := max{|bo|p, .-, [bal o}

(here we note that p-adic absolute values satisfy the ultrametric inequality: |x+y|, <
max{|x|,, [y|,}). This absolute value has a unique extension from the ring Q[T] to the
field Q(T).

Finally, let us note that the situation becomes simple if the field of constants is
finite. For example if K :=F p(T), for a prime number p, then there is no homomor-
phism from K to R. Further, each absulute value should be trivial on F,, and one may
prove that there is a full analogue of the Ostrowski theorem which describes completely
all absolute values on K.
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Recall that the map f was given by one equality and one inequality. It is a question
what happens if we replace the equality with an inequality. The following theorem is a
stronger version of Theorem 1 (B3).

THEOREM 2. Assume that a nonzero map f : K — L satisfies the conditions

flxy) = f(x)f(y), and f(x+y) = f(x) + f(y).

Then f is an injective homomorphism.

Proof. We see that f(0) < 0, hence
f)+f(—x)<0 (1)

for all x. It means that at least one of f(x) and f(—x) is negative (or zero). Especially,
there exists € K such that f(r) < 0. Now, from f(r) > f(z)f(1) we get f(1) > 1,
and so f(—1) <0. By (1) we see:

fly) < —f(=xy) < —f(—=x)f(y) < fx) f(y) (2)

provided f(y) <O.

Similarly, f(xy) < f(x)f(y), provided f(x) <O0.

Note at this moment that f(1) > 1 implies f(x) <0 for all x. Therefore, in that
case, by (2), we have f(xy) < f(x)f(y) forall x,y € K, and so f(xy) = f(x)f(y) for
all x,y. By theorem 1 (B1), f is a field homomorphism.

It remains the case f(1)=1. Since f(—1) <0, we have,by (2), 1 = f(—1-—1) <
f(=1)%, hence f(—1)>=1, and so f(—1)= —1. It implies f(—x) = —f(x) for all
x € K. Now, from f(—xy) > f(x)f(—y) we get f(xy) < f(x)f(y) forall x,y. Again,
by theorem 1 (B1), we see that f is a field homomorphism. [J

REMARK 4. Theorem 2. was proved in [7] for K = L = R as a special case and
extended in [4] to the functions from a ring K to the ordered ring L with property: if
z€ B and z # 0 then z> > 0. Implicitly, this condition is also in the core of the proof
from [7] as well as from [8] where L is the ring of real valued functions on a set (see
also [1], Exercises 14, 16, pp. 70-71). Our proof works over rings, too and eliminates
that condition (which, for example, is not satisfied for ultra-metric ordered fields or
rings).

The following example shows that in other cases appear new functions.

ExAMPLE. (I)Let f: R — R be a map given by f(x) = 1+ |x|. Then f satisfies
the conditions

fOy) FX)f(), and f(x+y) < f(x) +£(¥).

(ID) Let f: R — R be a map given by f(x) = —|sinx|. Then f satisfy the condi-
tions

fOy) fX)f(), and f(x+y) = f(x) + £(¥).
(IIT) Let f: R — R be a map given by f(x) = ¢, for a real constant ¢ with 0 <
¢ < 1. Then f satisfy the conditions

fOy) =2 f(x)f(y), and f(x+y) < f(x) + £(¥).
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However these maps are not field homomorphisms nor absolute values.

PROBLEM. Give a characterization (at least for subfields of R) of maps f froma
field K to an ordered field L satisfying one of the following sets of conditions:

M flxy) < f(x)f(y), and f(x+y) < f(x)+ f(v).

D f(xy) < f(x)f(v), and f(x+y) = f(x) + f(y).

D) f(xy) = f(x)f(v), and f(x+y) < f(x) + £ ().

Acknowledgement. 1 am thankful to the referee who pointed out me to the history
of Theorem 2.
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