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Abstract. Accurate approximations for the Riemann-Stieltjes integral by the use of various re-
cent inequalities for the generalised Čebyšev functional introduced in 1998 by Dragomir & Fe-
dotov are surveyed. Applications in deriving sharp inequalities of Grüss’ type are also given.

1. Introduction

In 1998, Dragomir and Fedotov [21], in order to approximate the Riemann-Stieltjes
integral

∫ b
a f (t)du(t) with the simpler expression

1
b−a

[u(b)−u(a)]
∫ b

a
f (t)dt,

introduced the following error functional

D( f ,u;a,b) :=
∫ b

a
f (t)du(t)− 1

b−a
[u(b)−u(a)]

∫ b

a
f (t)dt (1.1)

provided that both the Riemann-Stieltjes integral
∫ b
a f (t)du(t) and the Riemann inte-

gral
∫ b
a f (t)dt exist.
If u(t) =

∫ t
a g(s)ds, t ∈ [a,b] , with g continuous on [a,b] , then

D( f ,u;a,b) =
∫ b

a
f (t)g(t)dt− 1

b−a

∫ b

a
f (t)dt ·

∫ b

a
g(t)dt (1.2)

= (b−a)T ( f ,g;a,b) ,

where T (·, ·;a,b) is the well-known Čebyšev functional. Therefore D( f ,u;a,b) can
be see as a generalised Čebyšev type functional.
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The natural connection provided by the equality (1.2) also motivates the study of
the functional D(·, ·;a,b) since there are numerous results in the literature concerning
bounds for the Čebyšev functional for which we only mention the following ones:

|T ( f ,g;a,b)| � 1
4

(Φ−φ)(Γ− γ) (Grüss 1935, [23]) (1.3)

provided ϕ � f (x) � Φ, γ � g(x) � Γ for each x ∈ [a,b] ;

|T ( f ,g;a,b)| � 1
12

· (b−a)2
∥∥ f ′
∥∥
∞

∥∥g′∥∥∞ (Čebyšev 1882, [7]) (1.4)

if f , g are absolutely continuous on [a,b] and f ′, g′ ∈ L∞ [a,b] ;

|T ( f ,g;a,b)| � 1
8

(b−a)(Φ−φ)
∥∥g′∥∥∞ (Ostrowski 1970, [26]) (1.5)

provided ϕ � f (x) � Φ for any x ∈ [a,b] and g′ ∈ L∞ [a,b] , and

|T ( f ,g;a,b)| � 1
π2 (b−a)

∥∥ f ′
∥∥

2

∥∥g′∥∥2 (Lupaş 1973, [25]) (1.6)

provided f ′, g′ ∈ L2 [a,b] . The multiplicative constants 1
4 , 1

12 , 1
8 and 1

π2 are the best
possible in the sense that they cannot be replaced by smaller quantities.

Recently, Cerone and Dragomir [3], proved the following result:

|T ( f ,g;a,b)| � inf
γ∈R

‖g− γ‖∞ ·
1

b−a

∫ b

a

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣dt (1.7)

provided f ∈ L [a,b] and g ∈ L∞ [a,b] .
As particular cases of (1.7), we can state the results:

|C ( f ,g;a,b)| � ‖g‖∞
1

b−a

∫ b

a

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣dt (1.8)

if g ∈ L∞ [a,b] and f ∈ L [a,b] , and

|C ( f ,g;a,b)| � 1
2

(M−m)
1

b−a

∫ b

a

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣dt, (1.9)

where m � g(x) � M for x ∈ [a,b] . The constants 1 in (1.8) and 1
2 in (1.9) are the best

possible. The inequality (1.9) has been obtained before in a different way by Cheng &
Sun in [8]. However, they did not consider the problem of sharpness.

For generalizations of (1.9) in abstract Lebesgue spaces, best constants and dis-
crete versions, see [4] in both preprint and final form.
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2. Error Bounds for D( f ,u;a,b)

2.1. Bounds for Lipschitzian Integrators

In this section we assume that in the Riemann-Stieltjes integral
∫ b
a f (t)du(t) , the

integrator u is L -Lipschitzian, i.e.,

|u(t)−u(s)| � L |t− s| for each t,s ∈ [a,b] . (2.1)

It is well known that, in this case, the Riemann-Stieltjes integral
∫ b
a f (t)du(t) exists

provided the integrand f : [a,b]→ R is Riemann integrable on [a,b] .

THEOREM 1. (Dragomir-Fedotov 1998, [21]) If u is L-Lipschitzian on [a,b] and
f is Riemann integrable on [a,b] , then

|D( f ,u;a,b)| � L
∫ b

a

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣dt. (2.2)

The inequality (2.2) is the best possible.
Moreover, if there exist the constants m,M ∈ R such that

m � f (t) � M for any t ∈ [a,b] , (2.3)

then

|D( f ,u;a,b)| � 1
2
L(M−m)(b−a). (2.4)

The constant 1
2 is the best possible in (2.4).

A function w is said to be of bounded variation if for any division In of [a,b] ,
In : a = x0 < x1 < · · · < xn−1 < xn = b, the variation of w on In is finite, which means
that

n−1

∑
i=0

|w(xi+1)−w(xi)| < ∞. (2.5)

The total variation of w on [a,b] is denoted by
∨b

a (w) , where

b∨
a

(w) := sup

{
n−1

∑
i=0

|w(xi+1)−w(xi)| , In is a division of [a,b]

}
. (2.6)

THEOREM 2. (Cerone-Dragomir 2006, [2]) Let u : [a,b] → R be L-Lipschitzian
on [a,b] .

(i) If f is of bounded variation on [a,b] , then

|D( f ,u;a,b)| � 3
4
L(b−a)

b∨
a

( f ) ; (2.7)
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(ii) If f : [a,b]→ R is of r−H−Hölder type, i.e.,

| f (t)− f (s)| � H |t − s|r (2.8)

for each t,s ∈ [a,b] , where H > 0 and r ∈ (0,1] are given, then

|D( f ,u;a,b)| � 2HL(b−a)r+1

(r+1)(r+2)
; (2.9)

(iii) If f : [a,b]→ R is absolutely continuous, then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
3L(b−a)2 ‖ f ′‖∞ , if f ′ ∈ L∞ [a,b] ;

2
1
q L(b−a)

1
q +1‖ f ′‖p

(q+1)
1
q (q+2)

1
q

, if f ′ ∈ Lp [a,b] , p > 1, 1
p + 1

q = 1;

3
4L(b−a)‖ f ′‖1 .

(2.10)

REMARK 1. It is an open question whether or not the multiplicative constants
3
4 ,2, 1

3 , 21/q

(q+1)1/q(q+2)1/q and 3
4 in the inequalities (2.7) – (2.10) are the best possible.

2.2. Bounds for (l,L) -Lipschitzian Integrators

The following lemma may be stated:

LEMMA 1. Let u : [a,b] → R and l,L ∈ R with L > l. The following statements
are equivalent:

(i) The function u− l+L
2 · e, where e(t) = t, t ∈ [a,b] , is 1

2 (L− l)−Lipschitzian;

(ii) We have the inequalities

l � u(t)−u(s)
t− s

� L for each t,s ∈ [a,b] , with t �= s; (2.11)

(iii) We have the inequalities

l (t− s) � u(t)−u(s) � L(t− s) for each t,s ∈ [a,b] , with t > s. (2.12)

Following [24], we can introduce the definition of (l,L) -Lipschitzian functions:

DEFINITION 1. The function u : [a,b] → R which satisfies one of the equivalent
conditions (i) – (iii) from Lemma 1 is said to be (l,L) -Lipschitzian on [a,b] .

If L > 0 and l = −L, then (−L,L) -Lipschitzian means L -Lipschitzian in the
classical sense.
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Utilising Lagrange’s mean value theorem, we can state the following result that
provides examples of (l,L) -Lipschitzian functions.

PROPOSITION 1. Let u : [a,b] → R be continuous on [a,b] and differentiable
on (a,b) . If −∞ < l = inft∈(a,b) u

′ (t) and supt∈(a,b) u
′ (t) = L < ∞, then u is (l,L) -

Lipschitzian on [a,b] .

THEOREM 3. (Liu 2004, [24]) If u is (l,L) -Lipschitzian on [a,b] and f is Rie-
mann integrable on [a,b] then

|D( f ,u;a,b)| � 1
2

(L− l)
∫ b

a

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣dt. (2.13)

The constant 1
2 is the best possible in (2.13).

Moreover, if there exist constants m,M ∈ R such that

m � f (t) � M for any t ∈ [a,b] , (2.14)

then

|D( f ,u;a,b)| � 1
4

(L− l)(M−m)(b−a). (2.15)

The constant 1
4 is the best possible in (2.15).

REMARK 2. It is clear that Liu’s results above provide a refinement for the in-
equality (2.2) when the function u is (l,L) -Lipschitzian.

The following different results for (l,L) -Lipschitzian integrators can be stated as
well:

THEOREM 4. (Dragomir 2007, [18]) Let f ,u : [a,b]→R be such that u is (l,L) -
Lipschitzian on [a,b] .

(i) If f is of bounded variation, then

|D( f ,u;a,b)| � 1
4

(L− l)(b−a)
b∨
a

( f ) . (2.16)

The constant 1
4 is the best possible in (2.16).

(ii) If f is K -Lipschitzian on [a,b] , then

|D( f ,u;a,b)| � 1
6
K (L− l)(b−a)2 . (2.17)

(iii) If f is nondecreasing, then

|D( f ,u;a,b)| � 2 · L− l
b−a

∫ b

a

(
t− a+b

2

)
f (t)dt (2.18)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 (L− l)max{| f (a)| , | f (b)|}(b−a);

1

(q+1)
1
q

(L− l)‖ f‖p (b−a)
1
q if p > 1, 1

p + 1
q = 1;

(L− l)‖ f‖1 .

(2.19)
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The constants 2 and 1
2 are the best possible in (2.18).

REMARK 3. It is an open question whether or not the multiplicative constant 1
6 is

the best possible in (2.17).

2.3. Bounds for Integrators of Bounded Variation

THEOREM 5. (Dragomir-Fedotov 2001, [22]) If u is of bounded variation on [a,b]
and f is continuous on [a,b] , then

|D( f ,u;a,b)| �
b∨
a

(u) max
t∈[a,b]

∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (s)ds

∣∣∣∣ . (2.20)

The inequality (2.20) is sharp.
Moreover, if f is K -Lipschitzian, then

|D( f ,u;a,b)| � 1
2
K (b−a)

b∨
a

(u) . (2.21)

The constant 1
2 is the best possible in (2.21).

If other information is available about the integrand f , then other bounds can be
obtained as well.

THEOREM 6. (Cerone-Dragomir 2006, [2]) Let u : [a,b] → R be a function of
bounded variation on [a,b] .

(i) If f is continuous and of bounded variation on [a,b] , then

|D( f ,u;a,b)| �
b∨
a

( f )
b∨
a

(u) ; (2.22)

(ii) If f is of r−H−Hölder type (with r ∈ (0,1] and H > 0 ), then

|D( f ,u;a,b)| � H
r+1

(b−a)r
b∨
a

(u) ; (2.23)

(iii) If f : [a,b]→ R is absolutely continuous, then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 (b−a)‖ f ′‖∞

∨b
a (u) , if f ′ ∈ L∞ [a,b] ;

1

(q+1)
1
q

(b−a)
1
q ‖ f ′‖p

∨b
a (u) , p > 1, 1

p + 1
q = 1,

if f ′ ∈ Lp [a,b] ;
‖ f ′‖1

∨b
a (u) .

(2.24)

REMARK 4. It is an open problem whether or not the multiplicative constants
1, 1

r+1 , 1
2 , 1

(q+1)1/q and 1 in (2.22) – (2.24) are the best possible.
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2.4. Bounds for Monotonic Integrators

The following result holds.

THEOREM 7. (Dragomir 2004, [15]) If f : [a,b] → R is L-Lipschitzian on [a,b]
and u is nondecreasing on [a,b] , then

|D( f ,u;a,b)| � 1
2
L(b−a)[u(b)−u(a)−K (u;a,b)] (2.25)

� 1
2
L(b−a)[u(b)−u(a)] ,

where

K (u;a,b) :=
4

(b−a)2

∫ b

a
u(t)

(
t− a+b

2

)
dt � 0. (2.26)

The constant 1
2 is the best possible in both inequalities.

Another result may be stated as:

THEOREM 8. (Dragomir 2004, [15]) Let f : [a,b] → R be a function of bounded
variation on [a,b] , u : [a,b] → R a nondecreasing function on [a,b] such that the
Riemann-Stieltjes integral

∫ b
a f (t)du(t) exists. Then

|D( f ,u;a,b)| � [u(b)−u(a)−Q(u;a,b)]
b∨
a

( f ) (2.27)

� [u(b)−u(a)]
b∨
a

( f ) ,

where

Q(u;a,b) :=
1

b−a

∫ b

a
sgn

(
t− a+b

2

)
u(t)dt � 0.

The first inequality in (2.27) is sharp.

2.5. Bounds for Convex Integrators

We recall that the function u : [a,b]→R is convex on [a,b] if u(λ t +(1−λ )s) �
λu(t)+ (1−λ )u(s) for each t,s ∈ [a,b] and λ ∈ [0,1] .

THEOREM 9. (Dragomir 2007, [17]) Let u : [a,b] → R be a continuous convex
function on [a,b] .

(i) If f : [a,b] → R is a function of bounded variation on [a,b] , then

|D( f ,u;a,b)| � 1
4

[
u′− (b)−u′+(a)

]
(b−a)

b∨
a

( f ) . (2.28)
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The constant 1
4 is the best possible in (2.28).

(ii) If f : [a,b] → R is a nondecreasing function on [a,b] , then

0 � D( f ,u;a,b) (2.29)

� 2 · u
′− (b)−u′+ (a)

b−a

∫ b

a

(
t− a+b

2

)
f (t)dt

�
[
u′− (b)−u′+ (a)

]×
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 max{| f (a)| , | f (b)|}(b−a);

1

(q+1)
1
q
‖ f‖p (b−a)

1
q if p > 1, 1

p + 1
q = 1;

‖ f‖1 .

The constants 2 and 1
2 are the best possible.

(iii) If f is an L-Lipschitzian function on [a,b] , then:

|D( f ,u;a,b)| � 1
6
L
[
u′− (b)−u′+ (a)

]
(b−a)2 . (2.30)

REMARK 5. It is an open question whether or not 1
6 is the best constant in (2.30).

3. Integral Representation and Other Error Bounds

For the integrator u : [a,b]→ R consider the following auxiliary mappings Φu,Γu

and Δu that have been introduced in [15] (see also [16] and [17]):

Φu (t) :=
(t−a)u(b)+ (b− t)u(a)

b−a
−u(t) , t ∈ [a,b] ; (3.1)

Γu (t) := (t−a)[u(b)−u(t)]− (b− t)[u(t)−u(a)] , t ∈ [a,b] (3.2)

and

Δu (t) :=
u(b)−u(t)

b− t
− u(t)−u(a)

t−a
, t ∈ (a,b) . (3.3)

3.1. Integral Representation and Other Bounds

The following representation result was essentially established in [15], (see also
[16]).

THEOREM 10. (Dragomir 2004, [15]) Let f ,u : [a,b]→R be such that the Riemann-
Stieltjes integral

∫ b
a f (t)du(t) and the Riemann integral

∫ b
a f (t)dt exist. Then

D( f ,u;a,b) =
∫ b

a
Φu (t)d f (t) =

1
b−a

∫ b

a
Γu (t)d f (t) (3.4)

=
1

b−a

∫ b

a
(t−a)(b− t)Δu (t)d f (t) .
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The following bounds for the functional D( f ,u;a,b) can then be stated:

THEOREM 11. (Dragomir 2004, [15]) Assume that f ,u : [a,b] → R .

(i) If f is of bounded variation and u is continuous on [a,b] , then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup
t∈[a,b)

|Φu (t)|∨b
a ( f ) ,

1
b−a sup

t∈[a,b]
|Γu (t)|∨b

a ( f ) ,

1
b−a sup

t∈(a,b)
[(t−a)(b− t)|Δu (t)|]∨b

a ( f ) .

(3.5)

(ii) If f is L-Lipschitzian and u is Riemann integrable on [a,b] , then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
∫ b
a |Φu (t)|dt,

L
b−a

∫ b
a |Γu (t)|dt,

L
b−a

∫ b
a (t−a)(b− t)|Δu (t)|dt.

(3.6)

(iii) If f is nondecreasing on [a,b] and u is continuous on [a,b] , then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ b
a |Φu (t)|d f (t) ,

1
b−a

∫ b
a |Γu (t)|d f (t) ,

1
b−a

∫ b
a (t −a)(b− t)|Δu (t)|d f (t) .

(3.7)

COROLLARY 1. (Dragomir 2004, [15]) Let f ,u : [a,b]→ R .

(i) If f is of bounded variation and u is continuous, then

|D( f ,u;a,b)| � 1
4

(b−a)‖Δu‖∞
b∨
a

( f ) ; (3.8)

(ii) If f is L-Lipschitzian and u is Riemann integrable on [a,b] , then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
6L(b−a)2 ‖Δu‖∞ ,

L(b−a)1+ 1
q [B(q+1,q+1)]

1
q ‖Δu‖p , if Δu ∈ Lp [a,b]

and p > 1, 1
p + 1

q = 1;

1
4L(b−a)‖Δu‖1 ,

(3.9)
where B(·, ·) is Euler’s Beta function;
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(iii) If f is nondecreasing on [a,b] and u is continuous, then

|D( f ,u;a,b)| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
4 (b−a)

∫ b
a |Δu (t)|d f (t) ,

1
b−a

(∫ b
a [(b− t)(t−a)]q d f (t)

) 1
q
(∫ b

a |Δu (t)|p d f (t)
) 1

p
,

p > 1, 1
p + 1

q = 1;
1

b−a ‖Δu‖∞
∫ b
a (t−a)(b− t)d f (t) .

(3.10)

REMARK 6. It is an open problem whether or not the multiplicative constants in
(3.8) – (3.10) are the best possible.

Utilising the first representation in (3.4), the following sharp estimate of the error
D( f ,u;a,b) can be stated.

THEOREM 12. (Dragomir 2005. [16]) Let f ,u : [a,b] → R be of bounded varia-
tion on [a,b] and u : [a,b] → R such that there exist constants n,N ∈ R such that

n � u(t) � N for any t ∈ [a,b] (3.11)

and the Riemann-Stieltjes integral
∫ b
a f (t)du(t) exists. Then

|D( f ,u;a,b)| � (N−n)
b∨
a

( f ) . (3.12)

The multiplicative constant 1 on the right hand side of (3.12) is the best possible.

COROLLARY 2. (Dragomir 2005. [16]) Let f : [a,b]→R be a function of bounded
variation and u : [a,b] → R be continuous on [a,b] . Then

|D( f ,u;a,b)| �
[

max
t∈[a,b]

u(t)− min
t∈[a,b]

u(t)
] b∨

a

( f ) . (3.13)

The inequality (3.13) is sharp.

3.2. Double Integral Representations and More Bounds

For a function g : [a,b] → R , consider the generalised trapezoid error transform
Φg : [a,b]→R given by (3.1), and if g is Lebesgue integrable, the Ostrowski transform,
which is the error of approximating the function by its integral mean, defined by:

Θg (t) := g(t)− 1
b−a

∫ b

a
g(s)ds, t ∈ [a,b] . (3.14)
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We also define the kernel Q : [a,b]2 → R ,

Q(t,s) :=

⎧⎨
⎩

t−b if a � s � t � b,

t−a if a � t < s � b.
(3.15)

The following representation result in terms of Θg and Q may be stated:

LEMMA 2. (Dragomir 2007, [19]) If f ,u : [a,b] → R are bounded functions and
such that the Riemann-Stieltjes integral

∫ b
a f (t)du(t) and the Riemann integral

∫ b
a f (t)dt

exist, then we have the representation:

D( f ,u;a,b) =
∫ b

a
Θ f (s)du(s) =

1
b−a

∫ b

a

(∫ b

a
Q(t,s)d f (t)

)
du(s) . (3.16)

Another representation of D( f ,u;a,b) is incorporated in:

LEMMA 3. (Dragomir 2007, [19]) With the assumptions in Lemma 2, we have

D( f ,u;a,b) =
∫ b

a
Φu (t)d f (t) =

1
b−a

∫ b

a

(∫ b

a
Q(t,s)du(s)

)
d f (t) , (3.17)

where Q is defined by (3.15).

The following lemma is of interest in itself [19].

LEMMA 4. If f : [a,b]→R is continuous on [a,b] and v : [a,b]→R is of bounded
variation on [a,b] , then∣∣∣∣

∫ b

a
f (t)dv(t)

∣∣∣∣�
∫ b

a
| f (t)|d

(
t∨
a

(v)

)
(3.18)

�
[

b∨
a

(v)

] 1
q
{∫ b

a
| f (t)|p d

[
t∨
a

(v)

]} 1
p

� max
t∈[a,b]

| f (t)|
b∨
a

(v) ,

where p > 1, 1
p + 1

q = 1.

The first inequality in the above Lemma 4 can be utilized to provide other bounds
for the error functional D( f ,u;a,b) as follows:

THEOREM 13. (Dragomir 2007, [19]) If u : [a,b] → R is of bounded variation
and f : [a,b] → R is L-Lipschitzian, then

|D( f ,u;a,b)| � L

[
1
2

(b−a)
b∨
a

(u)− 2
b−a

∫ b

a

(
s∨
a

(u)

)(
s− a+b

2

)
ds

]
(3.19)

� 1
2
L(b−a)

b∨
a

(u) .

The constant 1
2 is the best possible in both inequalities.
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REMARK 7. The inequality between the first and last term in (3.19) was firstly
discovered by Dragomir and Fedotov in [22] where they also showed the sharpness of
the constant 1

2 .

When certain conditions around the end points are imposed, then the following
results may be stated as well:

THEOREM 14. (Dragomir 2007, [19]) Assume that f : [a,b] → R is of bounded
variation on [a,b] . If u : [a,b] → R is continuous and such that there exist constants
La,Lb > 0 and α,β > 0 with the properties that:

|u(t)−u(a)| � La (t −a)α , |u(t)−u(b)| � Lb (b− t)β (3.20)

for any t ∈ [a,b] , then

|D( f ,u;a,b)|

� 1
b−a

La

[∫ b

a

(
t∨
a

( f )

)
(t −a)α dt − α

∫ b

a

(
t∨
a

( f )

)
(b− t)(t−a)α−1 dt

]

+
1

b−a
Lb

[
β
∫ b

a

(
t∨
a

( f )

)
(t−a)(b− t)β−1 dt −

∫ b

a

(
t∨
a

( f )

)
(b− t)β dt

]
.

(3.21)

The following particular result may be useful for applications.

COROLLARY 3. (Dragomir 2007, [19]) If f : [a,b] → R is of bounded variation
and u : [a,b] → R is K -Lipschitzian, then

|D( f ,u;a,b)| � 4
b−a

·K
∫ b

a

(
t− a+b

2

)
·

t∨
a

( f )dt (3.22)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K (b−a)
∨b

a ( f ) ;

2(b−a)
1
q

(q+1)
1
q

K
(∫ b

a

[∨t
a ( f )

]p
dt
) 1

p
, p > 1, 1

p + 1
q = 1;

2K
∫ b
a

(∨t
a ( f )

)
dt.

The multiplication constant 4 is the best possible.

Finally for the section we have the following result as well:
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THEOREM 15. (Dragomir 2007, [19]) Let f : [a,b]→R be a function of bounded
variation and u : [a,b] → R an (l,L) -Lipschitzian function. Then

|D( f ,u;a,b)| � 2
b−a

(L− l)
∫ b

a

(
t− a+b

2

)
·

t∨
a

( f )dt (3.23)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 (L− l)(b−a)

∨b
a ( f ) ;

(b−a)
1
q

(q+1)
1
q

(L− l)
(∫ b

a

[∨t
a ( f )

]p
dt
) 1

p
, p > 1, 1

p + 1
q = 1;

(L− l)
∫ b
a

(∨t
a ( f )

)
dt.

The constant 2 in the first inequality is the best possible.

3.3. Bounds in the Case when u′ is of Bounded Variation

In [15], by considering the kernel Φu : [a,b] → R given by (3.1), the author has
obtained the following integral representation:

D( f ,u;a,b) =
∫ b

a
Φu (t)d f (t) , (3.24)

where u, f : [a,b] → R are bounded functions such that the Riemann-Stieltjes integral∫ b
a f (t)du(t) and the Riemann integral

∫ b
a f (t)dt exist.

We have the following integral representation of Φu.

LEMMA 5. (Dragomir 2007, [20]) Assume that u : [a,b] → R is absolutely con-
tinuous on [a,b] and such that the derivative u′ exists on [a,b] (eventually except in a
finite number of points). If u′ is Riemann integrable on [a,b] , then

Φu (t) :=
1

b−a

∫ b

a
K (t,s)du′ (s) , t ∈ [a,b] , (3.25)

where the kernel K : [a,b]2 → R is given by

K (t,s) :=

⎧⎨
⎩

(b− t)(s−a) if s ∈ [a,t] ,

(t−a)(b− s) if s ∈ (t,b].
(3.26)

Utilising the above representation for the kernel Φu and the identity (3.24), we
can start with the following results:

THEOREM 16. (Dragomir 2007, [20]) Assume that u : [a,b]→R is as in Lemma 5.
(i) If u′ and f are of bounded variation on [a,b] , then

|D( f ,u;a,b)| � 1
4

(b−a)
b∨
a

(
u′
) · b∨

a

( f ) , (3.27)
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and the constant 1
4 is the best possible in (3.27).

(ii) If the derivative u′ is of bounded variation on [a,b] while f is L-Lipschitzian
on [a,b] , then

|D( f ,u;a,b)| � 1
6
L(b−a)2

b∨
a

(
u′
)
. (3.28)

(iii) If the derivative u′ is of bounded variation on [a,b] and f is nondecreasing
on [a,b] , then

|D( f ,u;a,b)| � 2 ·
∨b

a (u′)
b−a

·
(∫ b

a
t− a+b

2

)
f (t)dt (3.29)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∨b
a (u′)max{| f (a)| , | f (b)|}(b−a);

1
(q+1)1/q

∨b
a (u′)‖ f‖p (b−a)1/q if p > 1, 1

p + 1
q = 1;

∨b
a (u′)‖ f‖1 .

The constants 2 and 1
2 are the best possible in (3.29).

REMARK 8. It is an open question whether or not 1
6 is the best constant in (3.28).

3.4. Bounds in the Case when u′ is Lipschitzian

The following result can be stated as well:

THEOREM 17. (Dragomir 2007, [20]) Let u : [a,b]→R be absolutely continuous
on [a,b] with the property that u′ is S -Lipschitzian on (a,b) .

(i) If f is of bounded variation, then

|D( f ,u;a,b)| � 1
8

(b−a)2 S
b∨
a

( f ) . (3.30)

The constant 1
8 is the best possible in (3.30).

(ii) If f is L-Lipschitzian on [a,b] , then

|D( f ,u;a,b)| � 1
12

(b−a)3 SL. (3.31)

The constant 1
12 is the best possible in (3.31).

(iii) If f is nondecreasing, then

|D( f ,u;a,b)| � S
∫ b

a

(
t− a+b

2

)
f (t)dt (3.32)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4Smax{| f (a)| , | f (b)|}(b−a)2 ;

1
2(q+1)1/q S‖ f‖p (b−a)1+1/q if p > 1, 1

p + 1
q = 1;

1
2 (b−a)S‖ f‖1 .
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The first inequality is sharp. The constant 1
4 is the best possible in (3.32).

4. Grüss’ Type Inequalities

Now, assume that g : [a,b] → R is Lebesgue integrable on [a,b] and −∞ < m �
g(t) � M < ∞ for a.e. t ∈ [a,b] . Then the function u(t) :=

∫ t
a g(s)ds is (m,M) -

Lipschitzian on [a,b] and, by (3.1),

Φu (t) =
∫ t

a
g(s)ds− t−a

b−a

∫ b

a
g(s)ds, t ∈ [a,b] .

On utilising Theorem 4, the following result for the Čebyšev functional can be
stated:

PROPOSITION 2. (Dragomir 2007, [18]) If f : [a,b] → R is of bounded variation
on [a,b] and g : [a,b] → R is Lebesgue integrable and satisfies the bounds

−∞< m � g � M < ∞ a.e. on [a,b] , (4.1)

then

|C ( f ,g;a,b)| � 1
4

(M−m)
b∨
a

( f ) . (4.2)

The constant 1
4 is the best possible.

Moreover, if f : [a,b] → R is nondecreasing on [a,b] , then

|C ( f ,g;a,b)| � 2 · (M−m)
b−a

∫ b

a

(
t − a+b

2

)
f (t)dt (4.3)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 (M−m)max{| f (a)| , | f (b)|} ;

1

(q+1)
1
q

(M−m)‖ f‖p (b−a)−
1
p if p > 1, 1

p + 1
q = 1;

(M−m) 1
b−a ‖ f‖1 .

The constants 2 and 1
2 are the best possible.

On utilising Theorem 9, the following result may be stated as well:

PROPOSITION 3. (Dragomir 2007, [17]) If f ,g are nondecreasing functions, then

0 � C ( f ,g;a,b) (4.4)

� 2 · g(b)−g(a)
b−a

· 1
b−a

∫ b

a

(
t− a+b

2

)
f (t)dt

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 [g(b)−g(a)]max{| f (a)| , | f (b)|} ;

1

(q+1)
1
q

[g(b)−g(a)]‖ f‖p (b−a)−
1
p if p > 1, 1

p + 1
q = 1;

g(b)−g(a)
b−a ‖ f‖1 .
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The constants 2 and 1
2 are the best possible.

If g is nondecreasing on [a,b] and f is of bounded variation on [a,b] , then

|C ( f ,g;a,b)| � 1
4

[g(b)−g(a)]
b∨
a

( f ) . (4.5)

The constant 1
4 is the best possible in (4.5).

Notice that these two inequalities can be obtained from Proposition 2 as well.

PROPOSITION 4. (Dragomir 2007, [16]) If we assume that for the Lebesgue inte-
grable function g, t �→ ∫ t

a g(s)ds satisfies the condition

γ �
∫ t

a
g(s)ds � Γ for any t ∈ [a,b] ,

then

|C ( f ,g;a,b)| � (Γ− γ)
b∨
a

( f ) , (4.6)

where f : [a,b] → R is of bounded variation on [a,b] . The inequality is sharp.

The proof of (4.6) follows from Theorem 12.

PROPOSITION 5. (Dragomir 2007, [19]) If −∞< φ � g(t)�Φ for a.e. t ∈ [a,b] ,
and f : [a,b] → R is of bounded variation on [a,b] , then we have the inequalities

|C ( f ;g)| � 2

(b−a)2
(Φ−φ)

∫ b

a

(
t − a+b

2

) t∨
a

( f )dt (4.7)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 (Φ−φ)

∨b
a ( f ) ;

(b−a)
1
q−1

(q+1)
1
q

(Φ−φ)
(∫ b

a

[∨t
a ( f )

]p
dt
) 1

p
, p > 1, 1

p + 1
q = 1;

Φ−φ
b−a

∫ b
a

(∨t
a ( f )

)
dt.

Finally, we mention the following results from [20]:

PROPOSITION 6. (Dragomir 2007, [20]) Assume that g is bounded variation on
[a,b] .

(i) If f is of bounded variation on [a,b] , then

|C ( f ,g;a,b)| � 1
4

b∨
a

(g) ·
b∨
a

( f ) . (4.8)

The constant 1
4 is the best possible in (4.8).
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(ii) If f is nondecreasing, then

|C ( f ,g;a,b)| � 2
b∨
a

(g) · 1

(b−a)2

∫ b

a

(
t− a+b

2

)
f (t)dt (4.9)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 ·
∨b

a (g)max{| f (a)| , | f (b)|} ;

1
(q+1)1/q

∨b
a (g)‖ f‖p (b−a)−1/p if p > 1, 1

p + 1
q = 1;

1
b−a

∨b
a (g)‖ f‖1 .

The multiplicative constants 2 and 1
2 are the best possible in (4.9).

PROPOSITION 7. (Dragomir 2007, [20]) Assume that g is K -Lipschitzian on [a,b] .

(i) If f is of bounded variation, then

|C ( f ,g;a,b)| � 1
8
· (b−a)K

b∨
a

( f ) . (4.10)

The constant 1
8 is the best possible.

(ii) If f is L-Lipschitzian, then

|C ( f ,g;a,b)| � 1
12

(b−a)2 KL. (4.11)

The constant 1
12 is the best possible in (4.11).

(iii) If f is nondecreasing, then

|C ( f ,g;a,b)| � K · 1
b−a

∫ b

a

(
t− a+b

2

)
f (t)dt (4.12)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4K (b−a)max{| f (a)| , | f (b)|} ;

1
2(q+1)1/q K (b−a)1/q ‖ f‖p if p > 1, 1

p + 1
q = 1;

1
2K ‖ f‖1 .

The first inequality is sharp. The constant 1
4 is the best possible.

REMARK 9. Inequalities (4.8) and (4.10) were obtained by Cerone and Dragomir
in [5, Corollary 3.5] in a different context. However, the sharpness of the constants 1

4
and 1

8 was not discussed there.
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5. Other Error Functionals

In 2003 in order to approximate the Riemann-Stieltjes integral of a product the
author introduced in [10] the following generalised Čebyšev functional for Riemann-
Stieltjes integrals:

T ( f ,g;u) :=
1

u(b)−u(a)

∫ b

a
f (t)g(t)du(t)

− 1
u(b)−u(a)

∫ b

a
f (t)du(t) · 1

u(b)−u(a)

∫ b

a
g(t)du(t) , (5.1)

provided the involved integrals exist and u(b) �= u(a) . Since then, many sharp error
bounds for this functional have been obtained, see [11], [12] and [6].

From a different view point, in 2000, see [13] the author introduced the following
generalised Ostrowski functional for the Riemann-Stieltjes integral

O( f ;u) :=
∫ b

a
f (t)du(t)− [u(b)−u(a)] f (x) , x ∈ [a,b] (5.2)

and pointed out various bounds which provided sharp inequalities of Ostrowski type.
Since then, many other sharp error bounds have been obtained for different classes of
integrands and integrators, see [14], [1] and [9].

For other error functionals and sharp bounds, see the Research Report Collection
of RGMIA at

http://rgmia.vu.edu.au/reports.html.
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