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TYPE FOR ABSOLUTE VALUE OPERATORS
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(Communicated by Y. Seo)

Abstract. In this paper we give operator-valued versions of some Dunkl-Williams related in-
equalities for Hilbert space operators. The case of equality is also studied.

1. Introduction

The well-known Dunkl-Williams inequality [7] states that for any two nonzero
elements x,y in a normed linear space

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ � 4‖x− y‖

‖x‖+‖y‖ . (1)

This inequality, which estimates the angular distance
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥ introduced in [4], has

numerous applications (see e.g. [6, 18]). Over the years, many interesting refinements
of (1) and their reverse inequalities have been obtained. The refinement

∥∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥∥ � 2‖x− y‖
max{‖x‖,‖y‖} , (2)

obtained by Massera and Schäffer in [13], is a useful tool to study linear differential
equations in functional analysis context. Recently Maligranda [12] has established the
following refinement of (1) which seems to be the sharpest one:

∥∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥∥ � ‖x− y‖+ |‖x‖−‖y‖|
max{‖x‖,‖y‖} . (3)

In the same paper, he also obtained the reverse inequality of (3) by showing that
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ � ‖x− y‖− |‖x‖−‖y‖|

min{‖x‖,‖y‖} (4)
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for any pair of nonzero elements x and y in a normed linear space. (For another proof
see [14].)

Further generalizations of (3) and (4) for an arbitrary number of finitely many
elements of a normed linear space can be found in [10, 17], where the equality con-
ditions for elements of a strictly convex normed linear space were considered as well.
The results from [17] have been recently generalized in the framework of pre-Hilbert
C∗ -modules (see [16]).

Let us note that for arbitrary elements x and y in a normed linear space it holds

‖x− y‖+ |‖x‖−‖y‖|�
√

2‖x− y‖2 +2(‖x‖−‖y‖)2 � 2‖x− y‖.
From this we get one more estimate for the angular distance

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ �

√
2‖x− y‖2 +2(‖x‖−‖y‖)2

max{‖x‖,‖y‖} , (5)

which is stronger than the Massera-Schäffer inequality (2), but weaker than the Ma-
ligranda inequality (3).

In this paper we generalize the inequality (5) to the operator case. More precisely,

we estimate
∣∣∣A|A|−1−B|B|−1

∣∣∣ where A and B are Hilbert space operators such that |A|
and |B| are invertible. (Here |T | denotes the absolute value of a Hilbert space operator

T, that is, |T | = (T ∗T )
1
2 , where T ∗ stands for the adjoint operator of T.) The equality

conditions are studied as well.
The operator-valued inequalities presented here are derived from the operator-

valued inequalities of Bohr’s type. The classical Bohr inequality for scalars (see, for
instance, [15, p. 312]) was generalized to the operator case by Hirzallah [9] who proved
that

|A−B|2 � p|A|2 +q|B|2
for any pair of Hilbert space operators A and B and for scalars p,q > 1 such that
1
p + 1

q = 1. Thereby, the equality holds if and only if B = (1− p)A. Some related
operator inequalities of the Bohr type, which we also use here, have been obtained in
[5, 21].

Before stating the results we establish the notation and recall some definitions from
the literature.

By B(H) we denote the algebra of all bounded linear operators acting on a com-
plex Hilbert space H. The inner product on H will be denoted by (·, ·). A self-adjoint
operator A ∈ B(H) is said to be positive if (Ax,x) � 0 for all x ∈ H. We write A � 0
if A is positive. If A,B ∈ B(H) are self-adjoint operators such that B−A � 0 we write
A � B.

2. The results

THEOREM 2.1. Let A,B ∈ B(H) and p,q ∈ R with p > 1 and 1
p + 1

q = 1. Then
we have

|A|A|−1−B|B|−1|2 � |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1. (6)
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The equality in (6) holds if and only if (p−1)(A−B)|A|−1 = B(|A|−1−|B|−1).

Proof. Applying Corollary 1 of [9] on the operators (A−B)|A|−1 and B(|B|−1 −
|A|−1) we have

|A|A|−1−B|B|−1|2 = |(A−B)|A|−1−B(|B|−1−|A|−1)|2
� p|(A−B)|A|−1|2 +q|B(|B|−1−|A|−1)|2. (7)

Thereby, the equality in (7) holds if and only if (p−1)(A−B)|A|−1 = B(|A|−1−|B|−1).
Observe that

|(A−B)|A|−1|2 = ((A−B)|A|−1)∗(A−B)|A|−1

= |A|−1(A−B)∗(A−B)|A|−1

= |A|−1|A−B|2|A|−1

and

|B(|B|−1−|A|−1)|2 = (B(|B|−1−|A|−1))∗B(|B|−1−|A|−1)
= (|B|−1−|A|−1)B∗B(|B|−1−|A|−1)
= (|B|−1−|A|−1)|B|2(|B|−1−|A|−1)
= I−|B||A|−1−|A|−1|B|+ |A|−1|B|2|A|−1

= |A|−1(|A|− |B|)2|A|−1. (8)

This proves the theorem.

REMARK 2.2. Interchanging the operators A and B in Theorem 2.1 note that it
also holds

|A|A|−1−B|B|−1|2 � |B|−1(p|A−B|2 +q(|A|− |B|)2)|B|−1,

with equality if and only if (p−1)(A−B)|B|−1 = A(|A|−1−|B|−1).

As a consequence of Theorem 2.1 we get the following operator-valued version of
the inequality (5).

COROLLARY 2.3. Let A,B ∈ B(H). Then we have

|A|A|−1−B|B|−1| � (|A|−1(2|A−B|2 +2(|A|− |B|)2)|A|−1)
1
2 , (9)

|A|A|−1−B|B|−1| � (|B|−1(2|A−B|2 +2(|A|− |B|)2)|B|−1)
1
2 . (10)

Proof. To obtain (9) put p = q = 2 in (6) and take the positive square root of each
side of the inequality (6). Interchanging A and B in (9) we get (10).
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REMARK 2.4. Considering the Maligranda inequality (3) one could expect the
following extension of this result to the operator valued case:

|A|A|−1−B|B|−1| � |A|− 1
2 (|A−B|+ |A|− |B|)|A|− 1

2 , (11)

where A,B ∈ B(H) are such that |B| � |A|.
However, the following example shows that (11) need not hold. Indeed, if H is a

two-dimensional Hilbert space, and if

A =
[

1 0
0 1

]
, B =

[
0 0.5
−1 0

]

are matrix representations of two operators A and B with respect to some fixed or-
thonormal basis of H, then it can be easily verified that |B| � |A|,

|A|A|−1−B|B|−1| =
[√

2 0
0

√
2

]

and

|A|− 1
2 (|A−B|+ |A|− |B|)|A|− 1

2 =
[

1.4 0.2
0.2 1.6

]
.

Since

[
1.4−√

2 0.2
0.2 1.6−√

2

]
is not a positive matrix, (11) does not hold.

In what follows we give different characterizations of the case of equality in (6).
To do this, let us first prove the following technical lemmas.

LEMMA 2.5. Let A,B ∈ B(H) and p,q ∈ R with 1
p + 1

q = 1. Then the following
statements are mutually equivalent.

(i) (p−1)(A−B)|A|−1 = B(|A|−1−|B|−1).

(ii) A|A|−1−B|B|−1 = qB(|A|−1−|B|−1).

Proof.
(p−1)(A−B)|A|−1 = B(|A|−1−|B|−1) ⇔
pA|A|−1− pB|A|−1−A|A|−1 = −B|B|−1 ⇔

(p−1)(A|A|−1−B|B|−1) = pB(|A|−1−|B|−1) ⇔
A|A|−1−B|B|−1 = qB(|A|−1−|B|−1).

LEMMA 2.6. Let A,B ∈ B(H) and p,q ∈ R with 1
p + 1

q = 1. Let us suppose that

(p−1)(A−B)|A|−1 = B(|A|−1−|B|−1). Then

(p−1)|A−B|2 = |A|2−|B|2.
In particular, if p > 1, then |B| � |A|.
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Proof. First, notice that

(p−1)(A−B)|A|−1 = B(|A|−1−|B|−1) ⇔
(p−1)(A−B)|A|−1−B|A|−1 = −B|B|−1 ⇔

((p−1)A− pB)|A|−1 = −B|B|−1 ⇔
(p−1)A− pB = −B|B|−1|A|,

from which it follows that |(p−1)A− pB|2 = |B|B|−1|A||2. Now we have

|(p−1)A− pB|2 = |B|B|−1|A||2 ⇔
((p−1)A∗− pB∗)((p−1)A− pB) = |A||B|−1B∗B|B|−1|A| ⇔

(p−1)2|A|2 − (p−1)p(A∗B+B∗A)+ p2|B|2 = |A|2 ⇔
(p2−2p)|A|2− (p−1)p(A∗B+B∗A)+ p2|B|2 = 0 ⇔

(p−2)|A|2− (p−1)(A∗B+B∗A)+ p|B|2 = 0 ⇔
(p−1)(|A|2−A∗B−B∗A+ |B|2) = |A|2−|B|2 ⇔

(p−1)|A−B|2 = |A|2−|B|2.
Thus, if p > 1, it follows that |A|2−|B|2 � 0, i.e., |B|2 � |A|2; hence |B| � |A|.

PROPOSITION 2.7. Let A,B ∈ B(H) and p,q ∈ R with p > 1 and 1
p + 1

q = 1.
Then the following statements are mutually equivalent.

(i) (p−1)(A−B)|A|−1 = B(|A|−1−|B|−1).

(ii) |A| = |B|+ p
q |A−B| and A−B = −B|B|−1|A−B|.

(iii) |A|= |B|+ p
q |A−B| and there exists an isometry U ∈B(H) such that B =−U |B|

and A−B = U |A−B|.

Proof. (i) ⇒ (ii) : First, note that Lemma 2.6 implies that |B| � |A|. By Theo-
rem 2.1 and Lemma 2.5 we have

|qB(|A|−1−|B|−1)|2 = |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1,

i.e.,
|A||qB(|A|−1−|B|−1)|2|A| = p|A−B|2 +q(|A|− |B|)2.

From this, by using (8), we get

q2(|A|− |B|)2 = p|A−B|2 +q(|A|− |B|)2,

so
q2

p
(|A|− |B|)2 = (q2−q)(|A|− |B|)2 = p|A−B|2.
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Therefore, q2(|A|− |B|)2 = p2|A−B|2 wherefrom, by taking the positive square root
of each side of this equality, we get q(|A|− |B|) = p|A−B|, as |A|− |B|� 0. Hence,

|A| = |B|+ p
q
|A−B|.

From this it follows that

(p−1)(A−B) = B(|A|−1−|B|−1)|A|
= −B(|B|−1|A|− I)
= −B(|B|−1(|B|+ p

q |A−B|)− I)
= −B(I + p

q |B|−1|A−B|− I)
= − p

qB|B|−1|A−B|.
Thus,

A−B = − p
q(p−1)

B|B|−1|A−B|= −B|B|−1|A−B|.

(ii) ⇒ (i) : Since

(A|A|−1−B|B|−1)|A| = A−B|B|−1|A|
= A−B|B|−1(|B|+ p

q |A−B|)
= A−B− p

q B|B|−1|A−B|
= A−B+ p

q (A−B)
= p(A−B),

we have
A|A|−1−B|B|−1 = p(A−B)|A|−1. (12)

Also,
qB(|A|−1−|B|−1)|A| = qB−qB|B|−1|A|

= qB−qB|B|−1(|B|+ p
q |A−B|)

= qB−qB− pB|B|−1|A−B|
= p(A−B),

so
qB(|A|−1−|B|−1) = p(A−B)|A|−1. (13)

From (12) and (13) we get A|A|−1−B|B|−1 = qB(|A|−1−|B|−1), so (i) follows from
Lemma 2.5.

(ii)⇒ (iii) : Let us define U :=−B|B|−1. Then we have U∗U = |B|−1B∗B|B|−1 =
|B|−1|B|2|B|−1 = I; hence U is an isometry. Thereby, B = −U |B| and A−B = U |A−
B|.

(iii) ⇒ (ii) : It is obvious.

THEOREM 2.8. Let A,B ∈ B(H) and p,q ∈ R with p > 1 and 1
p + 1

q = 1. Sup-
pose that

|A|A|−1−B|B|−1|2 = |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1.

Then the following statements hold.
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(i) If p � 2, then A = B.

(ii) If p < 2, then ((p−2)A− pB)|A−B|= 0.

To prove the above theorem we need the following lemma.

LEMMA 2.9. Let A,B ∈ B(H) be positive operators such that AB+BA = tA2 for
some t ∈ R. Then the following statements hold.

(i) If t < 0, then A = 0.

(ii) If t � 0, then AB = BA = 1
2 tA2.

Proof. Let us put C := B− 1
2 tA. Then it holds

AC+CA = A
(
B− 1

2
tA

)
+

(
B− 1

2
tA

)
A = AB+BA− tA2 = 0,

wherefrom
AC2 = (AC)C = (−CA)C = −C(AC) = C2A.

Thus, AC2 is positive as a product of commuting positive operators A and C2. On
the other hand, AC2 = −CAC = −C∗AC � 0, since A is positive. We conclude that
AC2 = 0. Now we have

(A
1
2C)∗(A

1
2C) = CA

1
2 A

1
2C = CAC = −AC2 = 0,

so A
1
2C = 0. Hence, AC = CA = 0, that is, A(B− 1

2 tA) = (B− 1
2 tA)A = 0. So, we get

AB = BA = 1
2 tA2. Observe that 1

2 tA2 is a positive operator as a product of commuting
positive operators A and B. Thus, in the case t < 0 we have 1

2 tA2 = 0, as A2 is positive,
wherefrom it follows A = 0.

Proof of Theorem 2.8. Let us put C := A−B. By Theorem 2.1 and Proposition 2.7
we have

B∗C = −B∗B|B|−1|C| = −|B|2|B|−1|C| = −|B||C|,
from which it follows that

|C+B|2 = (C+B)∗(C+B)
= |C|2 +C∗B+B∗C+ |B|2
= |C|2−|C||B|− |B||C|+ |B|2. (14)

Again, by Proposition 2.7 it holds

|C+B|2 =
(
|B|+ p

q
|C|

)2
= |B|2 +

p
q
|B||C|+ p

q
|C||B|+ p2

q2 |C|2. (15)
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Using (14) and (15) we get

( p2

q2 −1
)
|C|2 +

( p
q

+1
)
|B||C|+

( p
q

+1
)
|C||B| = 0,

from which it follows ( p
q
−1

)
|C|2 + |B||C|+ |C||B|= 0,

i.e.,
|B||C|+ |C||B|= (2− p)|C|2.

Applying Lemma 2.9 we deduce that C = 0 if p > 2, while in the case p � 2 we have

|B||C| = |C||B| = 1
2
(2− p)|C|2. (16)

In particular, for p = 2 it holds |B||C| = 0, from which it follows C = 0 since |B| is
an invertible operator.

For p < 2, by Proposition 2.7 (ii) and by using (16), we obtain

B|C| = 1
2
(2− p)B|B|−1|C|2 =

1
2
(p−2)C|C|.

Hence,

((p−2)A− pB)|A−B|= (pC−2(C+B))|C|= 2
(1

2
(p−2)C−B

)
|C| = 0

and the theorem is proved.

Notice that Theorem 2.8 fully describes the case of equality in (6) (and also in
(9), (10)) when p � 2. (Namely, the equality holds precisely when A = B.) To get a
complete characterization of the case of equality in (6) when 1 < p < 2, we set one
more condition on operators A and B; that is, (p−2)A− pB or |A−B| is an invertible
operator.

COROLLARY 2.10. Let A,B∈ B(H) and p,q∈R with 1 < p < 2 and 1
p + 1

q = 1.

Let (p−2)A− pB be invertible. Then

|A|A|−1−B|B|−1|2 = |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1

if and only if A = B.

Proof. It follows immediately from Theorem 2.8.

COROLLARY 2.11. Let A,B∈ B(H) and p,q∈R with 1 < p < 2 and 1
p + 1

q = 1.

Let |A−B| be invertible. Then

|A|A|−1−B|B|−1|2 = |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1

if and only if B = p−2
p A.
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Proof. Let us suppose that B = p−2
p A. By Theorem 2.1 it is enough to show that

(p−1)(A−B)|A|−1 = B(|A|−1−|B|−1). Indeed,

(p−1)(A−B)|A|−1 = (p−1)
2
p
A|A|−1 =

(
2− 2

p

)
A|A|−1,

B(|A|−1−|B|−1) =
p−2

p
A
(
|A|−1− p

2− p
|A|−1

)
=

(
2− 2

p

)
A|A|−1.

The converse follows immediately from Theorem 2.8.

Concluding remarks
(a) Applying Theorem 1, Corollary 1 and Theorem 2 of [5] on the operators (A−

B)|A|−1 and B(|B|−1 − |A|−1) we obtain the following upper and lower estimates for
|A|A|−1−B|B|−1|2.

(i) If 1 < p � 2 then

|A|A|−1−B|B|−1|2 + |(1− p)(A−B)|A|−1−B(|B|−1−|A|−1)|2

� |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1, (17)

|A|A|−1−B|B|−1|2 + |(A−B)|A|−1− (1−q)B(|B|−1−|A|−1)|2

� |A|−1(p|A−B|2 +q(|A|− |B|)2)|A|−1. (18)

(ii) If p > 2 then the reverse inequalities of (17) and (18) hold.

(iii) If p < 1 then (18) and the reverse inequality of (17) hold.

Note that (17) and the reverse inequality of (18) are refinements of (6).
Furthermore, if p = q = 2 then the equality holds in both (17) and (18). Also,

in the case p �= 2, the equality holds in both (17) and (18) if and only if (p− 1)(A−
B)|A|−1 = B(|A|−1−|B|−1). Therefore, the case of equality in both (17) and (18) when
1 < p < 2, and in their reverse inequalities when p > 2 is also described in Propo-
sition 2.7, Theorem 2.8, Corollary 2.10 and Corollary 2.11. When p < 1 the case of
equality in both (18) and the reverse inequality of (17) can be characterized in a similar
way.

(b) The proofs of inequalities (3) and (4) are based on the norm-valued triangle
inequality. These inequalities cannot be fully generalized to the operator-valued case
(see Remark 2.4). The reason for this obviously lies in the fact that the operator-valued
triangle inequality |A+B| � |A|+ |B| need not hold (see [11, p. 4] or [8]). However,
there are some other kinds of the operator-valued triangle inequalities (see, for instance,
[19, 1]; see also [20, 2, 3] where the equality conditions have been investigated) which
could serve to generalize (3) and (4) to the operator-valued case.

Acknowledgement. The authors would like to thank the referee for useful sugges-
tions and comments.
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