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ON SOME BOUNDS OF OSTROWSKI AND CEBYSEV TYPE

FAROOQ AHMAD, P. CERONE, S. S. DRAGOMIR AND N. A. MIR

(Communicated by J. Pecaric)

Abstract. Making use of an identity of Dragomir and Barnett, proved in [13] [published in J.
Indian Math. Soc. (N.S.), 66 (1999), No. 1-4, 237-245], some new Ostrowski and Cebyéev
type inequalities involving two functions have been developed. Bounds obtained for the new
established Ostrowski and Cebysev type inequalities are of interest and are better than the bounds
available in the literature for these type of inequalities.

1. Introduction
In 1882, P. L. Cebysev [4] proved that, if f’,g’ € L..|a,b], then,
1
12
where for two functions f, g : [a,b] — R, the functional is

b
— [ g ax

_<bia/ahf(x)dx> (ﬁ/ahg(x)dx) @)

In 1935, G. Griiss [17] showed that

T(f,9) <= (b—a|f.]l¢]... M

T(fag) =

1
T(£.)| < 5 (M —m) (N =n), )
provided m, M, n and N are real numbers satisfying the conditions,
m< f(x) <M, n<gx) <N,

for all x € [a,b], where T (f,g) is as defined by (2).

In 1938, Ostrowski proved the following integral inequality [20]:

Let f:1 — R, where I C R is an interval, be a mapping that is differentiable in
the interior of I (Intl),andlet a, be€lnt 1 ,a<b.1f |f' (t)| <M ,Vt € (a,b), then,

b x— atb 2
‘f(x)—bia/u f@)di] < }ﬁ%] (b—a)M, @

forall x € [a,b].
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Pachpatte in [23] proved the following results.

THEOREM 1. Let f: [a,b] — R be absolutely continuous on [a,b]. If |f'|, |¢|
are convex on [a,b] and ', g’ € Lw.|a,b], then

1S5 (£,8) @) < [le @I ([ )]+ IF7].) + (e ]+ lg']].)]
xll+(x‘a+b) ]” a. 5)

4 (b—a) 4
where
$.1.0)(0) =1 e )~ 555 ¢ [ s [ e,
forall x €a,b].

THEOREM 2. Let f : [a,b] — R be absolutely continuous on [a,b]. If |f'|, |¢|
are convex on [a,b] and ', g’ € L. [a,b], then

1 b / /
(.9 < W/ s @1 @]+ 171.)
1 @1 (|8 @]+ 8']l.)] £ (x) . (6)

where E (x) = M forall x € [a,b].

THEOREM 3. Let f: [a,b] — R be absolutely continuous on [a,b]. If |f'|, |¢|
are convex on [a,b] and ', g’ € Lw.|a,b], then
a+b
(59| r1.)

el < s |
el o

where E (x) = M forall x € [a,b].

During the past few years, many researchers have given considerable attention to
the above results and various generalizations, extensions and variants of these inequal-
ities have appeared in the literature, see [1]-[16], [21]-[25], and the references cited
therein. Motivated by the recent results given in [3], [13], [15], [23]-[25] and [26],
inequalities similar to those given by Ostrowski and Ceby3ev involving two functions
whose second derivatives belong to Lebesgue spaces, can be established. The analysis
used in the proofs is simple and based on the use of integral identities proved in [13]
and [15].
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The main aim of this paper is to obtain some new Ostrowski and Cebysev type
inequalities and their bounds involving two functions whose second derivatives belong
t0 Lo [@,b] and L [a,b] spaces.

2. New Ostrowski and éebyéev Type Inequalities

We consider the usual Lebesgue norms, defined as:

llgll.. :=esssup|g(r)]| <o,
tefo,Bl

and
1/
lelei= [ [ te'a] o

provided that the integral and the supremum are finite. We use the following notation
to simplify the details of presentation:

$p(/:8) () = £ () ( [ ewas [ o)

+MN<x— +h (x—a+b)[Mg(x)+Nf(X)}

2
+b a(x
1

) (M/bg(z)dHN/abf(z)dz)
+(b (/ tdt/ gl(r dt) )

€ [a,b], where

9)

and at the mid-point

w52 (0]
—bia[f<a;b>/a g(t)di+g <a+b>/f ] (10)

\S)
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Also,

——/bs (f.2)

dx—(b a/f dt)(bia/ubg(t)dt>

+<b;2a> MN—b_aM/a (x- 552 stax

(-2 ) rwax an

where M and N are defined by (9).
We also use the following notations to simplify the details:

500 = W) - 550 (10 [ e0are [ roar)

5 (=50 e+ nr ). (12)

and at the mid-point

s;<f,g>:f(a+b) ()
[f( ;’ )/leg(t)dt—l-g(a;b)/ahf(t)dt}. (13)

Also

ST

/f bdx—<b_ /f dt)(b_ /g dt)
(b ) [M/a (x—a;b>g(x)dx

+N/< “+b> )dx} (14)

THEOREM 4. Let f, g [a,b] — R be twice differentiable in (a,b). If " and g"
belong to the usual Lebesgue spaces L. [a,b] and L [a,b], then

el [ (=90 1]
Sy (f:8) (] < = “ b o ta

2
1
+ E:| (b—a)4

b—a)t 11 "
< ). 15)
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and
9 +b| b—a\* | .
}sp<f,g><x>|<—6(\ x= '+ 2“) 171 ll&"1ly
9 /! "
< 1e =[] 18"l (16)
forall x € [a,b], and also
3(b— ¢ 1 "
IR = T a7
and
NS lullg"ly (| _a+b|, b—a\?
|Tp(fyg)’<m/a X + ) dx,
21(b—a " ,,
2O ) ), a9
Proof. Utilizing the Montgomery identity:
b 1 b ,
1@ == [ rwaso— [Pxos wa, (19)

for all x € [a,b], where f :[a,b] — R is differentiable on (a,b) and belongs to the
usual Lebesgue spaces and the kernel P (x,?) : [a,b]2 — R is defined as:

_Jt—a if tefa]
P(x’t)_{t—b if t¢(x,b]. 0

We observe that

sup P (x.1)] = —“;b‘ﬂ’g“, Q1)

[ 0-a
<sup|P(x z)) dx=3 (b—a)’, (22)
[P (s 122, o

2 2
/b\P(x7r>|dt= U (4)

and
b T2 1] A

//Q\P(xtHP(t s)|dsdt 3 [(b—a)z +Z T (b—a)", (25)
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for verification and proof of (25), see also ([13], p. 239 —241).
Dragomir and Barnett [13] used the above identity (19) for f’ (x) of the form

! 1 b / 1 b /!
W) =5 [ fWa+s— [Pens @ 6)
which is equivalent to
/ o f(b) //
fx)= . b a/th 27

Using (27) in the right membership of (19), the authors obtained the representation,

)= [0

o (M L Friorua)e oo

Using (9) and (23) in (28), we have

f(x)—M< —a;b) —bia/abf(t)dt

= ﬁ/ah/abP(x,t)P(t,s)f” (s)dsdt. (29)

g(x)—N< —a;b> - bia/ahg(t)dt

= ﬁ /ub/uhP(x,t)P(t,s)g” (s)dsdr. (30)

Multiplying the left and right sides of the identities (29) and (30), we get

(o ssesto )
(x "”’) <x—“;b>[Mg(x>+Nf(x>}
L) e L)
o ([ronfave)
:W< [ [ Pwnpess sasa)
([ [ Penrese sas). G

Similarly

FWg) - o=
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Using (8) in (31), we have

Sp(f.8)(x) = ﬁ </ah/abP(x,t)P(t,s)f” (s)dsdt)
x (/ub/ubP(x,t)P(t7s)g” (s)dsdt), (32)

from which applying the modulus on both sides gives the inequality

1S, (£,8) ()] < (//|thPts||f” }dsdt)
><</ / |P(x,t)||P(t,s)yg”(s)|dsdt>. (33)

For ", g" € Lwa,b], from (33), we have

50000 < G (s 701 ) ([ [Pl ipe s

x<52p|g”( )(//|thPts)|dsdt)

:%U / IP(x,0)||P (2, s)|dsdt> : (34)

From (25) and (34), we deduce the first part of the inequality (15). We know that
|x — “+b ’ b 4 for all x € [a,b], so the second part of the inequality (15) is obvious.
Usmg (21) (22) and (33) for f”, g" € Ly [a, D], we have

b
50900 < Gt (swoip o [ sop e [ )

(supP Xt |/ sup|P t,s |/ g dsdt)

2

1 2
< m (Slth|P(x7t)|) (/a Sllp|P t, S dl‘) Hf//H ||g//||1

-t 5 (oo e

9 a+b| b—a\’
:E<x‘ > ‘+ 5 ) 170 Ml (35)

we have the first part of the inequality (16), the second part of the (16) is obvious.
Integrating (32) with respect to x from a to b and dividing with (b — a), we have

bia/ubsp(f,g) (x)dx = ﬁ/ﬂb [/ub/abP(x,t)P(t,s)f”(s)dsdt

b b
x / / P(x,t)P(t,s)g”(s)dsdt} dx, (36)
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which gives the identity

e =

5 ab [/ab/abP(XJ)P(LS)f" (s)dsdt
X /ab /ab P(x,t)P(t,5)g" (s) dsdt] dx. (37)

Applying properties of the modulus, we get from (37),

1T, (f,8)| < ﬁ/ [(/ah/abw(x,z)P(t,s>||f”(s)}dsdz)
x ( / / |P(x,t)|P(t,s)||g”(s)’dsdt)]dx. (38)

From (25), we have

/ah </ah/ab|P(x7t) P(t,s)|dsdz) dx
_/”1 [x—#):%

(b ay, (39)

10

/[(//|th|PtS|dsdt)<//|sz|P;S)|dsdt)]

:<b—4a>/a [( —_%2) !

B 3(b—a)’

and so

—|—— dx

When f”, g" € L. [a,b], then from (38) and (40), we have

3(b

4
10l < 22 )

so that the inequality (17) results.
For f”, g"” € Ly [a,b], using the integral mean of (35) and from (21), (22) and

(38), we get
NNy "1l f?
700l < ~igpma | (=

a+b bh—a\?
—_— . 41
> ‘—F > ) dx 41)
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This completes the proof of first part of the inequality (18).

Now,
b a+b| b—a\’ 2 1 3
_7 3
—12(b a).

From (41) and (42), we have the second part of the inequality (18). O

COROLLARY 1. Under the assumptions of Theorem 4, we have the mid-point in-
equalities

490b-a), , B
|Sm(f7g)|<WHf Il 1" (43)
and 5
9 b_ i "
w0l < 22 1, 11 “

Proof. By putting x = “%” in the first parts of the inequalities (15) and (16) re-

spectively, we get the above mentioned mid-point inequalities. [

REMARK 1. If f”, ¢" € L, [a,b], using Holder’s Inequality in (33) and (38), we
can get another expression. However, the details are omitted.

THEOREM 5. Let f,g : [a,b] — R be twice differentiable in (a,b). If f, g, f”,
g" € L|a,b] and L [a,b], then

~ X 11 x " x_w 2
(7, ] < B DU [(@_Zy) L e
<O (gl I+ 17l ). @s)
and
. 3 (s Gl + 17 G 1lg” ‘ a
QUBISIE ( ~ 1><x— +2 220
< 2D (e ], + 1N, ) (6)
forall x € [a,b]. Further,
70| < P (sl 17+ 11 ). ) “7)
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and

- 3 (I + 170 08"1) o /| atb] b-a
)T(f,g))< 8(b—a) /a<x— 5 ‘4— 5 )dx,
9(b— Y .,
- (32a) (gl [l + 101 8", ) - )

Proof. Multiplying both sides of (29) and (30) by g(x) and f (x) respectively,
adding the resulting identities and rewriting by using (9) and (12), we have:

1020~ 55 (700 [ e0ar e [ s 0ar)
- (x-a;b) Mg (5) 4 NF ()]

_ Z(Tl—a)z (g(x) /ab/abP(x,t)P(t,s)f” (s) dsdt

+F) /ah/ubP(x,t)P(t,s)g” (s)dsdt), (49)

which implies

~ b rb
5.0 = 55 (50 [ [ P0G
+f(x)/ah/abP(x,t)P(t,s)g” (s)dsdt). (50)

Using properties of the modulus, we observe that

St ] < ot (sl [ [ 1Pl oasa

b rb
el [ [P ealIpes) e o] dsar ). D)
for f”, g" € Le|a,b], we have

Lo+ 1F CLNIE" Nl
2(b—a)?

~ ‘g b b
S(re )< | [ iPeolipe.s)asa. 62

Using (25) in (52), we deduce the first part of the inequality (45), the last part of (45) is
obvious since |x — 4F2| < &4
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Now for f”, g" € Ly [a,b], we have from (21), (22) and (51)

S| < 55 el (swipeent) ([ swieela) 11,

# 1l (swplP ) [ swlpa.slar) '], ]

3 (g (™)l Hf”||18+ S @1 1g"l) ('x_ a;rb' N b;a) .

(53)

This completes the proof of the first part of the desired inequality (46), the last part (46)

is obvious as |x— 32| < 254

Integrating (50) over x from a to b, and dividing by (b —a), we have

Fral< syt [ (@l [ [1peolpeil oas
+ |f(x)\/ab/ab P(x,t>||p(t,s>;g"(s)|dsdt> dx. (54)

For f,g, ", & € Lw[a,b], we have by applying properties of the modulus on (54) and
using (39),
(b—a)
20

‘%(f,g)’<

This gives us (47).
Now for f,g, ", g’ € Li [a,b], applying properties of the modulus on (54), using
(21) and (22) gives

1P 7 0
2(b—a)’

< [ (swotp ) ([ swplpolar) as

3 (el 1+ U108 ) o /1 as| b—a
T /a<x— . ‘+ ) )dx, (56)

(gl 17"l + 171 18 ) - (55)

‘%(f,g)) <

which completes the proof of the first part of inequality (48).
Using (22) in (56), we deduce the second part of the inequality (48). U

COROLLARY 2. Under the assumptions of Theorem 5, we have the mid-point in-
equalities

a2 (o (). o

Sutr.0)] < 2852 e () I+l (52 1]- o

and
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Proof. By putting x = “%” in the first parts of the inequalities (45) and (46) re-

spectively, we get the above mentioned mid-point inequalities. [

REMARK 2. If f”, g" € L, [a,b], using H6lder’s inequality in (51) and (54), pro-

duces an expression whose details are omitted.
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